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We present an elastic constitutive model of gravity where we identify physical space with
the mid-hypersurface of an elastic hyperplate called the “cosmic fabric” and spacetime
with the fabric’s worldvolume. Using a Lagrangian formulation, we show that the fabric’s
behavior as derived from Hooke’s Law is analogous to that of spacetime per the Field
Equations of General Relativity (GR). The study is conducted in the limit of small
strains, or analogously, in the limit of weak and nearly static gravitational fields. The
Fabric’s Lagrangian outside of inclusions is shown to have the same form as the Einstein–
Hilbert Lagrangian for free space. Properties of the fabric such as strain, stress, vibrations
and elastic moduli are related to properties of gravity and space, such as the gravitational
potential, gravitational acceleration, gravitational waves and the energy density of free

space. By introducing a mechanical analogy of GR, we enable the application of Solid
Mechanics tools to address problems in Cosmology.
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1. Introduction

This paper explores the material analogy of physical space and its implications.
Since as early as Newton,1 there have been various theories about an all pervasive
cosmic medium, also known as “ether,” through which light and matter–matter
interactions propagate. These theories culminated with the Lorentz Ether Theory
(LET),2,3 which postulated length contractions and time dilations for objects
moving through ether2,4 in order to explain the negative outcome of the Michelson
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and Morleys ether detection experiment.5 Although the theory of Special Relativity
(SR)6 appeared to obviate the need for an ether, in reality, SR and LET are math-
ematically equivalent and experimentally indistinguishable from one another. After
the development of General Relativity (GR),7 which attributed measurable intrin-
sic curvature to spacetime, Einstein conceded8 that some notions of an ether must
remain. More recently, theoretical predictions from Quantum Field Theory9 include
zero-point energy density of vacuum, which further supports the material view of
physical space.

The possible confluence between Hooke’s Law and Einstein’s Gravitational Law
motivated the material analogy of space that is explored here. In 1678, Hooke, a
contemporary of Newton, published what later known as Hooke’s Law.10 In 1827,
Cauchy11 advanced Hooke’s Law by defining the tensorial formulation of stress. For
an isotropic linear elastic material, Hooke’s Law states in tensorial form that

σkl =
Y

1 + ν

(
ν

1 − 2ν
gijgkl + gikgjl

)
εij , (1.1)

where σkl, εij and gij are the stress, strain and the metric tensors, respectively, Y

is Young’s elastic modulus and ν is the Poisson’s ratio. Latin indexes, i, j, k, l =
1, . . . , 3, run over the three spatial dimensions, and Einstein summation convention
is employed. In 1916, Einstein published the field equations of GR,7 which can be
written as

Tµν =
1
κ

(
Rµν − 1

2
Rgµν

)
, (1.2)

where Tµν , Rµν and gµν are the stress-energy tensor, Ricci curvature tensor and
spacetime metric tensor, respectively; R ≡ Rµ

µ is the Ricci scalar, κ ≡ 8πG/c4 is
the Einstein constant as c and G are the speed of light and gravitational constant,
respectively. Greek indexes, µ, ν = 0, . . . , 3, run over the four dimensions of space-
time with the 0th dimension representing time. For the purposes of this paper, we
have omitted the Cosmological Constant, which is sometimes included in Eq. (1.2),
because its value is negligible for lengthscales below the size of the observable uni-
verse. Einstein’s Gravitational Law (1.2) suggests a material-like constitutive rela-
tion, similar to Hooke’s Law (1.1), because it relates stress, on the left-hand side, to
deformation on the right-hand side. At first glance, the similarity appears imperfect
because the right-hand sides differ in dimensionality: whereas the strain term, εij ,
is dimensionless, the curvature terms, Rµν and R, have dimensions of Length−2.
However, we resolve this problem by considering bending deformation instead of
just straightforward stretch, contraction or shear deformation. In the equations for
bending, stress is proportional to the second spatial derivative of strain.

After Einstein’s publication of GR,7 a number of researchers have investigated
the relationship between Mechanics notions and GR.

One category of publications dealt with generalizing the equations of Solid
Mechanics to account for relativistic effects. Synge12 formulated a constitutive
relationship in relativistic settings. Rayner13 extended Hooke’s Law to a relativistic
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context. Maugin14 generalized the SR continuum mechanics theory developed by
Grot and Eringen15 to a GR context. More recently, Kijowski and Magli16 presented
the relativistic elasticity theory as a gauge theory. A detailed review of relativistic
elasticity can be found in Karlovini and Samuelsson.17

Another category of publications interprets GR in Solid Mechanical terms.
Kondo18 mentions an analogy between the variation formalism of his theory of
global plasticity and GR. Gerlach and Scott19 introduce a “metric elasticity” tensor
in addition to the elasticity of matter itself and “stresses due to geometry.” However,
these stress and strain terms are not a constitutive model of gravity, because they
are not expected to apply in the absence of ordinary matter. Tartaglia20 attempted
to describe spacetime as a four-dimensional (4D) elastic medium in which one of the
spatial dimensions has been converted into a time dimension by assuming a uniaxial
strain. However, many of the ideas in Tartaglia’s paper appear to be incomplete.
Antoci and Mihich21 explored the physical meaning of the straightforward formal
extension of Hooke’s Law to spacetime, but did not consider the possibility, which is
explored in this paper, that Einstein’s Gravitational Law may be related to Hooke’s
Law. Padmanabhan22 treated spacetime as an elastic solid and used entropy con-
sideration to arrive at the Field Equations (1.2), but unlike the work presented
here, he was not concerned with developing the correspondence between the grav-
itational properties of cosmic space and the mechanical attributes of said solid,
such as its strain and elastic modulus. Beau23 pushed the material analogy further
by interpreting the cosmological constant Λ as related to a kind of a spacetime
bulk modulus, but the analogy is to a fluid-like material and not a solid. A set of
recent publications, for which Rangamani24 presents a literature review, explores
the applicability of the Navier–Stokes equations of Fluid Dynamics to gravity. While
a fluid analogy is useful for some applications, it does not account for shear waves
in space, such as gravity waves, because fluids are only capable of propagating pres-
sure waves and not shear waves. In contrast to the prior literature recounted above,
the work presented here begins with the premise that space exhibits material-like
behavior subject to a constitutive relationship that can be expressed in terms of
Hooke’s Law (1.1).

Very recently, Hehl and Kiefer25 related the three-dimensional (3D) DeWitt
Metric26 with Hookes Law10 using the elastic constants as a fourth rank ten-
sor, which was based on the work of Marsden and Hughes.27 Also, in relation
to dark matter, Böhmer et al.28 modified the General Theory of Relativity by
using anisotropic continuum mechanics. In agreement with our results, but derived
via independent means, Hehl and Kiefer’s determined that the first and second
Lamé parameters of the cosmic material must be λ = −1 and µ = 1

2 , respec-
tively, for some appropriately chosen units, which is equivalent to stating that the
Poisson ratio ν is unity, since ν = λ

2(λ−µ) . Nevertheless, a critical insight of our
work, which has not been mentioned in any publication so far, is relating Einstein’s
Gravitational Law (1.2) to the bending deformation of a material plate as opposed
to straightforward longitudinal or shear-type of deformation. Without this insight,
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(a) (b)

Fig. 1. A plate bending from (a) flat geometry into a (b) curved geometry because of an inclusion
that prescribes uneven strain field, as indicated by the concentric dashed lines and the diverging
arrows. The strain is larger near the center and tapers off with the distance from it. For the geom-
etry of the plate to accommodate the prescribed strain, the plate must bend into the transverse
dimension.

the detailed correspondence between physical space and a material medium remains
largely obscured, thus limiting the practical applications of the material analogy.

In this paper, we develop a formal analogy between Solid Mechanics and GR by
identifying physical space with the mid-hypersurface of a 4D hyperplate, called the
“cosmic fabric,” which has a small thickness along a fourth spatial dimension and
exhibits a constitutive stress–strain behavior. Matter–energy fields act as inclusions
within the fabric causing it to expand longitudinally and consequently to bend. The
effect, illustrated in Fig. 1, is analogous to the result from GR in which matter causes
space to bend resulting in gravity. Unlike other theoretical paradigms that introduce
additional spatial dimensions, such as string theory,29 or Brane world quantum
models,30 our formulation is based on conventional Solid Mechanics theories that
operate strictly within the three ordinary spatial dimensions.

We conduct our study in the limit of weak and nearly static gravitational fields,
and demonstrate that outside of inclusions, the fabric’s action SF , assumes the form
of the Einstein–Hilbert action SEH,

SF =
Y L

48

∫
R

√
|g| dx4 versus SEH =

1
2κ

∫
R

√
|g| dx4, (1.3)

where L is the reference thickness of the fabric, g ≡ det gµν , and the integral is
taken over a large enough volume of spacetime sufficient to ensure convergence.
The action integral of any physical system fully determines its dynamics, because
the system’s equations of motion can be derived from the variation of the action
with respect to the metric. Therefore, once we recognize SF as analogous to SEH,
we can interpret various attributes of the cosmic fabric, such as its shape, strain,
vibrations and elastic moduli as analogous to properties of gravity and space, such
as curvature, gravitational potential, gravitational waves and the zero-point energy
density of space.

Our approach ostensibly resembles the Arnowitt–Deser–Misner (ADM)31 and
DeWitt26 formulations of gravity in the way time lapse is separated from spatial
extent. For example, under the ADM approach, spacetime is foliated into spacelike
hypersurfaces related to each other via shift and lapse functions. Like ADM, DeWitt
also considers the time evolution of 3D spatial metric. Nevertheless, the Cosmic
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Fabric model differs from these formulations in that it associates constitutive behav-
ior with the geometric description of gravity and derives its governing equations
from a material-like constitutive relation. Furthermore, unlike these formulations,
the cosmic fabric specifies a hyperplane of absolute simultaneity.

The Cosmic Fabric model of gravity allows GR problems to be formulated as
Solid Mechanics problems, solved within the Solid Mechanics domain, and the solu-
tion interpreted back in GR terms. The reverse is also true. Thus, ideas, method-
ologies and tools from each field become available to the other field. Over the past
century, Solid Mechanics and GR have advanced independently from each other
with few researchers having expertise in both. Consequently, significant terminol-
ogy and focus gaps exist between these two fields, which obscure their underlying
physical similarities. Our research attempts to bridge these gaps.

The remainder of this paper is organized as follows: In Sec. 2, we develop the
Solid Mechanics analogy of gravity by specifying a material body whose behavior,
determined solely based on Hooke’s Law (1.1), is demonstrably analogous to the
behavior of spacetime. In Sec. 3, we discuss the implications of the resulting model,
and summarize and conclude in Sec. 4.

2. Formulation of the Cosmic Fabric Model of Gravity

Consider a 4D hyperplate, called here the “cosmic fabric,” which is thin in the fourth
spatial dimension, x4. We show that, for a suitably chosen constitutive parameters,
the fabric’s Lagrangian density outside of inclusions is LF = (Y L/48)R

√|g|, where
LF is the integrand in Eq. (1.3). This result enables us to subsequently analyze how
the remaining kinematic properties of the cosmic fabric correspond to properties of
gravity.

2.1. Notation

For the remainder of this paper, we will use the following notation and conventions:
Lower case Latin indexes, i, j, k, l = 1, . . . , 3 run over the three ordinary spatial
dimensions. Upper case Latin indexes, I, J, K, L = 1, . . . , 4 run over the four hyper-
space dimensions, while Greek indexes, µ, ν, α = 0, . . . , 3 run over the four spacetime
dimensions, where indexes 0 and 4 represent, respectively, the time dimension and
the extra spatial dimensions. Sometimes, we will use ξ, where ξ ≡ x4, for the thin
dimension of the hyperplate. Also, we will use t to denote coordinate time such that
x0 ≡ ct, where c is the speed of light. Indexes appearing after a comma represent
differentiation with respect to the indexed dimension. For example, ui,j ≡ ∂ui/∂xj .
For spacetime, we adopt the spacelike metric signature (−, +, +, +) and denote the
flat metric tensor as ηµν , where [ηµν ] ≡ diag[−1, 1, 1, 1].

2.2. Coordinate assignment and reference space

We consider the cosmic fabric as immersed in a 4D hyperspace within which it can
deform. Moreover, this 4D hyperspace is flat and has been assigned a Cartesian
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(a) (b)

Fig. 2. Material coordinates xI versus reference coordinates yI , (a) before and (b) after defor-
mation of a body B. The material coordinates are attached to each material point and are carried
along with the material as it deforms, while reference coordinates remain fixed during deformation.
In the diagram, two of the spatial dimensions have been suppressed for clarity.

coordinate grid with coordinates yI . Another set of coordinates xI is painted on
the fabric in the following manner: prior to deformation, the xI coordinates are
painted such that they coincide with the yI coordinates. As the fabric deforms (see
Fig. 2), the xI coordinates remain attached to each material point and displace
along with it. We call yI , the reference coordinates, and we call the 4D hyperspace,
the reference space. Also, we call xI , the material coordinates, because they name
material points. At any given moment, each point on the fabric can be specified
by either its reference coordinates yI or material coordinates xI , such that prior to
deformation, yI = xI . These two sets of coordinates are commonly used in Solid
Mechanics where “reference coordinates” are also known as “spatial coordinates.”
The reference space described here is a mathematical construct that helps us build
the analogy between Solid Mechanics and GR, but unlike the cosmic fabric itself,
it is not necessarily a physical entity. For example, an observer within the fabric is
unable to measure directly any attributes of this reference space.

With respect to the reference space, metric rulers do not change length as the
fabric deforms. When the fabric is stretched, the number of rulers that can fit
between two given points increases. Since metric rulers define the unit of length
within the fabric, its stretching is perceived within the fabric as the expansion of
physical space. The term strain refers to either the stretch or contraction of a body.
The differential straining of the fabric gives rise to its intrinsic curvature and is
perceived from within it as the intrinsic curvature of physical space.

The fabric and its enclosing reference space share the same coordinate time t.
Thus, their respective time coordinates x0 and y0 are such that x0 = y0 ≡ ct.
Note, however, that the proper time τ , which is measured by clocks within with
the fabric, is not necessarily one and the same as t, and in general, dτ/dt ≤ 1.

1850083-6
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2.3. Deformation basics

Let xi be the material coordinates assigned to the cosmic fabric’s mid-hypersurface,
and let gij be the metric tensor of the fabric. The metric tensor defines how
coordinate differences relate to distances. Thus, the distance ds between two nearby
material points is given by

ds2 = gijdxidxj . (2.1)

For Cartesian coordinates, as adopted here, the distance ds between the same two
material points prior to deformation is

ds2 = δijdxidxj , (2.2)

where δij is the Kronecker delta.
The strain tensor εij quantifies the amount of relative length change during

deformation. By definition, εij is such that

2εijdxidxj = ds2 − ds2 = (gij − δij)dxidxj ,

therefore, εij =
1
2
(gij − δij).

(2.3)

The 3D volumetric strain, defined as

ε3D ≡ εi
i (2.4)

is a scalar field that represents the fractional increase of the fabric’s mid-
hypersurface volume. In other words, dV/dV = (1 + ε3D)e, where dV and dV

are, respectively, the deformed and undeformed volume elements.
The Young’s elastic modulus Y , which figures in Hooke’s Law (1.1), is the

amount of longitudinal stress (force per unit of cross-section area) σii in the ith
direction needed to produce a unit amount of longitudinal strain εii in the same
direction under a uniaxial stress condition (no summation intended over the index
i). The effect of longitudinal stress along a given orientation on the longitudinal
strains in the transverse orientations is known as the Poisson effect and is measured
by the Poisson’s ratio ν (see Fig. 3).

2.4. Postulates

We postulate the cosmic fabric to be (1) an elastic thin hyperplate, with (2) matter–
energy fields as inclusions and (3) lapse rate of proper time proportional to the shear
wave speed vs. Each of these postulates is described and motivated in the sections
below.

2.4.1. Elastic thin hyperplate

Cosmic space is identified with the mid-hypersurface of a hyperplate called the
Cosmic Fabric that is thin along the fourth spatial dimension. We imagine the
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(a) (b)

Fig. 3. (a) Multi-axial stress state, and a (b) uniaxial deformation of an object from the trans-
parent to the deformed shape. Each component σij represents the stress through the ith surface
in the jth direction. The Poisson’s ratio ν measures the effect of the longitudinal stress along the
ith direction on the longitudinal strain along the jth direction, for j �= i. In the case of uniaxial
stress state, εjj = (−ν/Y )σii = −νεii.

fabric as foliated into 3D hypersurfaces each of which is isotropic and elastic, and
each is subject to Hooke’s Law (see Fig. 4). Thus, Hooke’s Law (1.1) together
with concepts such as stress, strain and the Poisson effect (see Fig. 3) apply as
conventionally understood in Solid Mechanics, because they pertain to individual
hypersurfaces, which are 3D bodies.

Because of its correspondence to physical space, the intrinsic curvature, R3D, of
the fabric’s mid-hypersurface corresponds to that of 3D space. Likewise, the intri-
nsic curvature R of the fabric’s worldvolume, corresponds to that of 4D spacetime.
The term “worldvolume” refers to the 4D shape traced out by an object in spacetime
as it advances in time.

The small transverse thickness of the fabric is needed to create resistance to
bending, but once such resistance is accounted for, we treat the fabric as essentially

Fig. 4. The cosmic fabric is treated as a stack of 3D hypersurfaces Σξ each parametrized by
ξ ≡ x4 = const. and L is its thickness.
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a 3D hypersurface that bends within the 4D reference hyperspace. The thickness
must be very small so that the fabric can behave as an essentially 3D object at
ordinary lengthscales and be an appropriate analogy of 3D physical space. The
thickness itself defines a microscopic lengthscale at which the behavior of the phys-
ical world would have to differ significantly from our ordinary experience. A value
equal or comparable to Planck’s length lp meets this criteria. However, the exact
value of the thickness is not essential to the model as long as it is small but not
vanishingly so.

2.4.2. Inclusions

Matter–energy fields behave as inclusions in the fabric inducing membrane strains
leading to transverse displacements and hence bending (Fig. 1). The following equa-
tion postulates that matter is a source of volumetric strain,

ε3D
,kk ∝ c2κρ, (2.5)

where ε3D
,kk ≡ ∇2ε3D is the Laplacian of the volumetric strain, c is the speed of

light, κ is the Einstein constant and ρ is the density of matter–energy. The term
“membrane” strain (or stress) refers to strains (or stresses) that change in-plane,
but are uniform across the thickness of the fabric as opposed to bending strains (or
stresses) that switch sign through the thickness across the mid-hypersurface.

The mass content of matter, rather than its spatial extent, is what causes the
displacement of fabric material. In the context of GR, mass can be related to geom-
etry through its Schwarzschild radius. Thus, 1 m of mass is the amount of mass
whose Schwarzschild radius is 2m. In the same way, the geometric significance
of a matter–energy field, represented by the right-hand side of Eq. (2.5), can be
understood as the Schwarzschild radius density and c2κ as a units conversion fac-
tor. In other words, Eq. (2.5) postulates that the Schwarzschild radius density of a
matter–energy field is a source of volumetric strain in the cosmic fabric.

The analogy between a body in empty space and an inclusion in the cosmic
fabric raises the question of how such an inclusion can move freely through a stiff
fabric in the same way as a body can move through empty space. The wave nature
of matter, at the lengthscale of the body’s elementary particles suggests the answer.
Just like waves can propagate through a very stiff material, in the same way, ele-
mentary particles, which have wave nature, could propagate through the fabric.
A detailed treatment of the matter–fabric interaction requires extending our model
with a mechanical analogy for the nature of matter, which is beyond the scope
of this paper. Instead, the details of the underlying matter–fabric interactions are
abstracted and only the effect is considered, namely, that matter inclusions pres-
cribe a strain field on the fabric. This strain field is then treated as the input to our
model. Representing matter as a strain field within the fabric allows us to aggre-
gate the effects of individual elementary particles over large lengthscales, and treat
planets and stars as individual inclusions.
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2.4.3. Lapse rate

The Lapse Rate postulate relates the flow of proper time to the geometry of the
cosmic fabric. All matter–matter interactions are mediated by signals propagating
in the fabric as shear waves. Therefore, the rate of such interactions varies pro-
portionally to the shear wave speed. A clock placed where fabric waves propagate
slower would tick proportionally slower compared to a clock placed where fabric
waves propagate faster. Such effect is independent of the clocks design, because the
speed of fabric waves affects all matter–matter interactions. In other words, the
lapse rate at each point in the fabric, that is how fast clocks tick, is proportional
to the speed of shear waves propagating in the fabric when measured in relation to
the reference space.

Note that the shear wave speed will appear to have remained constant when
measured by an observer within the fabric, because the reduction in lapse rate
exactly compensates for the reduction in shear wave speed. This perceived invari-
ance of the shear wave speed is analogous to the speed of light invariance in GR.

Stated quantitatively, we postulate that the shear wave speed vs depends on the
fabric’s volumetric strain ε3D as follows:

vs = (1 + ε3D)−1c. (2.6)

Consequently, the lapse rate, that is the relationship between proper time τ and
coordinate time t, is as follows:

dτ

dt
= (1 + ε3D)−1. (2.7)

We motivate the above postulate by connecting the shear wave speed vs to
the mechanical properties of the cosmic fabric. A well-known result from Solid
Mechanics is that vs =

√
µ/ρ, where µ and ρ are, respectively, the shear modulus

and density of the material. When such material is stretched, its density decreases
by a factor of (1+ε3D) because the same amount of material now occupies (1+ε3D)
times more volume. The elastic modulus also changes when the fabric is stretched,
but its relationship to strain depends on the internal structure of the material.
The choice of modulus–strain relationship becomes a parameter in our model that
controls the effect of time dilation. By fixing this relationship to be such that

µ = (1 + ε3D)−3µ0, (2.8)

where µ0 is the reference modulus of the undeformed fabric, we can recover Eq. (2.6).
One reason why the modulus changes is that the internal structure of the material
weakens under stretch. As discussed in Ref. 32, there are materials which exhibit
modulus–strain relationship similar to the one in Eq. (2.8).

2.5. Weak and nearly static fields condition

To keep the math tractable, we conduct our study under the assumption of weak
and nearly static fields. We believe that this assumption is not fundamental to the
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model, and that it could be relaxed or removed in the future. As will be shown in
Sec. 3.1, the fabric strain is analogous to the gravitational potential, so the weak
field condition, which is the subject of Linearized Gravity,33 is analogous to the
small strain condition, which is the subject of Solid Mechanic’s Infinitesimal Strain
Theory.

We consider a gravitational potential Φ to be weak if |Φ/c2| � 1. By this defi-
nition, most gravitational fields that we experience on an everyday basis are weak.
For example, the values for |Φ/c2| at the Earth’s surface due to the gravitational
fields of the Earth, Sun and Milky way are 6.7× 10−10, 1.0× 10−8 and 1.4× 10−6,
respectively.34 As such, we consider these gravity fields to be weak.

Except in regard to gravity waves (Sec. 3.3), we will assume nearly static fields
(or slow changing) in addition to weak fields. A field is considered nearly static if the
gravitating masses causing the field to move with velocities are much less than the
speed of light. This is the case for most gravitational fields that we experience.
The nearly static field assumption means that differentiation with respect to time
results in negligibly small values.

2.6. Linearized spacetime metric

Under the weak field condition, the metric tensor can be approximated as

gµν = ηµν + 2εµν , |εµν | � 1, (2.9)

where the term 2εµν plays the same role as the small quantities hµν that are com-
monly used in GR literature in discussions on Linearized Gravity, such as in Ref. 33.
However, note that except under special conditions, εµν does not necessarily comply
with the harmonic gauge condition, which is often employed in Linearized Gravity.

From (2.3), we recognize the spatial components εij as the strain of the fabric’s
mid-hypersurface. The component ε00, as well as the other time components, are
related to the flow of proper time. Below, we compute a relationship between ε00

and the fabric’s strain.
From (2.7), we can deduce an expression for the time–time component g00 of

the fabric’s spacetime metric gµν as follows. Applying the metric equation for a
stationary point on the fabric,

−c2dτ2 = g00c
2dt2 = −(1 + ε3D)−2c2dt2,

therefore, g00 = −(1 + ε3D)−2.
(2.10)

Combining Eqs. (2.10) and (2.9), we note that

−1 + 2ε00 ≈ g00 = −(1 + ε3D)−2 ≈ −1 + 2ε3D,

therefore, ε00 = ε3D,
(2.11)

which, by the application of the Inclusion Postulate (2.5) yields the following result:

ε00,kk = ε3D
,kk ∝ c2κρ. (2.12)
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2.7. Bending energy density

Rather than treating the fabric as a 4D hyperplate, it is convenient to approximate
it as a 3D hypersurface. This can be accomplished once we have averaged the fabric’s
elastic energy density U across its thickness and assign it to its mid-hypersurface.
At that point, we can use the fabric’s mid-hypersurface as a proxy instead of the
fabric in future calculations.

To compute U , we adapt the work of Efrati et al.35 concerning the bending of
conventional thin plates. For ease of the notation, let ξ ≡ x4 denote the coordinate
offset from the mid-hypersurface of the fabric. The fabric is regarded as foliated
into infinitely many hypersurfaces Σξ each parametrized by ξ = const. (Fig. 4).
We carry over the simplifying assumption from Kirchoff–Love thin plate theory36

to thin hyperplates and assume that the set of material points along any given
hypersurface that were along a normal prior to bending remain along the normal
after bending.

It can be shown35 that the metric gij = gij(ξ) of each Σξ takes the form

gij = aij − 2bijξ + cijξ
2, (2.13)

where aij = aij(xi) and bij = bij(xi) are, respectively, the first and second funda-
mental forms of the mid-hypersurface and cij = aklbikbjl.

The total elastic energy density of a linearly elastic solid is half of the inner
product of its stress and strain tensors. The dependence of the cosmic fabric’s
modulus on strain adds a degree of nonlinearity, which would have resulted in a
correction factor of about (1 + ε3D)−2. However, under the small strain conditions,
ε3D � 1, allowing us to approximate (1 + ε3D)−2 ≈ 1, and thus to neglect the
nonlinear effect. Applying Hooke’s Law (1.1), the total elastic energy density Uξ of
each hypersurface Σξ is given by

Uξ =
1
2
σijεij =

1
2
Cijklεijεkl

such that Cijkl ≡ Y

1 + ν

(
ν

1 − 2ν
gijgkl + gikgjl

)
,

(2.14)

where σij = σij(ξ) and εij = εij(ξ) are, respectively, the stress and strain at each
hypersurface Σξ. Note that here and for the remainder of the paper, we compute
the elastic energy density with respect to the coordinate volume as opposed to the
proper volume.

Next, we compute the total elastic energy density U averaged across the fabric’s
thickness, and we separate it into a bending term UB and a membrane stretch term
UM . For this purpose, we split the strain at each surface, εij into a membrane strain
εM

ij and a bending strain εB
ij as follows:

εij =
1
2
(gij − δij) = εM

ij + εB
ij , εM

ij =
1
2
(aij − δij), εB

ij = −bijξ + O(b2ξ2).

(2.15)
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U =
1
L

∫ L
2

−L
2

Uξ dξ

=
1

2L

∫ L
2

−L
2

Cijkl
(
εM

ij εM
kl + εB

ijε
B
kl +

[
εM

ij εB
kl + εB

ijε
M
kl

])
dξ

= UM + UB,

UM =
1

2L

∫ L
2

−L
2

CijklεM
ij εM

kl dξ,

UB =
1

2L

∫ L
2

−L
2

CijklεB
ijε

B
kl dξ.

(2.16)

The term O(b2ξ2) stands for an expression whose order of magnitude is comparable
to the squire of the elements bij multiplied by ξ2. The mixed terms inside the
square brackets in Eq. (2.16) vanish under integration because the bending strain
reverses sign across the mid-hypersurface; hence εB

ij = εB
ij(ξ) is an odd function,

while εM
ij = εM

ij (ξ) is an even function.
For the remainder of this subsection, we focus on evaluating the term UB. The

term UM will be addressed in the following subsection where we show that it van-
ishes under appropriately chosen material properties and deformation kinematics.

Evaluating UB from Eq. (2.16), we obtain

UB = L2Cijkl [bijbkl + O(b3L)]. (2.17)

The extrinsic curvature terms bij have magnitudes comparable to the inverse of the
curvature radius. The curvature radius is much greater than the thickness of the
fabric, so O(bL) � 1 allows us to neglect the term O(b3L) in the above expression.
Using the identity, R3D

lijk = bikbjl − bijbkl, where R3D
lijk is the Riemann curvature

tensor of the mid-hypersurface, and setting O(b3L) = 0, we can express UB in terms
of the intrinsic 3D spatial curvature R3D as follows:

UB = − L2Y

24(1 + ν)

(
R3D +

1 − ν

1 − 2ν
bi
ib

k
k

)
. (2.18)

The Poisson’s ratio of the cosmic fabric had remained unspecified as a freedom
to be fixed at a later time such as now. In order for UB to be physical, it should
not depend on the extrinsic curvature bij that is not already incorporated into the
intrinsic curvature R3D. The bi

ib
k
k term would vanish if we chose Poisson’s ratio

ν = 1. In this case, the bending energy becomes as follows:

UB = −Y L2

48
R3D (2.19)

subject to the condition

ν = 1. (2.20)
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2.8. Membrane energy density

We now show that for any given small-strain deformed configuration, we can identify
a material displacement field that results in no membrane energy. Consequently, we
conclude that the bending energy UB is the only contribution to the total elastic
energy of the fabric for the case of nearly static fields. Since GR is only concerned
with the curvature of the deformed body, in developing the material analogy of
GR, we have freedom to prescribe a specific material displacement field for the
deformation.

Let us consider a displacement field where each point of the mid-hypersurface,
x4 = 0, of the fabric is displaced within a reference space by the amount w = w(xi)
along a geodesic normal to the hypersurface. It should be evident that using such a
displacement field, one can deform a flat body into any given shape that represents a
small deviation from flatness and does not contain folds. Let yI be the coordinates
in reference space of the position to which the material point at xi is displaced.
Thus, yi = xi and y4 = w. The metric tensor of the deformed hypersurface can be
computed from the dot product of the position differentials as follows:

gij = yK
,i yK

,j = xk
,ix

k
,j + w,iw,j = δij + w,iw,j ,

therefore, εij =
1
2
(gij − δij) =

1
2
w,iw,j .

(2.21)

Using the formula for elastic energy density, UM = σklεkl/2 and applying Hooke’s
Law (1.1) to Eq. (2.21) with ν = 1, we find

UM ∝ σklεkl ∝ (gikgjl − gijgkl)εijεkl

= εk
j εj

k − εj
jε

k
k ∝ w,kw,jw

,jw,k − w,jw,jw
,kw,k = 0,

therefore, UM = 0.

(2.22)

Hence, fixing the fabric’s deformation to material displacements only along the
hypersurface normals is a valid approximation under the assumption of nearly static
fields. In such cases, the reason for the deformation would have been to geometrically
accommodate inclusions by bending into the y4 dimension. Once bending has taken
place, the material points of the fabric can shift within the plane of the fabric
to minimize its membrane energy without affecting the geometrical constraints
imposed by the inclusion. For nearly static situations, we have shown that the
membrane energy can be minimized to where it vanishes. In such cases, the net
displacement would have taken the form described in this subsection.

2.9. Lagrangian density

Ignoring the kinetic energy component, under the simplifying assumption of nearly
static fields, the Lagrangian density is LF = −UB

√|g| ∝ R3D
√|g|, where g ≡

det[gµν ]. The factor
√|g|, which converts from a coordinate volume to a proper
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volume, is needed for LF to be a tensor density, which requires invariance under
coordinate transformations.

Next, we derive an expression for LF in terms of the Ricci curvature R of the
fabric’s worldvolume. According to the gauge-invariant linearized expression for R

per Ref. 33,

R = 2
(− ε µ α

µ ,α + εαµ
,αµ

)
= 2

(− ε i k
i ,k + εik

,ik − ε 0 k
0 ,k − ε k 0

k ,0 + 2ε 0k
0k,

) ≈ R3D + 2ε00,kk. (2.23)

In the last step of the above derivation, we have recognized that the purely spatial
terms add up to the gauge-independent linearized expression for R3D. Furthermore,
the terms differentiated with respect to x0 are negligible because of the nearly static
fields assumption. Also, lowering or raising a single 0 index, which is accomplished
using ηµν , changes the sign of the term.

In free space ε00,kk = 0 per Eq. (2.12). Consequently, after combining Eqs. (2.19)
and (2.23), we finally arrive at

LF = −UB

√
|g| =

Y L2

48
R

√
|g|, (2.24)

which has the same form as the Einstein–Hilbert Lagrangian density. The resulting
action is simply the integral of the Lagrangian density over coordinate spacetime,
namely,

SF =
∫

LF dx4 =
Y L

48

∫
R

√
|g| dx4, (2.25)

which is what we had set out to demonstrate as stated earlier per Eq. (1.3).

3. Discussion

In the previous section, we postulated a material body, which we named the “cosmic
fabric” whose constitutive behavior outside of inclusions is analogous to the behav-
ior of gravity, and have shown the sequential mathematical development. For the
analogy to be useful, it should allow us to map between notions in Solid Mechanics
and GR. Such a mapping is possible on the basis of identifying the fabric Lagrangian
density LF with the Lagrangian density from the Einstein–Hilbert action, LEH, as
applying to free space. Specifically,

LF =
Y L2

48
R

√
|g| = LEH =

1
2κ

R
√
|g|, (3.1)

where κ is the Einstein constant.
In the subsections below, we discuss the correspondence between mechanical

properties of the cosmic fabric and known properties of gravity.

3.1. Fabric strain and gravitational potential

It is a well-known result from Linearized Gravity that given the choice of coordinates
adopted here, the classical gravitational potential Φ is related to the time–time
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component of the metric in the following way33:

Φ
c2

=
−(g00 − η00)

2
. (3.2)

Combined with Eq. (2.11), the above becomes

Φ
c2

=
−(g00 + 1)

2
= −ε00 = −ε3D. (3.3)

In other words, the gravitational potential corresponds to the volumetric expan-
sion of the fabric.

3.2. Poisson’s ratio and the substructure of space

Known materials with a Poisson’s ratio of ν = 1 have a fibrous substructure, which
suggests that the cosmic fabric is, in fact, a fabric! For ν = 1, the bulk modulus is
K = Y/[3(1−2ν)] < 0. A negative bulk modulus means that compressing the fabric
results in an overall increase of the material volume and vice versa. Although such
behavior is unusual for most conventional materials, there are recently discovered
compressive dilatant37 and stretch densifying38 materials, for which ν = 1 in either
compression or tension, respectively. Compressive dilatant materials are artificially
manufactured and their substructure consists of entangled stiff wires. Stretch den-
sifying materials have textile-like substructure comprised of woven threads each
consisting of twisted fibers.

3.3. Fabric vibrations and gravitational waves

Having Poisson’s ratio ν = 1 also implies that there can only be transverse (shear)
waves in the fabric, but no longitudinal (pressure) waves. The shear modulus µ and
the p-wave modulus M are as follows:

µ =
Y

2(1 + ν)
=

Y

4
,

M = Y
1 − ν

(1 − 2ν)(1 + ν)
= 0,

(3.4)

implying that the transverse (shear) wave velocity vs =
√

µ/ρ �= 0, while the
longitudinal (pressure) wave velocity vp =

√
M/ρ = 0. This result shows why the

speed of light is the fastest entity of the universe, given that a longitudinal wave is
typically faster than a shear wave. For a shear wave to be the fastest, the Poisson’s
Ratio must be 1. This conclusion is consistent with observations, because all known
waves that propagate in free space, such as gravity or electromagnetic waves, are
transverse.

Let us consider the analogy between shear waves in the fabric and gravita-
tional waves. Such an analogy depends on demonstrating that the fabric’s behavior
parallels that of spacetime for fast changing fields as well. We leave the rigorous
proof for a future paper, and for the rest of this subsection, we assume that the
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fabric’s behavior implied by the Lagrangian (2.24) also holds for fast changing
fields. Based on this assumption, we proceed to investigate in-plane shear waves
propagating through the fabric and their correspondence to gravitational waves.

First, we show that if static fields are negligible and in the absence of torsion,
then the strain εµν satisfies the harmonic gauge condition, εµα

,α = (1/2)εα µ
α, . For

shear waves, ε3D = 0, and by Eq. (2.11), e00 = 0, implying that εα
α = 0. Therefore,

proving the harmonic gauge condition reduces to demonstrating that, εµα
,α = 0.

Furthermore, the shear time-space components must vanish, ε4j = εj4 = 0 =
ε0j = εj0, because we are assuming negligible static fields and in-plane shear waves.
Therefore, in order to prove that the harmonic gauge condition holds, we just need
to show that εik,k = 0. Let ui be the material displacement field. In terms of the
displacement field, the strain is 2εij = ui,j + uj,i, and so,

2εij = 2uj,i + [ui,j − uj,i],

2εik,k = 2uk,ki + [ui,k − uk,i],k.
(3.5)

But uk,ki = 0 since εkk = uk,k = 0. The difference in the square brackets corres-
ponds to material torsion and must vanish too, so,

εik,k = 0,

therefore, εµα
,α =

(
1
2

)
εα µ

α, .
(3.6)

Since εµν satisfies the harmonic gauge condition, we can apply the linearized
approximation for the Ricci tensor,

Rµν ≈ −ε α
µν,α. (3.7)

After substituting into the Einstein Field equations (1.2), and taking into account
that R ≈ εα µ

α, µ = 0, and that in empty space Tµν = 0, we arrive at

ε α
µν,α = εij,kk − εij,00 = 0,

therefore, εij,00 = εij,kk,
(3.8)

which is a wave equation with solutions that are traveling waves at the speed of
light c. To see this clearly, let us rewrite Eq. (3.8) in terms of the coordinate time
variable t, where x0 ≡ ct, and using the canonical form derivative operators ∂,
and ∇,

1
c2

∂2

∂t2
εij = ∇2εij . (3.9)

The above equation can be related to the Solid Mechanics equation for the
propagation of a shear wave in elastic medium with density ρ and shear modulus µ.
In the absence of body forces, the equation of motion is as follows:

ρ
∂2

∂t2
ui = σij,j . (3.10)
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Applying Hooke’s Law (1.1) and recognizing that, εij = (ui,j + uj,i)/2, µ = Y/

[2(ν + 1)], and uk,k = εkk = 0, we arrive at

ρ
∂2

∂t2
ui = µ∇2ui,

ρ
∂2

∂t2
(ui,j + uj,i) = µ∇2(ui,j + uj,i),

therefore, ρ
∂2

∂t2
εij = µ∇2εij .

(3.11)

The parallel between Eqs. (3.9) and (3.11) confirms that gravitational waves are
analogous to shear waves propagating in a solid material and that furthermore, the
speed of propagation, which is the speed of light c, is related to the shear modulus
and density of the medium per c2 = µ/ρ.

Although Eq. (3.8) suggests that there are ostensibly 10 strain components, εαβ ,
oscillating independently, in reality, only 2 are independent and the rest are coupled
to 2. To show this, consider a traveling wave, which corresponds to a gravity wave,
propagating along the x3 direction. It is necessary that ε3α = εα3 = 0 for the
wave to be a shear wave. Furthermore, as shown previously, ε00 = ε3D = 0 and
εj0 = ε0j = 0. Finally, we have ε3D = ε11 + ε22 = 0, because ε33 = 0 already.
Therefore,

ε11 = −ε22,

ε12 = ε21

(3.12)

are the only two independent degrees of freedom left, which implies just two types of
wave polarizations. The fact that Eq. (3.12) is in terms of the material strain, which
has a definite physical meaning, ensures that the waves must also be physical as
opposed to being mere coordinate displacements. This result, derived from a Solid
Mechanic’s perspective, is consistent with the analogous result from GR about the
polarization of gravitational waves.33

3.4. Elastic modulus and density of free space

From the result in Eq. (3.1), the fabric’s elastic modulus Y could be computed
given an estimate for the fabric’s thickness L. As reasoned in Sec. 2.4.1, Planck’s
length lp ≡ √

�G/c3 is a suitable estimate for L, where � is the reduced Planck’s
constant. Assuming L ∼ lp, we can estimate Y to be

Y ∼ 24
l2pκ

= 4.4 × 10113 N m−2. (3.13)

The density of the fabric ρ is related to the wave speed and shear modulus, as
shown in Sec. 3.3, and can now be computed,

ρ =
µ

c2
=

Y

4c2
∼ 1.3 × 1096 kg m−3. (3.14)
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In accordance with the Cosmic Fabric analogy, the density of the fabric corresponds
to the density of free space, which is also known as the zero-point energy density.
The computed value for ρ agrees to an order of magnitude with the predictions of
Quantum Field Theory (∼ 1096 kg m−3) for the energy density of free space.9 Note
that the predictions of Quantum Field Theory are also based on using Planck’s
length lp as a lengthscale parameter.

3.5. Generalizing the Cosmic Fabric model

The Cosmic Fabric analogy to physical space was demonstrated subject to certain
simplifying conditions such as small strain (weak gravity), nearly static equilibrium
(slow fields) and outside of inclusions (free space). In this subsection, we consider
how each of these conditions might be removed or relaxed in a future generalization
of the model.

The small strain (weak gravity) condition was imposed, so we could use the
linearized equations for strain and, analogously, the linearized equations for gravity.
To relax this condition, we will need to account for the higher order terms in
the equations of strain and also use covariant derivatives instead of conventional
differentiation for all field variables.

Imposing the nearly static field condition allowed us to ignore the kinetic energy
term in the fabric’s Lagrangian. It also let us assume specific bending kinematics
that minimize the membrane energy of the fabric and, in Sec. 2.8, we showed that
such kinematics result in zero membrane energy. Without the condition of nearly
static fields, we will need to take into account the kinetic and membrane energies
of the fabric and also consider a more complex deformation state. One possible
simplification would be to concentrate on the condition without bending (away
from static gravitational fields), and derive a closed-form result for the fabric’s
Lagrangian. This is the condition under which we would study gravitational waves
as discussed in Sec. 3.3. The mathematical complexities resulting in the general
nonstatic fields case will probably require the use of numerical techniques.

Focusing on deriving the fabric’s Lagrangian outside of inclusions was a useful
simplification, so the ε00,kk term in Eq. (2.23) could be eliminated. In the case of
inclusions, this term contributes to an additional Lagrangian term that is analo-
gous to the energy–matter Lagrangian term LM in the generalized Einstein–Hilbert
action SEH =

∫
(R/2κ+LM)

√|g|dx4. The detailed analysis of the fabric’s behavior
within inclusions will be presented in a subsequent paper.

4. Summary and Conclusion

In this paper, we showed that the behavior of spacetime per Einstein’s Field equa-
tions (1.2) is analogous to that of an appropriately chosen material body, termed
the “cosmic fabric” that is governed by a simple constitutive relation per Hooke’s
Law (1.1). In Sec. 2, we postulated several basic properties of the fabric and how
they correspond to physical space and matter in space. Constitutive properties,
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Table 1. Comparison between the GR and Solid Mechanics perspectives.

GR perspective Solid Mechanics perspective

Physical space Mid-hypersurface of a hyperplate called “cosmic fabric”

Spacetime The worldvolume of the cosmic fabric’s mid-hypersurface

Intrinsic curvature of physical space Intrinsic curvature of the fabric’s mid-hypersurface

Intrinsic curvature of spacetime Intrinsic curvature of the fabric’s worldvolume

Gravitational potential Φ Volumetric strain ε3D, such that ε3D = −Φ/c2

Gravitational waves Shear waves traveling at the speed of light

Matter curves spacetime Matter induces prescribed strain causing the fabric to bend

Action integral in free space, Action integral outside of inclusions,

S =
1

2κ

Z
R

p
|g| d4x S =

L2Y

24

Z
R

p
|g| d4x

Constants of nature: Elastic constants:

G, �, c Y = 6c7/2π�G2, ν = 1

such as the Poisson ratio and the elastic modulus dependence on strain, were left
unconstrained as model parameters. These were subsequently chosen such that the
Lagrangian of the fabric could take the form of the Einstein–Hilbert Lagrangian of
GR. After the Cosmic Fabric model was calibrated in this way, in Sec. 3, it was
applied to interpret various properties of gravity in terms of the fabric’s mechanics
and vice versa. To a great extent, the interpretations seemed physically meaningful
from both perspectives of GR and Solid Mechanics. Table 1 summarizes the corres-
pondence between concepts from one field to analogous concepts in the other.

The research presented in this paper suggests an equivalence between postula-
ting the field equations of GR and postulating a cosmic fabric having material-like
properties as described here. We believe that these are two different approaches
for studying the same underlying reality. The Cosmic Fabric model introduces a
new paradigm for interpreting cosmological observations based on well-established
ideas from Solid Mechanics. In recent decades, Solid Mechanics has made signifi-
cant advancements in describing the structure of materials at various length and
timescales ranging from electrons to large-scale engineering structures.39,40 Such
advances, in conjunction with the advances in high-performance computing, have
made possible the construction of multiscale models that accurately simulate the
behavior of metals, ceramics, polymers and biomaterials. The Cosmic Fabric model
should enable the application of these techniques to simulate both the fine and
large-scale structures of the cosmos, and consequently, to address some of the out-
standing problems in Cosmology, such as those pertaining to the density of free
space, dark energy and dark matter.

In this paper, we focused on weak gravitational fields that are exterior to gravi-
tating bodies. Within this scope, we further focused on nearly static fields, and
separately, on gravitational waves in the context of nearly flat spacetime. In our
continuing research, we have also applied the model presented herein to the exterior
of gravitating bodies as well as to moving bodies, and we have found that the same
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postulates continue to yield results that are consistent with the Theory of Relativity,
and we hope to publish them in the near future.

Our research in developing and applying the Cosmic Fabric model is still ongo-
ing, and the results we have shared here are subject to some simplifying constraints.
In the future, we hope to relax these assumptions if not eliminating them completely.
Nevertheless, even at the current stage of the work, these results appear promising
and useful.
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