Publication Abstract

Hierarchical Bridging Between Ab Initio and Atomistic Level Computations: Calibrating the Modified Embedded-Atom Method (MEAM) Potential (Part A)

Horstemeyer, M., Hughes, J. M., Sukhija, N., Lawrimore, W. B., Kim, S., Carino, R.L., & Baskes, M. I. (2015). Hierarchical Bridging Between Ab Initio and Atomistic Level Computations: Calibrating the Modified Embedded-Atom Method (MEAM) Potential (Part A). Journal of Materials. Springer US. 67(1), 143-147. DOI:10.1007/s11837-014-1244-0.

Abstract

This article provides a sequential calibration methodology for correlating the Modified Embedded Atom Method (MEAM) potential parameters to lower length scale calculation results or experimental data. We developed a graphical interactive MATLAB program called the MEAM Potential Calibration (MPC) tool that provides an interface with the large-scale atomistic/molecular massively parallel simulator. The MPC tool supports a rigorous yet fairly simple calibration methodology for determining the MEAM potential parameters. A pure aluminum system is used as an example to demonstrate the bridging methodology; however, the tool can be used for any material.