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a b s t r a c t 

We present a new continuum elastoplastic damage model for cementitious materials which captures their 

distinct behavior in tension and compression due to crack-induced damage and irreversible plastic defor- 

mation. It also describes their response under multi-axial loading with low to high confining pressures. A 

smooth, closed-convex three stress-invariant yield surface is developed which perpendicularly intersects 

the negative hydrostatic axis and is composed of a shear loading surface and an elliptical cap. It incor- 

porates a plastic internal state variable (ISV) characterizing non-uniform hardening of both shear loading 

surface and elliptical cap, while the flow rule is considered to have volumetric non-associativity. Damage 

evolution laws incorporate two ISVs describing crack growth at the macroscale under tensile and com- 

pressive stresses separately. Overall damage under multiaxial loading explicitly considers the effect of 

confining stresses on damage evolution and stiffness recovery effects under cyclic loading. Model predic- 

tions are compared against several experimental results on various concretes and also against responses 

of recently reported models. The proposed model predicts distinctive features of concrete very well in- 

cluding hardening behavior in triaxial-compression and both pre- and post-peak volumetric behavior. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Throughout many years, several theoretical and computational

models involving continuum plasticity and/or damage mechanics

have been developed to simulate the mechanical behavior of ce-

mentitious materials like concrete, c.f. ( Caner and Bazant, 2013;

Etse and Willam, 1994; Folino and Etse, 2012; Grassl et al., 2013;

Han and Chen, 1987; Lee and Fenves, 1998; Lubliner et al., 1989;

Luccioni et al., 1996; Papanikolaou and Kappos, 2007; Salari et

al., 2004; Sánchez et al., 2011; Voyiadjis et al., 2008; Wu et al.,

2006 ). Concrete is the most widely used construction material in

the world; however, appropriate modeling of its experimentally

observed behavior under multi-axial loading conditions, particu-

larly under confined compression, is still challenging. There are

many experimental studies showing that depending on the stress

state and more specifically on the confinement level, failure modes

in concrete change drastically, c.f. ( Burlion et al., 2001; Imran and

Pantazopoulou, 1996; Lu et al., 2007; Poinard et al., 2010; Sfer et

al., 2002 ) among many others. 
∗ Corresponding author. 
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Under predominantly tensile loading with zero to low confine-

ent, concrete experiences nucleation, rapid growth, and coales-

ence of micro-cracks, forming highly localized fracture zones, ac-

ompanied by strain softening and significant degradation of elas-

ic stiffness. Its response under tension is much more brittle dis-

laying considerably lower strength levels and negligible plastic

ardening compared with its response under compressive loading

tates. At the other end of the spectrum, under triaxial compres-

ion with high confining stresses, concrete is remarkably ductile

isplaying considerable plastic deformation with limited microc-

acking. The stiffness degradation is very limited as well with no

ell-defined peak stress – the axial stress vs. strain curve shows

 hardening response characterized by a monotonically decreasing

lope tending toward a plateau – and inelastic volumetric dilatancy

s also greatly reduced, c.f. ( Poinard et al., 2010; Sfer et al., 2002 ).

nder massive confining stresses, an additional inelastic mecha-

ism characterized by material densification (or compaction) due

o collapse of micro-porous constituents and micro-voids is also

ctivated, particularly in mortar in the vicinity of mortar-aggregate

nterface, c.f. ( Bažant et al., 1986; Burlion et al., 2001 ). On the

ther hand, under moderate confining pressures, concrete exhibits

oth ductility – characterized by irreversible plastic deformation

hich strongly increases with confinement – and micro-cracking,

http://dx.doi.org/10.1016/j.ijsolstr.2016.12.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.12.015&domain=pdf
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icrocrack sliding and material crushing – which results in notice-

ble inelastic volumetric expansion and material stiffness degrada-

ion, c.f. ( Poinard et al., 2010 ). 

Therefore, in order to appropriately address the full spectrum

f concrete inelastic deformation and failure modes – both, due

o plasticity and micro-cracking under multiaxial loading subjected

o various levels of confinement – and, furthermore, accounting

or the continuous transition from brittle to ductile failure behav-

or, an elastoplastic-damage model which is based on both, irre-

ersible plastic deformation and continuum damage mechanics, is

equired. 

Many authors have developed constitutive models which com-

ine flow theory of plasticity with damage while describing the

echanical behavior of concrete and rock-like geological materials,

.f. ( Cicekli et al., 2007; Lee and Fenves, 1998; Lubliner et al., 1989;

uccioni et al., 1996; Salari et al., 2004; Voyiadjis et al., 2008; Wu

t al., 2006 ). Almost all of these models seem capable to describe

he plastic-shear deformation and crack-induced damage evolution

nder low to moderate confinement. They, however, are not suit-

ble to describe the related inelastic deformation under high con-

nement range including pore collapse hardening processes under

assive confinement. For example, under hydrostatic compressive

oading, concrete first exhibits somewhat softening behavior be-

ond its elastic limit under low pressure. As the pressure increases

n increasing stiffening behavior is observed because of material

ensification i.e. concrete exhibits a small reversible (or elastic)

egime followed by an elastoplastic regime where both the tan-

ent moduli and bulk secant moduli increase as the result of com-

action ( Burlion et al., 2001 ). Such non-linear behavior cannot be

redicted using aforementioned models. 

On the other hand, up until recently, several models specifically

or concrete are developed which are also based on flow theory

f plasticity and potentially can describe some of its inelastic de-

ormation behavior under high-confinement, c.f. ( Etse and Willam,

994; Folino and Etse, 2012; Grassl et al., 2013 ). In these mod-

ls, hardening in pre-peak regime is described using ‘closed’ (or

ounded) evolving yield surfaces which intersects both positive

nd negative side of hydrostatic pressure axis. Although, post-peak

oftening behavior is described using fracture energy concepts (),

hey, however, are unable to capture some of its crucial behav-

ors including either crack-induced stiffness degradation, or stiff-

ess recovery during cyclic loading, particularly as loading changes

rom being predominantly tensile to predominantly compressive

urthering crack-closure effects. Moreover, even though models e.g.

rassl et al. (2013) use single plastic yield surface and account for

he damage, transition across the negative hydrostatic axis is not

mooth as they do not intersect it perpendicularly. 

Considering all of the above, in this work we present a contin-

um elastoplastic damage model for concrete which captures its

istinct behavior in tension and compression both, due to crack-

nduced damage and irreversible plastic deformation, while also

escribing its response under multi-axial loading with low to high

onfining pressures. Irreversible deformation is described using

ow theory of plasticity which is considered to operate in the ef-

ective configuration pertaining to the undamaged material. The

ield surface is composed of a shear loading surface and an ellip-

ical cap; it is smooth, and is perpendicular to the negative hydro-

tatic axis. 

The evolution law of plastic internal state variable (ISV) char-

cterizes the non-uniform isotropic hardening behavior in which

oth shear loading surface and elliptical cap undergo hardening.

he flow rule is considered to have volumetric non-associativity as

t has been reported that associative flow rule over estimate the

olumetric dilatancy ( Etse and Willam, 1994; Smith et al., 1989 ).
Next, we have adopted the hypothesis of strain equivalence to

ncorporate the effects of damage ( Lämmer and Tsakmakis, 20 0 0;

u, 1990; Lemaitre, 1985; Lemaitre and Chaboche, 1998; Menzela et

l., 2005; Voyiadjis and Taqieddin, 2009 ). It is noted that in duc-

ile, quasi-brittle, and brittle materials, the damage evolution, as a

unction of deformation, is typically divided into three components

void/crack nucleation, growth, and coalescence ( c.f. ( Garrison and

oody, 1987 ), ( Horstemeyer et al., 20 0 0 ), ( Paliwal and Ramesh,

008 )). In the present framework, separate rules characterizing

rack nucleation, growth and coalescence are not specified. In-

tead, the underlying micromechanical processes of crack nucle-

tion, growth and coalescence are represented as coupled and ap-

roximated at the macro-continuum scale with the help of a dam-

ge evolution law which incorporates appropriate damage ISVs.

wo damage ISVs describing tensile and compressive damage evo-

ution separately are introduced. An isotropic scalar damage pa-

ameter characterizing overall damage under multiaxial loading is

ubsequently formulated which explicitly considers both, the stiff-

ess recovery effects under cyclic loading and the effect of confin-

ng stresses on damage evolution under predominantly compres-

ive loading. 

The paper is structured as follows – in the next section and

ts subsections, we describe the framework for the elastoplastic-

amage model followed by the description of individual com-

onents and features constituting both plasticity and damage.

ection 3 describes the procedure pertaining to calibration of

odel parameters using conventional tensile and unconfined and

onfined compression tests. This is followed by Section 4 which

resents the comparisons between the model response and ex-

erimental data under wide range of loading scenarios includ-

ng compression under both low and high confinement. Finally,

ection 5 summarizes the work. 

. Elastoplastic – damage model 

.1. Framework 

This section describes a framework of three dimensional

amage-plasticity model developed for concrete. Damage at the

acroscopic scale due to growth and coalescence of micro-cracks

s described by the isotropic damage parameter D where D ∈ [0,

1]; value D = 0 and D = 1 correspond to undamaged virgin state

nd complete ruptured state, respectively. It is a function of two

arameters – tensile damage D 

+ , and compressive damage D 

− –

haracterizing the degradation of mechanical properties of con-

rete under tension and compression, respectively. Using Lemaitre’s

train equivalence hypothesis ( Lemaitre, 1985 ), homogenized stress

ij associated with the damaged state, is mapped onto the stress

¯ i j in the effective undamaged state as follows 

¯ i j = 

σi j 

( 1 − D ) 
(1) 

The bar on the top of the variable means that it is expressed

n the effective (undamaged) space. Next, we use the following

oupling relationship for damage parameter D which couples both

ensile and compressive damage parameters as well as a function

efining elastic stiffness recovery during transition from tensile to

ompressive loading, as described by Lee and Fenves (1998) 

 = 1 −
(
1 − s 

(
σ̄i j 

)
D 

+ )(1 − D 

−) (2) 

here s ( ̄σi j ) which is a function of stress state such that s ( ̄σi j ) ∈
 0 , 1 ] , is defined as follows 

 

(
σ̄i j 

)
= s 0 + ( 1 − s 0 ) R 

(
σ̄i j 

)
(3) 
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Here, s 0 ∈ [0, 1] is a constant, and dimensionless parameter

R ( ̄σi j ) ∈ [ 0 , 1 ] is a weight factor (c.f. Lubliner et al., 1989 ) defined

as follows 

R 

(
σ̄i j 

)
= 

{ 

0 σ̄i j = 0 ∑ 3 
k =1 〈 ̄σk 〉 ∑ 3 
k =1 | ̄σk | otherwise 

(4)

where, 〈 x 〉 = 

1 
2 ( | x | + x ) denotes the Macauley bracket function,

and σ̄k , k = 1 , 2 , 3 are principal stress values of σ̄i j . Note that

any value of s between 0 and 1 results in a partial recovery

of elastic stiffness during the transition from tensile to compres-

sive loading. If all principal stresses are positive, s = R = 1 and

D = 1 − (1 −D 

+ )(1 −D 

− ) which implies no stiffness recovery during

the transition from compression to tension. On the other hand, if

all principal stresses are negative, s = s 0 ; R = 0 and D = 1 − (1 −s 0
D 

+ )(1 −D 

− ) which implies full elastic stiffness recovery if s 0 =0,

and no recovery if s 0 =1. 

Next, we can decompose the strain tensor εij into its elastic,

ε e 
i j 

, and plastic part, ε p 
i j 

, and the following can be expressed from

linear elasticity 

ε i j = ε e i j + ε p 
i j 
; σi j = E i jkl 

(
ε kl − ε p 

kl 

)
(5)

where E ijkl is the elastic stiffness tensor of the damaged material.

From Eqs. (1) and ( 5 2 ), we subsequently obtain 

σ̄i j = 

E i jkl 

( 1 − D ) 

(
ε kl − ε p 

kl 

)
= E 0 i jkl 

(
ε kl − ε p 

kl 

)
(6)

where E 0 
i jkl 

is the elastic stiffness tensor of the virgin material.

Eq. (6) also suggest that the effective stress is defined with respect

to undamaged state and the overall damage parameter D repre-

sents the degradation of the elastic stiffness. In what follows, the

characterization of the plastic response is formulated in the effec-

tive stress space where σ̄i j is determined from the evolution law

for the plastic strain ε p 
i j 

expressed as follows (repeated indices im-

ply summation) 

˙ ε p 
i j 

= 

˙ λ
∂ F p 
(
σ̄i j , κ

p 
)

∂ σ̄i j 

= 

˙ λm i j ( f l ow rul e ) 

˙ κ p = 

˙ λh 

p 
(
σ̄i j , κ

p 
)

( hardening law ) 

F 
(
σ̄i j , κ

p 
)

≤ 0 ; ˙ λ ≥ 0 ; ˙ λF = 0 (l oading − unl oading 

Kuhn − T ucker complementary conditions ) 

˙ λ ˙ F 
(
σ̄i j , κ

p 
)

= 

˙ λ

(
∂F 

∂ σ̄i j 

˙ σ̄ i j + 

∂F 

∂ κ p 
˙ κ p 

)
=0 ( consistency condition )

(7)

In Eq. (7) , ˙ λ is the plastic multiplier, F p is the plastic poten-

tial, and function F represents the yield surface which determines

the admissible stress states. F is not the same as plastic potential

function F p if the flow rule is non-associative, implying that the

direction of the plastic strain rate vector is normal to the plastic

potential surface ( F p =0) which is different from the vector normal

to the yield surface ( F = 0). κp is the ISV characterizing isotropic

hardening, evolution of which is determined using a plastic hard-

ening function h p . 

Damage parameters D 

+ and D 

− are functions of tensile

and compressive ISVs κ + and κ − , respectively. Damage loading

function and evolution laws of ISVs along with damage load-

ing/unloading conditions according to Kuhn-Tucker relations are

given as follows 

F ±D = F ± − κ±; F ± = 

∫ t 

0 

˙ F ±
(
R 

(
σ̄i j 

)
, ˙ ε p±)dt 

F ± ≤ 0 ; ˙ κ± ≥ 0 ; ˙ κ±F ± = 0 (8)
D D d  
here, t represents time, F ±
D 

are the damage loading functions,

nd functions ˙ F ± depend on parameter R ( ̄σi j ) (see Eq. (4) ) and

n equivalent plastic strain rates ˙ ε p± (see Eq. 34 and Eqs. (46, 47 )

ater in Section 2.3.3 for the definitions of ˙ F + , ˙ ε p+ and 

˙ F −, ˙ ε p−,

espectively). Corresponding damage consistency conditions during

amage evolution can be obtained as follows 

 

±
D = 

˙ F ±D = 0 ⇒ F ± = κ±; ˙ F ± = ˙ κ± ≥ 0 (9)

Using relationships presented in Eqs. (7) and (8) , we can obtain

ontinuum elastoplastic-damage tangent modulus as follows. Dur-

ng plastic loading, we have from consistency condition ( Eq. (7 4 ))

∂F 

∂ σ̄i j 

˙ σ̄i j + 

∂F 

∂ κ p 
˙ κ p = 

∂F 

∂ σ̄i j 

E 0 i jkl 

(
˙ ε kl − ˙ ε p 

kl 

)
+ 

∂F 

∂ κ p 
˙ λh 

p = 0 (10)

sing the flow rule from Eq. (7 1 ) in Eq. (10) , we can solve for the

onsistency parameter as follows 

˙ = 

∂F 
∂ ̄σi j 

E 0 
i jkl 

˙ ε kl 

∂F 
∂ ̄σi j 

E 0 
i jkl 

∂ F p 

∂ ̄σkl 
− ∂F 

∂ κ p h 

p 
= 

1 

ψ 

∂F 

∂ σ̄i j 

E 0 i jkl ˙ ε kl (11)

ubstituting Eq. (11) into Eqs. (7 1 ) and ( 5 ) we can obtain effective

lastoplastic tangent modulus C̄ 
ep 

i jkl 
as follows 

˙ ¯ i j = 

[
E 0 i jkl −

1 

ψ 

(
E 0 i jmn 

∂ F p 

∂ σ̄mn 

)(
E 0 pqkl 

∂F 

∂ σ̄pq 

)]
˙ ε kl = C̄ ep 

i jkl 
˙ ε kl (12)

Derivation of elastoplastic-damage tangent modulus C 
ep 

i jkl 
, which

s obtained after time-differentiating Eq. (1 1 ) is given in Appendix

 

.2. Plasticity model 

The plasticity model developed in this work includes a yield

riteria using pressure and Lode angle sensitive yield function, a

on-associative plastic flow rule, a hardening law accompanied by

n evolution law of the ISV used in the hardening law. The yield

unction and the plastic potential are formulated in the Haigh–

estergaard coordinate system which is defined by the cylindri-

al coordinates ξ̄ , ρ̄ and θ̄ representing the hydrostatic component,

he deviatoric component and the Lode angle component, respec-

ively. These coordinates are functions of the invariants Ī 1 , J̄ 2 and J̄ 3 
xpressed in terms of the principal stress tensors σ̄1 , σ̄2 and σ̄3 

where σ̄1 > σ̄2 > σ̄3 ) as follows 

ξ̄ = 

Ī 1 √ 

3 

; Ī 1 = σ̄1 + σ̄2 + σ̄3 

¯ = 

√ 

2 ̄J 2 ; J̄ 2 = 

1 

6 

[
( ̄σ1 − σ̄2 ) 

2 + ( ̄σ2 − σ̄3 ) 
2 + ( ̄σ3 − σ̄1 ) 

2 
]

θ̄ = 

1 

3 

cos −1 

(
3 

√ 

3 

2 

J̄ 3 

J̄ 3 / 2 
2 

)
; J̄ 3 = 

(
σ̄1 − Ī 1 

3 

)(
σ̄2 − Ī 1 

3 

)(
σ̄3 − Ī 1 

3 

)
(13)

.2.1. Yield surface 

In this work, we have developed a smooth yield-surface which

erpendicularly intersects the negative hydrostatic axis. For this

ield function at any hardening level, all points in the principal

tress space such that F ≤ 0, constitute a closed-convex set. This

et is also bounded for q < 1 because of the elliptical cap F C ( F C is

escribed later in the section). In the past, several studies charac-

erizing mechanical behavior of concrete have used open yield sur-

ace while describing the evolution of plastic strain ( c.f. ( Cervenka

nd Papanikolaou, 2008; Grassl et al., 2002; Papanikolaou and Kap-

os, 2007; Sánchez et al., 2011 )). As a result, these models fail to

ccount for plastic deformation under high pressure loading con-

itions as there is no limit to the elastic zone on the negative
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Fig. 1. Evolution of the compressive meridian of the shear loading function F L in 

Rendulic plane during hardening. 

Fig. 2. Plots of the cap function F C vs. − ξ
f c 

for different levels of hardening. 
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art of the pressure axis. This is in contrast with some of the

eported experimental evidence which suggest plastic flow under

ure hydrostatic loading ( c.f. ( Bažant et al., 1996; Green and Swan-

on, 1973; Sfer et al., 2002 )). On the other hand, there are stud-

es which consider bounded yield surface; some of them, however,

re represented by either C 0 continuous curves ( c.f. ( Han and Chen,

987 )) or higher order C 1 continuous curves which does not in-

ersect the negative pressure axis perpendicularly ( c.f. ( Etse and

illam, 1994 )). The function describing the yield surface devel-

ped in this work does not have these limitations. It has two main

omponents – a shear loading function F L (defines the ‘cone’ re-

ion), and an elliptical cap function F C (used to define the ‘cap’

egion). The shear loading function is a pressure and Lode angle

ensitive three parameter function similar to the one proposed by

enétrey and Willam (1995) . The three parameters required are

niaxial compressive strength f c , uniaxial tensile strength f t and

quibiaxial compressive strength f b . Subsequently, function F L is

iven in terms of effective stress (in Haigh–Westergaard coordi-

ate) as follows 

 L 

(
ξ̄ , ρ̄, θ̄ , q ( κ p ) 

)
≡
( √ 

3 

2 

ρ̄

f c 

) 2 

+ m 0 q 
2 ( κ p ) 

×
(

ρ̄√ 

6 f c 
�
(
cos θ̄ , e 

)
+ 

ξ̄√ 

3 f c 

)
− q 2 ( κ p ) = 0 (14) 

The shape of meridians of F L on the Rendulic plane

( ̄ρ − ξ̄ plane ) is parabolic, and on the deviatoric plane

( plane ξ̄ = constant ) it varies from triangular to almost circu-

ar with increasing confinement. Elliptic function �( cos θ̄ , e )

roposed by Willam and Warnke (1975) is used here which

ontrols the shape of the deviatoric section, given as 

(
cos θ̄ , e 

)
= 

4 

(
1 − e 2 

)
cos 2 θ̄ + ( 2 e − 1 ) 

2 

2 

(
1 −e 2 

)
cos θ̄+ ( 2 e −1 ) 

√ 

4 

(
1 −e 2 

)
cos 2 θ̄+ 5 e 2 −4 e 

(15) 

The eccentricity parameter e is evaluated from the three param-

ters using the relationship proposed by Jirásek and Bažant (2002 ,

p. 365) as follows 

 = 

1 + ε

2 − ε
, where ε = 

f t 

f b 

(
f 2 
b 

− f 2 c 

f 2 c − f 2 t 

)
(16)

Finally, friction parameter m 0 is given as 

 0 = 3 

f 2 c − f 2 t 

f c f t 

e 

e + 1 

(17) 

The evolution of the loading surface during hardening is con-

rolled by a hardening function q ( κp ), which depends on an

sotropic ISV κp , and is described in detail in the next section.

ig. 1 shows the plots of the loading function on the Rendulic

lane for various q ( κp ). The maximum value q ( κp ) is equal to one

corresponding to κp =1 as described in later section) at which

he loading surface becomes the failure surface as proposed by

enétrey and Willam (1995) 

 

(
ξ̄ , ρ̄, θ̄ , 1 

)
≡ F L 
(
ξ̄ , ρ̄, θ̄ , 1 

)
≡ 3 

2 

(
ρ̄

f c 

)2 

+ m 0 

(
ρ̄√ 

6 f c 
�
(
cos θ̄ , e 

)
+ 

ξ̄√ 

3 f c 

)
− 1 = 0 (18) 

Note that �( cos θ̄ , e ) = 1 and 1 /e for compressive and tensile

eridian, respectively. Parameters e and m 0 are obtained in terms

f f c , f t and f b ( Eqs. (16, 17 )) by substituting corresponding values

f ρ̄ and ξ̄ in Eq. (18) at peak stress levels, for cases of uniax-

al tensile and equibiaxial compressive loading ( �( cos θ̄ , e ) = 1 /e
or both cases). This results in two bilinear equations which are

olved simultaneously to obtain expressions for e and m 0 as given

n Eqs. (16), (17) . 

The second component of the yield function is the elliptical cap

unction F C which determines at what point the yield surface inter-

ects ξ̄ - axis in compression. This intersection point corresponds

o ( ̄ξ0 , 0 ) ≡ ( ̄ξ0 ( q ( κ
p 
1 
) ) , 0 ) which is also where the plastic defor-

ation commences in pure hydrostatic loading for a given level of

ardening κ p 
1 

. Further loading leads to the evolution of hardening

o κ p 
2 

which also changes the intersection point to ( ̄ξ0 ( q ( κ
p 
2 
) ) , 0 ) .

he cap function used in this study is described as follows 

 C 

(
ξ̄ , q ( κ p ) 

)
= 

⎧ ⎨ 

⎩ 

1 i f ξ̄ > ξ̄1 ( q ( κ
p ) ) √ 

1 −
(

ξ̄−ξ̄1 ( q ( κ p ) ) 

ξ̄0 ( q ( κ p ) ) −ξ̄1 ( q ( κ p ) ) 

)2 

i f ξ̄ ≤ ξ̄1 ( q ( κ p ) ) 

(19) 

The intersection point ( ̄ξ0 , 0 ) is, therefore, a function of κp .

imilarly, the transition point ( ̄ξ1 , 1 ) ≡ ( ̄ξ1 ( q ( κ
p ) ) , 1 ) is also a func-

ion of q ( κp ); once the ISV κp is known, both ξ̄0 and ξ̄1 can be

valuated. Fig. 2 shows plots of the cap function on the Rendulic

lane for various q ( κp ). Finally, the yield surface F is obtained us-

ng F L and F C as follows 

 

(
ξ̄ , ρ̄, θ̄ , q ( κ p ) 

)
≡
[ √ 

3 

2 

ρ̄

f c 

] 2 

+ q 2 ( κ p ) 

[
m 0 

ρ̄√ 

6 f c 
�
(
cos θ̄

)

F C 
(
ξ̄ , κ p 

)
+ 

(
m 0 

ξ̄√ 

3 f c 
− 1 

)(
F C 
(
ξ̄ , q ( κ p ) 

))2 

]
= 0 (20) 
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Fig. 3. Evolution of the compressive and tensile meridians of the yield surface F in 

Rendulic plane during hardening. Results from present model are compared with 

results from Grassl et al. (2013) . 
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The transition point ( ̄ξ1 , 1 ) on the cap surface F C corresponds

to the transition point ( ̄ξ1 , ρ̄1 ) on the yield surface F . Note that for

ξ̄ > ξ̄1 , the yield surface F is identical to the shear loading surface

F L defined in Eq. (17) as F C = 1 f or ξ̄ > ξ̄1 . Both ξ̄0 and ξ̄1 are deter-

mined as a function of q ( κp ) by using the yield surface of extended

Leon model ( Etse and Willam, 1994 ) modified by Grassl and Jirásek

(2006) denoted as F GJ which is given by the following equation, 

F GJ 
(
ξ̄ , ρ̄, θ̄ , q ( κ p ) 

)
≡
( 

( 1 − q ( κ p ) ) 

(
ρ̄√ 

6 f c 
+ 

ξ̄√ 

3 f c 

)2 

+ 

√ 

3 

2 

ρ̄

f c 

) 2

+ m 0 q 
2 ( κ p ) 

(
ρ̄√ 

6 f c 
�
(
cos θ̄

)
+ 

ξ̄√ 

3 f c 

)
− q 2 ( κ p ) = 0 (21)

This yield surface also becomes the failure surface proposed by

Menétrey and Willam (1995) as described in Eq. (18) for q ( κp ) = 1.

The intersection point ( ̄ξ0 , 0 ) as a function of hardening q ( κp ) is

determined by substituting it in Eq. (21) and solving the resulting

quartic equation. The detailed steps are described in Appendix B.1 .

Furthermore, the transition point at ( ̄ξ1 , ρ̄1 ) is determined by com-

puting first the stress coordinate ( ̄ξmax , ρ̄max ) which is the max-

ima of the yield surface F GJ described in Eq. (21) . The ordinate

ρ̄1 ( q ( κ
p ) ) of the transition point (which is less than ρ̄max ) is given

as, 

ρ̄1 = αρ̄max ; 0 < α < 1 (22)

Once ρ̄1 is known, the abscissa ξ̄1 can be determined by substi-

tuting it in Eq. (20) (note that where F C =1 at the transition point)

and is evaluated as follows, 

ξ̄1 ( q ( κ
p ) ) = 

f c 
√ 

3 

m 0 ( q ( κ p ) ) 
2 

×
( 

q 2 ( κ p ) −
m 0 q 

2 ( κ p ) �
(
cos θ̄

)
√ 

6 

ρ̄1 

f c 
− 3 

2 

(
ρ̄1 

f c 

)2 
) 

(23)

The detailed calculations are presented in Appendix B.2 . 

Fig. 3 shows the evolution of the resulting tensile and com-

pressive meridian plots of the yield surface F alongside F GJ during

hardening in the Rendulic plane. Finally, Fig. 4 shows the three-

dimensional representation of F in principal stress space with

traces of several meridians and deviatoric-plane cross-sections. 
.2.2. Hardening law 

The positioning and the shape of the yield surface is controlled

y a scalar non-dimensional hardening parameter q ( κp ) which is a

unction of hardening ISV κp . The evolution law of κp is given as,

˙ p = 

˙ ε p 

x D 
(
ξ̄
)[�(cos θ̄

)]2 
(24)

here ˙ ε p represents the Euclidean norm of the plastic strain rate

ensor defined as ˙ ε p ≡ ‖ ̇ ε p 
i j 
‖ = 

√ 

˙ ε p 
i j 

˙ ε p 
i j 

and x D ( ̄ξ ) is the hardening

uctility measure which encapsulate the influence of hydrostatic

ressure on ductility. It is an increasing function of pressure (or

ecreasing function of ξ̄ ) and is defined by the peak value of to-

al plastic strain when the failure envelope is reached ( i.e. when
p =1) under triaxial compression loading condition. It is given as

ollows, 

 D 

(
ξ̄
)

= 

{
A D exp 

(
B D R D 

(
ξ̄
))

+ C D i f R D 

(
ξ̄
)

> 0 

D D exp 

(
E D R D 

(
ξ̄
))

+ F D i f R D 

(
ξ̄
)

≤ 0 

(25)

here R D varies linearly with ξ̄ defined as follows, 

 D 

(
ξ̄
)

= 

ξ̄

f c 
+ 

1 √ 

3 

(26)

Function x D has six parameters; two out of these six param-

ters, however, can be determined by imposing a condition of

mooth transition at R D =0. This implies, 

 D + C D = D D + F D 

A D B D = D D E D (27)

Four remaining parameters can be calibrated from values of to-

al plastic strains at peak stress under unconfined tension, uncon-

ned compression, and compression under low and high confine-

ent levels. Eq. (24) can also be used to define h p ( ̄σi j , κ
p ) (see

q. (7 2 ) above) which is determined as follows, 

 

p 
(
σ̄i j , κ

p 
)

= 

∥∥m 

(
σ̄i j , κ

p 
)∥∥

x D 
(
σ̄i j δi j / 

√ 

3 

)[�(cos θ̄
)]2 

(28)

Finally, q ( κp ) is defined in terms of κp as follows ( Grassl and

irásek, 2006 ), 

 ( κ p ) = 

{
q 0 + ( 1 − q 0 ) 

[
( κ p ) 

2 − 3 κ p + 3 

]
κ p i f κ p < 1 

1 i f κ p ≥ 1 

(29)

Note that the minimum and maximum value of q ( κp ) is q 0 and

, respectively, and corresponding of κp is 0 and 1, respectively. 

.2.3. Non-associative plastic flow rule 

The inelastic volumetric dilatancy is determined from the vol-

metric component of plastic strain increment. It has been re-

orted that by using an associative flow rule, in which the direc-

ion of the plastic strain increment is normal to the yield surface,

 significant overestimation of volumetric expansion for frictional

aterial such as concrete is obtained under compressive stresses

 Etse and Willam, 1994; Smith et al., 1989 ). Similarly, the normality

ule severely over-predicts the triaxial strength in strain controlled

nvironments, as the excessive dilation converts into large over-

rediction of lateral confinement ( Etse and Willam, 1994 ). There-

ore, to control the amount of dilatancy a non-associated flow rule

s adopted in the present model. The plastic potential F p is subse-

uently determined by using a volumetric modification of the yield

unction F in which the hydrostatic component of the plastic strain

ate is the only one that does not follow the normality flow rule.

 

p is given as follows, 
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Fig. 4. Evolution of the of the yield surface F in principal stress space. 
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p 
(
ξ̄ , ρ̄, θ̄ , q ( κ p ) 

)
= F 
(
ξ̄ , ρ̄, θ̄ , q ( κ p ) 

)
+ ( q ( κ p ) ) 

2 
f 
(
ξ̄ , q ( κ p ) 

)
(30) 

here function f , which depends on the volumetric stress for a

iven level of hardening, is expressed as follows, 

f 
(
ξ̄ , q ( κ p ) 

)
= 

( 

A f B f exp 

R f 

(
ξ̄
)

B f 

+ C f 
ξ̄

f c 

) 

; R f 

(
ξ̄
)

= 

ξ̄ − ξ̄v ertex 

f c 

(31) 

here ξ̄v ertex represents the hydrostatic tensile strength given as

v̄ ertex = 

√ 

3 f c 
m 0 

. 

The material parameters A f , B f and C f are determined from three

ifferent experiments with dilatancy measurements at different

evels of confinement e.g. unconfined tension test, and compres-

ion tests under low and high confinement. Appendix C presents

he gradient of the yield and plastic potential function. 

.3.3. Damage characterization 

In the parlance of continuum damage mechanics, progressive

oss of material integrity and stiffness degradation is a direct result

f the growth and coalescence of micro-cracks, micro-voids and

ther distributed defects constituting overall damage. In this work

he damage in the material is defined by an isotropic scalar pa-

ameter D which is a function of tensile and compressive damage

arameters D 

+ and D 

− , respectively. These parameters are func-

ions of κ + and κ − ISVs, respectively. In this section we describe

he relationship between these parameters and their correspond-

ng ISVs, along with their evolution. 

Under tensile loading, the specimen develops a localized frac-

ure zone comprised of micro-cracks as the peak stress is realized.

pon continued loading, the unstable growth and eventual coales-

ence of micro-cracks in this fracture zone (which is usually nar-

ow and is aligned perpendicular to tensile loading direction) cause

 decrease in the load carrying capacity of the specimen which ul-

imately falls to zero. This corresponds to the post-peak softening

art of the stress-strain curve. Consequently, the plastic strain rate

s localized within this zone, separated from the remainder of the
ody which experiences elastic unloading. In this work, we model

his localized fracture zone as a fictitious cohesive crack whose re-

ponse is characterized by a traction-separation law or a cohesive

aw. This law relates the traction transmitted by a partially formed

ohesive crack to homogenized crack opening displacement (COD).

n order to render objectivity to the damage model with respect

o the size of finite element mesh (when C 0 continuous finite el-

ments are used), c.f. ( Bažant and Oh, 1983; Oliver, 1989 ), COD is

ransformed into tensile fracture strain while incorporating it in to

he constitutive model, by smearing it over a certain ’crack band

idth’ which is considered to be an internal characteristic length

enoted as l c . We note that l c represents a material property of a

eterogeneous brittle/quasi-brittle material such as concrete that

overns the minimum width of a zone of strain-softening dam-

ge in non-local continuum damage formulations (c.f. ( Bazant and

ijaudier-Cabot, 1989 )). It is a part of constitutive framework de-

cribing damage evolution; its incorporation in the model implies

hat there is a limit to the width of the localization zone prevent-

ng the damage from localizing to a zero volume. An estimate of l c 
as made experimentally by Bazant and Pijaudier-Cabot (1989) to

e ∼2.7 X maximum-aggregate-size of concrete. Therefore, l c is in-

erpreted as the damage zone size. However, in the context of fi-

ite element implementation, main problem caused by such strain

oftening models is spurious mesh sensitivity. If the length-scale

arameter L (which is related to the finite element mesh size de-

oted by l FE , order of the elements, orientation of the localization

ith respect to mesh boundaries, etc.) is not accounted for in the

nite element model, total energy dissipated during damage evo-

ution will depend on mesh density. One way is to make L equal

o l c in areas of localized cracking. However, as noted by Bazant

1986) making L equal to l c is impractical for large structures as 

 c can be very small compared to structure dimensions. Therefore

nstead of first identifying l c of a material and enforcing L = l c , the

verage stress-strain relation for the finite element is adjusted to

ccount for the mesh-size effect to ensure the same energy dissi-

ation, ( i.e. the same fracture energy G 

f 
I 

for different element size

 FE ). Subsequently, l c is interpreted as L during the implementation

 c.f. ( Lee and Fenves, 1998; Lubliner et al., 1989; Oliver, 1989; Voyi-

djis et al., 2008 )). 
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A more sophisticated remedy to overcome the pathological

mesh dependence is by using a regularized integral type non-local

formulation in which the interaction between neighboring points

is also taken into account by weighted spatial averaging of the

damage ISVs, c.f. ( Pijaudier-Cabot and Bažant, 1987 ). This will be

addressed in a forthcoming paper, alongside details related to the

computational aspects - including integration algorithm and ro-

bustness - of the proposed model within the context of finite ele-

ment implementation. 

Denoting the stress transmitted across the surfaces of the

fictitious crack (which represents the localized fracture zone)

as σ n , and the COD with respect to the displacement at the peak

stress as u , the energy absorbed in the fracture zone during dam-

age evolution under uniaxial tension is described as follows, 

G 

I 
f = 

∫ u f 

0 

σn du (32)

Eq. (32) also defines the fracture energy under mode-I cracking

denoted by G 

I 
f 

which is a material property. u f is the crack rupture

opening with respect to the displacement at the peak stress when

crack is fully formed and the traction σ n =0. Moreover, within the

context of the smeared-crack concept, the mapping between u and

tensile fracture strain represented by tensile damage ISV κ + is

given as follows, 

u = l c κ
+ (33)

Next, the function 

˙ F + is given as follows 

˙ F + = 

{
0 i f κ p < 1 

R 

(
σ̄i j 

)
˙ ε p+ i f κ p ≥ 1 

(34)

where factor R ( ̄σi j ) is defined by Eq. (4) , and the equivalent plastic

tensile strain rate ˙ ε p+ = 

˙ λ‖ m k ‖ , k = 1, 2, 3, where 〈 m k 〉 are positive

principal components of the gradient of plastic potential defining

the flow direction (tensor m ij , see Eq. (7 1 )). Note that during dam-

age evolution, ˙ κ+ = 

˙ F + . 
Next, the cohesive law under tensile loading which describes

the post peak softening response is considered to follow the expo-

nential law given by, 

σn = σ̄n 

(
1 − D 

+ ) = σ̄n exp 

(
− u 

u t 

)
(35)

where, σ̄n is the peak stress and u t is the shape parameter control-

ling the slope of the softening curve. Parameter u t can be derived

by first substituting Eq. (33) in (30) and noting that u f → ∞ for ex-

ponential law and σ̄n is equal to f t under uniaxial tensile loading,

to obtain the following, 

G 

I 
f = f t 

∫ ∞ 

0 

exp 

(
− u 

u t 

)
du (36)

Integrating and rearranging terms finally yields 

u t = 

G 

I 
f 

f t 
(37)

Next, substituting Eq. (33) in (35) , and using Eq. (37) we finally

obtain the expression for D 

+ as follows, 

D 

+ = 1 − exp 

(
− f t l c 

G 

I 
f 

κ+ 
)

(38)

The brittle fracture energy concept used for the tensile case

is extended to the compressive stress states by accounting for

the fact that unlike in the tensile case, the number of nucle-

ated cracks which propagate and coalesce upon continued load-

ing are much higher under compressive loading. Past experimen-

tal observations ( c.f. ( Sfer et al., 2002 )) have indicated that under

moderate confining pressures, mode of failure is characterized as
rittle propagation and coalescence of several distributed cracks

nclined along the most compressive stress direction, with well-

efined peak loads and smoothly descending post-peak stress-

train curves. This results from extensive microcracking coalescing

nto several macro-cracks along principal compressive stress direc-

ion. However, at high confinement, failure mode appears to be less

rittle as the peak load increases and the steepness of the post-

eak response decreases with an increase in the confining pres-

ure, indicating an increase in the effective compressive strength

nd the ductility with increase in confinement ( Sfer et al., 2002 ). 

Considering these observations, the number of the fictitious co-

esive cracks ( N ) constituting localized fracture zone under tri-

xial compression with moderate confinement, on one hand, is

onsidered to increase considerably with the increase in confining

tress. On the other hand, at higher level of confinement (beyond

rittle-to-ductile transition), N does not increase as rapidly with

ncrease in confinement. In this study, we formulate N as a func-

ion of confinement under compressive loading using wing-crack

icro-mechanics, which have been used numerous times in the

ast to study the failure behavior of brittle and quasi-brittle ma-

erials due to microcracking under compression ( c.f. ( Ashby and

ammis, 1990; Bhat et al., 2012; Deshpande and Evans, 2008; Horii

nd Nemat-Nasser, 1986; Paliwal and Ramesh, 2008 )). Local in-

omogeneities (including cavities, inclusions, regions in the vicin-

ty of the interface between mortar and aggregates, etc.) in brittle

nd quasi-brittle materials e.g. rocks and concrete, serve as stress

oncentrators which promote micro-cracking (( Horii and Nemat-

asser, 1986; Paliwal and Ramesh, 2008; Tapponnier and Brace,

976 )). Within this wing-crack framework, these stress concen-

rators are modeled as closed planar flaws embedded in elastic

edium; frictional sliding of these flaws under external compres-

ive loading give rise to local tensile stress field near the tips. Upon

ontinued loading, the wing cracks sprout from each tip, and fol-

ow a path so as to maximize the mode-I stress intensity factor, K I 

for more details, refer to Bhat et al. (2012) , Deshpande and Evans

2008 ) and Paliwal and Ramesh (2008) ). This event is character-

zed as a nucleation of wing-micro-cracks. The nucleation criteria

an be established by using the formulation described by Bhat et

l. (2012) and Deshpande and Evans (2008) , modified to account

or triaxial compressive stress state, and is given as follows, 

K IC √ 

πa 
= 

√ 

4 

3 

( √ 

1 + μ2 

2 

ρ̄− + 

μ

2 

√ 

3 

ξ̄−
cos θ̄−

) 

(39)

here μ is the friction coefficient, and ρ̄−, ξ̄− and θ̄− are func-

ions of stress invariants (see Eq. 13 ) of the negative (or compres-

ive) part of the effective stress tensor whose principal values are

iven as 〈 ̄σi −〉 −, where 〈 x 〉 − =min (0, x ) Eq. (39) can also be used

o describe the minimum flaw size (2 a 0 ) which is nucleated ( i.e.

ll cracks of size a ≥ a 0 in that specimen will be nucleated) if the

pecimen is subjected to a triaxial compressive stress state given

s follows, 

 0 = 

( 3 / 4 π) K 

2 
IC (√ 

1+ μ2 

2 
ρ̄− + 

μ

2 
√ 

3 

ξ̄−
cos ̄θ−

)2 
(40)

Next, we consider that these flaws are uniformly distributed in

pace but follow a certain size distribution given by a probability

istribution function g ( a ). Therefore, if total number of flaws in a

pecimen is denoted by η, and the maximum flaw size is 2 a max ,

umber of flaws of size a ≥ a 0 is given as, 

N | a ≥a 0 
= η

∫ a max 

a 0 

g ( a ) da = η( 1 − G ( a 0 ) ) (41)

here G ( a ) is the cumulative distribution function. Assuming g ( a )

s one-parameter exponential distribution function, G ( a ) is given
0 
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 ( a 0 ) = 1 − exp 

(
− a 0 

a m 

)
(42) 

here a m 

is the mean flaw size. Substituting Eq. (40) in (42) , and

sing Eq. (41) we obtain, 

N | a ≥a 0 
≡ N 

(
ρ̄−, ξ̄−, θ̄−

)
= η exp 

⎛ 

⎜ ⎜ ⎜ ⎝ 

− β(√ 

1+ μ2 

2 
ρ̄−
f c 

+ 

μ

2 
√ 

3 

ξ̄−
f c cos ̄θ−

)2 

⎞
⎟⎟⎟⎠

(43) 

here, 

= 

(
3 

4 π

)
K 

2 
IC 

f 2 c a m 

(44) 

Using Eq. (43) , we can obtain number of fictitious cohesive

racks at the peak stress under uniaxial compression as follows,

 ( − f c , 0 ) = η exp 

⎛ 

⎜ ⎜ ⎜ ⎝ 

− β[(√ 

1+ μ2 

3 
− μ

3 

)]2 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(45) 

We note that N also serves as a ductility factor which has been

sed extensively in the past by several researchers while describing

amage evolution under compressive stress states ( c.f. ( Etse and

illam, 1994; Folino and Etse, 2012; Grassl et al., 2013; Menétrey

t al., 1997; Pramono and Willam, 1989 )). Under compressive load-

ng, decohesion accompanied by shear frictional sliding is pre-

ursor to nucleation of micro-cracks in the vicinity of numerous

tress-concentration regions (including inclusions, interface regions

etween mortar, aggregates and other constituents). Therefore, the

unction 

˙ F − which is used to define the compressive damage load-

ng function (see Eq. (8) ) is considered to be a function of equiva-

ent plastic strain rate ˙ ε p−, parameter R (see Eq. (4) ) and the duc-

ility factor N , and is given as follows, 

˙ 
 

− = 

{
0 i f κ p < 1 (

1 − R 

(
σ̄i j 

))
˙ ε p−

N ( ̄σi j ) 
i f κ p ≥ 1 

(46) 

here ˙ ε p− = 

˙ λm D is the equivalent deviatoric plastic strain rate

nd m D is defined as, 

 D = 

∥∥∥∥m i j − m kk 

δi j 

3 

∥∥∥∥ (47) 

During the damage evolution, ˙ κ− = 

˙ F −. The damage law under

ompressive loading which describes the post peak softening re-

ponse is defined as follows, 

 

− = 1 −
(

1 + 

κ−

κ−
c 

)
exp 

(
−κ−

κ−
c 

)
(48) 

here, κ−
c is the shape parameter. Similar to the tensile damage,

ompressive damage formulation can also be regularized as fol-

ows. First, analogous to Eq. (34) , fracture energy under uniaxial

ompression loading is defined as 

 

c 
f = 

∫ u c 
f 

0 

σc du = f c 

∫ u c 
f 

0 

(
1 − D 

−)du (49)

here, σ c is the equivalent stress under uniaxial compression

which is the absolute value of the axial stress) and u is the equiv-

lent shear displacement with respect to its counterpart at the

eak stress. It is related to the equivalent plastic shear strain ac-

umulated after the peak stress smeared over the length l c , as
 (t) = l c 
∫ t 

t peak 
[ ̇ ε p−] dt = 

∫ t 
t peak 

[ l c ( ̇ λm D ) ] dt (time t = t peak implies time

t the peak stress). During damage evolution, ˙ κ− = 

˙ F −; using it

ith Eq. (47) and noting that R = 0, we obtain the following, 

 = l c κ
−N ( − f c , 0 ) (50) 

Note that the length scale l c is accounted for in the revised def-

nition of D 

− as follows, 

 

− = 1 −
(

1 + 

u 

u c 

)
exp 

(
− u 

u c 

)
= 1 −

(
1 + 

l c N ( − f c , 0 ) 

u c 
κ−
)

× exp 

(
− l c N ( − f c , 0 ) 

u c 
κ−
)

(51) 

here N ( − f c , 0) is given in Eq. (45) , and parameter u c can be ob-

ained by substituting Eq. (51 1 ) in Eq. (49) and integrating as fol-

ows, 

 

c 
f = f c 

∫ ∞ 

0 

(
1 + 

u 

u c 

)
exp 

(
− u 

u c 

)
du ⇒ u c = 

G 

c 
f 

2 f c 
(52)

Finally, substituting Eq. (52) in Eq. (51) , the regularized damage

aw under compressive loading is obtained as follows, 

 

− = 1 −
(

1 + 

2 f c l c N ( − f c , 0 ) 

G 

c 
f 

κ−
)

exp 

(
−2 f c l c N ( − f c , 0 ) 

G 

c 
f 

κ−
)
(53) 

. Calibration of model parameters 

Apart from elastic properties characterized by Young’s modulus

 E ) and Poisson’s ratio ( ν), other parameters used in this model

an be categorized into three groups – parameters characterizing

he evolution law of isotropic hardening ISV subsequently causing

he evolution of the yield surface toward the failure surface, plastic

otential defining the non-associative flow rule, and evolution laws

f tensile and compressive ISVs describing the damage growth. All

f these parameters can be determined using combinations of uni-

xial tension, uniaxial compression, equibiaxial compression, and

riaxial compression tests, which are discussed in this section. 

Evolution law of hardening ISV κp incorporates a ductility

easure x D ( ̄ξ ) which requires four independent parameters (see

qs. (24) –(28) ). These parameters can be determined by first com-

uting the norm of the plastic strain tensor defined as ‖ ε p 
i j 
‖ =

 

ε p 
i j 
ε p 

i j 
at the peak axial stress level obtained from uniaxial ten-

ion, uniaxial compression and triaxial compression tests at low

nd high confinement levels, and then calibrating both functions,

s described in Eq. (25) , using these data points. Fig. 5 shows the

lot of both functions, parameters of which are obtained by cal-

brating unconfined and confined compression test data on high-

trength concrete (HSC) from Lu et al. (2007) . In the absence of

niaxial tension test data, plastic strain at the peak tensile stress is

onsidered to be 1 × 10 −5 . Finally, parameter q 0 which is used in

he formulation of hardening function (see Eq. 30 ) and defined as

 0 = 

f c 0 
f c 

where f c 0 is elastic limit stress under uniaxial compres-

ion, can be determined from uniaxial compression test. Its default

alue is set as q 0 =0.3. 

Next, the function defining the failure surface (see Eq. 18 ) re-

uires three parameters - f c , f t and f b . They can be determined

rom uniaxial compression, tension and equibiaxial compression

ests, respectively. If appropriate experimental data to determine

 t and f b is not available, they can be calibrated against f c as follows

f t = 

f c 
10 and f b =1.16 f c c.f. ( Grassl et al., 2013; Papanikolaou and

appos, 2007 ). Plastic potential function F p additionally requires

hree parameters – A f , B f and C f (see Eqs. (30) and (31) ). In this

ork, A f and B f are considered to be constants and C f is considered
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Fig. 5. Plot of calibrated ductility measure x D vs . function R D (see Eq. (28) ) shown 

in solid line. Scattered data points are values of x D (for various R D ) obtained from 

triaxial compression experimental data on HSC reported by Lu et al. (2007) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Plots of calibrated df 

d ̄ξ
vs . ξ̄

f c 
(see Eq. (53) ) shown in solid lines. Scattered 

data are obtained from triaxial compression experiments on HSC reported by Lu et 

al. (2007) . 

Fig. 7. Plot of calibrated N vs . the stress factor � ≡ ( 

√ 

1+ μ2 

2 
ρ̄− + 

μ

2 
√ 

3 

ξ̄−
cos ̄θ−

) 2 (see 

Eq. (45) ) shown in solid line. Scattered data points are values of N (for various 

�) obtained from triaxial compression experiments on HSC reported by Lu et al. 

(2007) . 
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to vary linearly with the hardening parameter q ( κp ) defined as

C f = c 1 + c 2 q ( κ
p ). Experimental data from tension, and unconfined

and confined compression tests is used to determine these param-

eters as follows. First, experimental values of incremental axial and

lateral plastic strains are obtained as follows, 

�ε p a = �ε a − �σ̄a /E; �ε p 
l 

= �ε l − �σ̄a ν/E (54)

where subscripts a and l refer to axial and lateral, respectively, and

the symbol � is used to indicates the incremental values. Next, the

incremental values of volumetric and deviatoric plastic strains are

computed using Eq. (54) which is subsequently used to obtain the

following relationship between 

∂ F p 

∂ ̄ξ
and 

∂ F p 

∂ ̄ρ
as follows, 

�ε p 
ξ̄

= �λ
∂ F p 

∂ ξ̄
= 

�ε a + 2�ε l √ 

3 

; �ε p ρ = �λ
∂ F p 

∂ ρ̄

= 

√ 

2 

3 

| �ε a − �ε l | ⇒ 

∂ F p 

∂ ξ̄
= 

(
∂ F p 

∂ ρ̄

)
�ε p 

ξ

�ε p ρ

(55)

After computing partial derivatives of F p (see Eqs. (30) and

(31) ) and substituting in the equation above, we obtain the fol-

lowing equation for the gradient of the non-associative parameter

f ( ̄ξ , q ( κ p ) ) as follows, 

df 

d ̄ξ
= A f exp 

R f 

(
ξ̄
)

B f 

+ C f ( q ( κ
p ) ) 

= 

[ ( 

3 ̄ρ

q 2 ( κ p ) f c 
+ 

m 0 �
(
cos θ̄ , e 

)
F C √ 

6 

) 

�ε p 
ξ

�ε p ρ

−
m 0 �

(
cos θ̄ , e 

)
ρ̄

√ 

6 

×
(

d F C 

d ̄ξ

)
− 2 

(
m 0 ̄ξ√ 

3 f c 
− 1 

)
F C 

(
d F C 

d ̄ξ

)
f c −

m 0 F 
2 

C √ 

3 

]
(56)

Hence, once �ε p 
ξ

and �ε p ρ are determined from tensile and com-

pression tests (which correspond to a given stress state), values of

ξ̄ , ρ̄ , �( cos θ̄ , e ) are also known for each set of �ε p 
ξ
, �ε p ρ . Us-

ing them, q ( κp ) is obtained such that F ( ̄ξ , ρ̄, θ̄ , q ( κ p ) ) = 0 , which

also give ξ̄0 ( q ( κ
p ) ) and ξ̄1 ( q ( κ

p ) ) . Using these values, F C and 

d F C 
d ̄ξ

are also obtained. Hence, the right hand side (RHS) of Eq. (56) is

completely determined. Finally, optimized set of parameters - A f ,

B f and C f are determined from values of RHS of Eq. (56) . Note

that in case tension test data is not available, compression tests

under low, moderate and high confinement can also be used

to obtain these parameters. Also note that the Lode angle θ̄ is
onstant throughout each experiment needed to calibrate these

arameters. Fig. 6 shows plots of df 

d ̄ξ
vs . ξ̄ (as scattered plots) com-

uted from several triaxial compression experiments on HSC by Lu

t al. (2007) on HSC under low, moderate and high confinement,

nd also shows plots of corresponding function calibrated using

q. (56) above (shown as solid lines). 

Finally, the damage is a function of tensile and compressive

amage parameters D 

+ and D 

− , respectively whose growth de-

ends on the evolution of corresponding ISVs - κ + and κ − . The

ensile damage parameter D 

+ requires a shape parameter u t and

 characteristic internal length scale parameter l c . It is chosen to

e 100 mm in this work, c.f. ( Etse and Willam, 1994; Folino and

tse, 2012; Grassl et al., 2013 ). u t , on the other hand, is deter-

ined from the fracture energy under mode-I cracking G 

I 
f 

using

q. (37) . Next, the compressive damage parameter D 

− requires

 ductility factor N( ̄σi j ) , which is a function of η, β and μ, and

 shape parameter κ−
c . These parameters are determined from

he softening part of the stress and strain curves obtained from

niaxial and triaxial compression experiments. Note that D 

− is a

unction of product of η and κ−
c ; hence, unless the flaw density

haracterizing the parameter η is known apriori , a composite pa-
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Table 1 

List of parameters used for each example. 

E (Gpa) ν A f B f C f D D E D F D η β

Lu et al., (2007) f c = 68.6 (Mpa) 33 0 .14 10 .03 1 .05 13.47 q − 19.53 −0 .075 0 .245 0.0764 1383 0 .716 

Imran and Pantazopoulou (1996) f c = 47.4 (Mpa) 30 0 .2 6 .32 1 .1 15.7 q − 19.7 −0 .106 0 .213 0.1086 8473 1 .2 

Canar and Bažant . (20 0 0) f c = 45.7 (Mpa) 25 0 .2 10 .03 2 .1 13.43 q − 22.53 −0 .25 0 .045 0.2512 8473 1 .8 

Kupfer et al., (1969) f c = 32.8 (MPa) 32 0 .2 14 .5 1 .5 2.86 q − 16.36 −0 .09 0 .25 0.0918 1993 0 .92 

Karsan and Jirsa (1969) f c = 27.5 (MPa) 30 0 .2 7 .63 1 .7 3.14 q − 12.8 −0 .09 0 .2 0.0924 6315 1 .25 

E (Gpa) ν A f B f C f A D B D C D G I F (J m 

−2 ) 

Gopalaratnam and Shah (1985) f c = 34.1 (MPa) 31.7 0 .2 11 .32 1 .7 3.14 q − 12.8 0 .00237 −7 .39 3 × 10 −5 45.33 

For all cases: q 0 = 0.3, ft = fc/10, fb = 1.16fc, μ = 0.6, κ−
c = 10 −4 . 

Fig. 8. Direction of plastic strain vector obtained using non-associative flow rule (shown in solid lines) compared with the direction of the gradient of the yield surface 

(shown in dashed lines) for (a) uniaxial and equibiaxial compression loading, and (b) triaxial compression loading under low and high confinement. 
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Fig. 9. Plots of axial stress ( σ 1 ) vs . axial and lateral strain ( ε 1 and ε 2 , respectively) 

under uniaxial and biaxial stress states obtained by using present model and using 

model by Grassl et al. (2013) compared with the experimental results by Kupfer et 

al. (1969) . 

o  

p

 

c  

t  

a  

t  

i  

l  

p  
ameter η′ = ηκ−
c is calibrated from these tests. Also note that the

riction coefficient in such quasi-brittle materials including rocks

s difficult to measure using standard laboratory tests, and is typ-

cally considered to be closer to 0.6, c.f. ( Ashby and Sammis, 1990;

hat et al., 2012; Kachanov, 1982; Paliwal and Ramesh, 2008 ).

n order to calibrate η’ and β , N 

′ ( ̄σi j ) = N( ̄σi j ) κ
−
c is first obtained

rom the softening part of stress-strain curves; η’ and β are then

etermined by calibrating the values using Eq. (41) . Fig. 7 shows

cattered plot of N as a function of stress-factor denoted by

≡ ( 

√ 

1+ μ2 

2 
ρ̄−
f c 

+ 

μ

2 
√ 

3 

ξ̄−
f c cos ̄θ−

) 2 for μ = 0 . 6 and κ−
c = 10 −4 using

riaxial compression experimental data reported by Lu et al.

2007) ; alongside is the fitted plot obtained by using the function

iven in Eq. (43) . 

Using the above calibration procedure, the gradient directions

f the yield (shown as dashed lines) and of the plastic poten-

ial surfaces (shown as solid lines) at various hardening levels in

he Rendulic plane are shown in Fig. 8 depicting non-associative

haracteristics of the plastic flow. Fig. 8 (a) describes the scenario

or uniaxial and equibiaxial compression loading, and Fig. 8 (b) de-

cribes it for triaxial compression loading under low- and high

onfinement. As can be inferred from the plots, the hydrostatic

omponent of the plastic strain vector (gradient direction of plas-

ic potential) is less inclined toward the positive hydrostatic axis

ompared with the hydrostatic component of the gradient direc-

ion of the yield surface, suggesting slower accumulation of the

lastic volumetric strains. This also suggest that an associated flow

ule would result in an overestimation of the plastic dilatancy of

his high strength concrete. 

. Model comparison with experimental results 

In this section, we describe several numerical examples under

ifferent loading conditions using the proposed model on both

ormal and high strength concrete. Model results are compared

ith experimental data reported in the literature, as well as with
ther model predictions proposed more recently. Table 1 lists all

arameters used for each example. 

First, the model results are compared with uniaxial and biaxial

ompression experimental results by Kupfer et al. (1969) , alongside

he response predicted by Grassl et al. (2013) as shown by solid

nd dashed lines, respectively in Fig. 9 . Next, the model predic-

ions are compared with results from triaxial compression exper-

ments conducted by Imran and Pantazopoulou (1996) where the

ateral confinement was varied from 0 to 43.2 MPa, and also com-

ared with corresponding model response by Grassl et al. (2013) .
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Fig. 10. Plots of (a) axial stress ( σ 1 ) vs . axial and lateral strain ( ε 1 and ε 2 , respectively), and (b) axial stress ( σ 1 ) vs . volumetric strain ( εV ) under triaxial compressive stress 

states obtained by using present model and using model by Grassl et al. (2013) compared with the experimental results by Imran and Pantazopoulou (1996) . 

Fig. 11. Plots of (a) axial stress ( σ 1 ) vs . axial and lateral strain ( ε 1 and ε 2 , respectively), and (b) axial stress ( σ 1 ) vs . volumetric strain ( εV ) under triaxial compressive stress 

states obtained by using present model and using model by Folino and Etse. (2012) compared with the experimental results on HSC by Lu et al. (2007) . 
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Fig. 10 (a) and (b) show the plots of axial stress vs . axial and lat-

eral strain and axial stress vs . volumetric strain, respectively under

varying confinement levels. 

Fig. 11 (a) and (b) show model results in the form of both,

axial stress vs . axial and lateral strain and axial stress vs . volu-

metric strain, compared with another triaxial compression exper-

imental results on high-strength concrete as reported by Lu et al.

(2007) under various confinement levels ranging from 0 to 82% of

its uniaxial compressive strength. Results, shown in solid lines, are

also compared with the prediction of a model proposed recently

by Folino and Etse (2012) as shown by dashed lines in the figure.

Next, in Fig. 12 (a) and (b), model results are compared with exper-

imental results reported by Caner and Bažant (20 0 0) on concrete

subjected to triaxial compression under very high lateral confine-

ment (as high as ∼900% of f c ), and subjected to pure hydrostatic

compression. They are also compared with previous model predic-

tions by Grassl et al. (2013) . 

As is quite apparent from all these results, predictions of pro-

posed model are in very good agreement with the experimental

results on concrete undergoing biaxial and triaxial compression

during both, pre-peak hardening and post peak softening stages

under low, moderate and high confinement range. It is also noted

that model predicts the axial stress vs. volumetric strain during

triaxial compression loading particularly well under both low and

high confinement compared with previous model predictions. 
m  
Model results were also compared with the cyclic uniaxial ten-

ile and compressive loading-unloading and reloading experimen-

al data as reported by Gopalaratnam and Shah (1985) and by

arsan and Jirsa (1969) , respectively. As shown in Fig. 13 (a) and

b), model response agrees quite well with the experimental re-

ults, and satisfactorily reproduces the experimentally observed

ost peak softening behavior along with stiffness degradation and

rreversible (residual) strains upon unloading. 

Finally, we illustrate the model response under two loading

ases – biaxial tension-shear loading describing the shear behav-

or of the cracked material, and cyclic tension-compression loading.

he results for the first case are shown in Fig. 14 in which both the

ensile and the shear stress (denoted by σ̄11 and σ̄12 , respectively)

ormalized by f c are plotted as a function of the sum of the ax-

al and the shear strain (denoted by ε 11 and ε 12 , respectively). This

ase simulates the scenario in which a specimen is subjected to

niaxial tension and later subjected to shear under constant strain

ate. The solid-blue curve shown in Fig. 14 represent the tensile

tress as a function of strain. This plot shows that upon tensile

oading (from point a to point c ), σ̄11 increases and reaches the

eak (point b ) and then it starts to decrease, and thereby the ten-

ile damage is induced in the specimen. Note that Both ε12 and σ̄12 

re zero during this time as shown by the dashed-red plot between

oints a and c . After the loading state at point c (see the shaded

egion in Fig. 14 ), the tensile strain is held fixed and the speci-

en is subjected to shear loading. Fig. 14 shows that upon shear
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Fig. 12. Plots of (a) axial stress ( σ 1 ) vs . axial strain ( ε1 ), and (b) hydrostatic stress ( σ V ) vs . volumetric strain ( εV ) under triaxial compressive stress states obtained by using 

present model and using model by Grassl et al. (2013) compared with the experimental results by Caner and Bazant (20 0 0) . 

Fig. 13. Plots of axial stress ( σ 1 ) vs . axial strain under (a) cyclic uniaxial tensile, and (b) cyclic uniaxial compressive loading, obtained by using present model compared 

with experimental results by (a) Gopalaratnam and Shah (1985) , and (b) Karsan and Hirsa (1969) . 

Fig. 14. Model response under biaxial tension-shear loading describing the shear 

behavior of the cracked material (shaded region depicts the response as a result of 

shearing after tensile loading). 
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oading, σ̄11 continues to decrease toward zero, while σ̄12 begins to

ncrease, reaches the peak level (represented by point d ) and then

ecreases toward zero. 

Results for the second loading case are shown in Fig. 15 in

hich the axial stress, σ 1 , normalized by f c is plotted against

he axial strain, ε1 for three values of s 0 (the parameter which

nfluences the stiffness recovery factor s ( ̄σi j ) ; see Eq. (3) and (4) ).

his case simulates the scenario in which the specimen is first sub-

ected to uniaxial tension which results in the increase in σ̄1 till it

eaches the tensile strength (loading state from points a to point

 as shown in Fig. 15 ). Upon continued loading, σ 1 decreases and

t point c , the unloading is initiated by reversing the direction of

train rate to negative. Note that due to the tensile damage evo-

ution (from point b to point c ), the value of the unloading slope,

hich denotes the unloading stiffness denoted by E + , is less than

he elastic stiffness of the undamaged material which is the effec-

ive elastic stiffness denoted by Ē . Specimen is fully unloaded at

oint d (see the inset on the right in Fig. 15 ), after which com-

ression is initiated. It is apparent from Fig. 15 that as the loading

hanged from tension to compression, specimen experienced the

tiffness reduction degree which depends on parameter s 0 (also

ee Eq. (3) ). Fig. 15 shows that for s 0 =1 and s 0 =0, there is no stiff-

ess recovery, i.e. E − =E + (see the plot in solid-red line) and full

tiffness recovery i.e. E − = Ē (see the plot in dashed-black line), re-

pectively, where E − is the elastic stiffness under compression. Fi-
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Fig. 15. Model response under cyclic uniaxial tension-uniaxial compression loading. 

Fig. 16. Model response under cyclic tension-compression loading in which the lateral stresses are kept constant at f t 
4 

. 
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nally, for s 0 =0.5, E + < E − < Ē (see the plot in dotted-blue line).

Upon continued loading, the compressive stress increases linearly

with the axial strain, till it reaches the compressive strength (see

point e in the plot), after which plasticity under compression com-

mences. It subsequently results in softening, and upon continued

loading, the compressive stress decreases and at point f the un-

loading is initiated (by again reversing the direction of strain rate

to positive). The specimen is eventually completely unloaded (see

point g ) and subsequently, tension is initiated. Note that s = 1 un-

der tension (see Eq. (4) ), therefore the stiffness under tension upon

load reversal (from compression-to-tension in the second cycle) is

identical irrespective of s 0 . Upon continued loading under tension,

stress increases linearly with strain until the tensile strength is

reached (see point h ), after which softening commences and stress

decreases toward zero. Note that as lateral stresses are zero in

this case, s changes by a jump from 1 to s 0 when the stress state

changes from uniaxial tension to uniaxial compression (see the in-

set in Fig. 15 ). 

Fig. 16 presents a similar cyclic tension-compression loading

case in which the lateral stresses are non-zero and are kept con-

stant at f t 
4 . This allows s to vary continuously during the tran-

sition at point d (see the inset on the right in Fig. 16 ). In this

case, the value of R (see Eq. (4) ) changes continuously from 1 (at

d ) to 1 

1 + 2 
σ̄Ac 

f t 

as the axial str ess turns compr essiv e (wher e σ̄Ac 

represents the effective axial compressive stress value after the

transition at d ). Due to this continuous change in R , parameter
 changes from 1 to s 0 + ( 1 − s 0 ) 
1 

1 + 2 
σ̄Ac 

f t 

(at d ) and the slope of

he stress-strain curve varies continuously as the axial stress turns

ompressive. Note that for s 0 < 1, slopes of the stress-strain curves

re higher suggesting higher elastic-stiffness in the compression-

egion compared with the tension-region (see the inset on the

ight in Fig. 16 ). Also note that at point g (see the inset on the

eft in Fig. 16 for details), R continuously increase to 1 and con-

equently s continuously changes from s 0 + (1 −s 0 ) R to 1 as axial

tress changes from compression to tension, respectively. There-

ore, similar to the uniaxial case in Fig. 15 , all three plots coincide

nd are linear in the tension-region. 

Finally, Fig. 17 presents a similar cyclic tension-compression

oading case in which the lateral stresses are non-zero and are kept

onstant at − f t 
4 . In this case, D = 1 − ( 1 − s D 

+ )( 1 − D 

−) where

oth D 

+ and D 

− are non-zero between b and d. R is constant be-

ween b and c and is equal to 
2 

σ̄At | b 
f t 

1+2 
σ̄At | b 

f t 

where σ̄At | b is the peak

ensile stress at b. Therefore parameter s is also constant between

and c and is equal to s 0 + ( 1 − s 0 ) 
2 

σ̄At | b 
f t 

1+2 
σ̄At | b 

f t 

; unlike previous cases,

he overall damage evolution between b and c becomes a function

f parameter s 0 ( D becomes an increasing function of s 0 ). This is

emonstrated in the inset on the top-right of Fig. 17 which shows

he details of tensile softening curves dependence on parameter s 0 .



B. Paliwal et al. / International Journal of Solids and Structures 108 (2017) 186–202 199 

Fig. 17. Model response under cyclic tension-compression loading in which the lateral stresses are kept constant at − f t 
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Next, R changes continuously from 

2 
σ̄At 

f t 

1+2 
σ̄At 

f t 

to 0 (at d) as ax-

al stress turns compressive ( ̄σAt is the effective axial tensile

tress value before the transition at d). Consequently, parameter

 changes continuously from s 0 + ( 1 − s 0 ) 
2 

σ̄At 
f t 

1+2 
σ̄At 

f t 

to s 0 at d and

he slope of the stress strain curve varies continuously as the ax-

al stress turns compressive (see the inset on the bottom-right in

ig. 17 ). Note that the stress-strain curves in the compression re-

ion (after d) are linear with different slopes (depending on value

f s 0 ) and for s 0 < 1 , their slopes are higher suggesting higher stiff-

ess in the compression-region compared with the tension-region

see square-connected yellow guide-line in the inset). Also note

hat at g (see the inset on the left in Fig. 17 for details), R contin-

ously increase from 0 and consequently s continuously changes

rom s 0 to s 0 + ( 1 − s 0 ) R as axial stress changes from compression

o tension, respectively. Therefore, for s 0 < 1 , the stress-strain plots

re non-linear with lower slopes in the tension-region compared

ith the compression-region at g. 

. Summary 

A new model for cementitious materials based on flow the-

ry of plasticity and continuum damage mechanics is developed

hich excellently addresses major characteristics of their inelas-

ic behavior e.g. confinement sensitive hardening and strain soft-

ning, pre- and post-peak volumetric behavior including post-peak

ilatancy, stiffness degradation, brittle-ductile transition, and limi-

ation of hardening in hydrostatic compression. Compared with re-

ently reported models, the present model responses are in much

etter agreement with experimental results on different concretes

ubjected to various loading conditions including triaxial compres-

ion under low and high confinement. 
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ppendix A 

After time-differentiating Eq. (11) and using Eqs. (2) and (12) ,

e obtain 

˙ i j = ( 1 − D ) ̇ σ̄ i j − ˙ D ̄σi j = ( 1 − D ) ̄C 
ep 

i jkl 
˙ ε kl 

+ σ̄i j 

[(
1 − s D 

+ )(−∂ D 

−

∂ κ− ˙ κ−
)

+ 

(
1 − D 

−)(−s 
∂ D 

+ 

∂ κ+ ˙ κ+ 
)

+ 

(
1 − D 

−)(−D 

+ ∂s 

∂ σ̄mn 

˙ σ̄ mn 

)]
(A1) 

During damage evolution, from Eq. (9) we have ˙ κ± = 

˙ F ±. Using

qs. (34) and (46) and substituting them in Eq. (A1) , we further

btain the following relationship 

˙ i j = ( 1 − D ) ̄C 
ep 

i jkl 
˙ ε kl 

+ σ̄i j 

[
( 1 − s D 

+ ) 

(
−∂ D 

−

∂ κ− H ( κ p − 1 ) ̇ λ( 1 − R ( ̄σ) ) 
m D 

N ( ̄σ) 

)

+ ( 1 − D 

−) 

(
−s 

∂ D 

+ 

∂ κ+ H ( κ p − 1 ) ̇ λR ( ̄σ) ‖〈 m r 〉‖ 

)

+ ( 1 − D 

−) 

(
−D 

+ ∂s 

∂ σ̄mn 

˙ σ̄ mn 

)]
(A2) 

See Eq. (34) and Eqs. (46, 47) for the definitions of m D and

〈 m r 〉‖ (where r = 1, 2, 3), respectively. Function H( x ) in Eq. (A2) is

he Heaviside step function which is equal to 1 if x > 0 and is

qual to 0 otherwise. R ( ̄σ) and N( ̄σ) are given in Eqs. (4) and

43) , respectively. Values of ∂ D + 
∂ κ+ and 

∂ D −
∂ κ− are obtained from

qs. (38) and (53) , respectively and are given as follows 

∂ D 

+ 

∂ κ+ = 

f t l c 

G 

I 
f 

exp 

(
− f t l c 

G 

I 
f 

κ+ 
)

; ∂ D 

−

∂ κ− = 

(
2 f c l c N ( − f c , 0 ) 

G 

c 
f 

)2 

κ−

× exp 

(
−2 f c l c N ( − f c , 0 ) 

G 

c 
f 

κ−
)

(A3) 

Let σ̄A ( A = 1 , 2 , 3 ) represent the principal values of the stress

( ̄σi j ) tensor and the principal directions are denoted by n (A ) 
i 

, i =
 , 2 , 3 . Using spectral decomposition and using Eqs. (4) and

5) along with few algebraic manipulations we obtain the follow-

ng 

∂s 

∂ σ̄i j 

= 

3 ∑ 

A =1 

∂s 

∂ σ̄A 

n 

( A ) 
i 

n 

( A ) 
j 

= ( 1 − s 0 ) 

3 ∑ 

A =1 

∂R 

∂ σ̄A 

n 

( A ) 
i 

n 

( A ) 
j 

(A4)
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where, 

∂R 

∂ σ̄A 

= 

H ( ̄σA ) ∑ 3 
B =1 [ 2 H ( ̄σB ) ̄σB − σ̄B ] 

− ( 2 H ( ̄σA ) − 1 ) 
∑ 3 

B =1 [ H ( ̄σB ) ̄σB ] (∑ 3 
B =1 [ 2 H ( ̄σB ) ̄σB − σ̄B ] 

)2 

(A5)

Next, using Eq. (11) for ˙ λ and substituting them in Eq. (A2) , we

finally obtain the following 

˙ σi j = ( 1 − D ) ̄C ep 

i jkl 
˙ ε kl 

+ σ̄i j 

[{
( 1 − s D 

+ ) 

(
−∂ D 

−

∂ κ− H( κ p − 1 )( 1 − R ( ̄σ) ) 
m D 

N( ̄σ) 

)

+ ( 1 − D 

−) 

(
−s 

∂ D 

+ 

∂ κ+ H( κ p − 1 ) R ( ̄σ) m r 

)}
1 

ψ 

∂F 

∂ σ̄pq 
E 0 pqkl 

+ 

(
1 − D 

−)(−D 

+ ∂s 

∂ σ̄mn 

)
C̄ ep 

mnkl 

]
˙ ε kl = C ep 

i jkl 
˙ ε kl 

Therefore, effective elastoplastic tangent modulus C 
ep 

i jkl 
is finally

obtained as 

 

ep 

i jkl 
= ( 1 − D ) ̄C ep 

i jkl 

+ σ̄i j 

[{
( 1 − s D 

+ ) 

(
−∂ D 

−

∂ κ− H ( κ p − 1 ) ( 1 − R ( ̄σ) ) 
m D 

N ( ̄σ) 

)

+ ( 1 − D 

−) 

(
−s 

∂ D 

+ 

∂ κ+ H ( κ p − 1 ) R ( ̄σ) m r 

)}
1 

ψ 

∂F 

∂ σ̄pq 
E 0 pqkl 

+ ( 1 − D 

−) 

(
−D 

+ ∂s 

∂ σ̄mn 

)
C̄ ep 

mnkl 

]
(A6)

where ∂ D + 
∂ κ+ and 

∂ D −
∂ κ− are given in Eq. (A3) , and 

∂s 
∂ ̄σmn 

is given in

Eq. (A4) . 

Appendix B 

B.1. Determining ξ̄0 (q (κ p )) 

The point where the yield surface, for a given hardening param-

eter q ( κp ) (subsequently referred as q ), intersect the negative ξ̄ -

axis is given by the stress coordinate ( ̄ξ0 (q ) , 0 ) (subsequently re-

ferred as ( ̄ξ0 , 0 ) from here onwards). It satisfies the yield function

equation given by Eq. (23) This results in a quartic equation in ξ̄0 

which reads, 

( 1 − q ) 
2 

(
ξ̄0 √ 

3 f c 

)4 

+ m 0 q 
2 

(
ξ̄0 √ 

3 f c 

)
− q 2 = 0 (B1)

Eq. (B1) has four roots. As its discriminant is less than zero,

two of the roots imaginary and complex conjugate to each other;

the third and the fourth roots are positive and negative real num-

bers, respectively. In order to determine them, we define the fol-

lowing, 

d 0 = −4 

3 

q 2 ( 1 − q ) 
2 ; d 1 = m 

2 
0 q 

4 ( 1 − q ) 
2 ; d 2 = 

9 m 0 q 
2 

√ 

3 ( 1 − q ) 
2 

Q = 

( 

d 1 + 

√ 

d 2 
1 

− 4 d 3 
0 

2 

) 

1 
3 

S = 

1 

2 ( 1 − q ) 

√ 

3 

(
Q + 

d 0 
Q 

)

p 1 = −4 S 2 + 

d 2 
S 

; p 2 = −4 S 2 − d 2 
S 

(B2)
Four roots of Eq. (B1) are given as, 

0̄ 1 = −S − 1 

2 

√ 

p 1 ; ξ̄0 2 = −S + 

1 

2 

√ 

p 1 

0̄ 3 = −S − 1 

2 

√ 

p 2 ; ξ̄0 4 = −S + 

1 

2 

√ 

p 2 (B3)

s p 1 > 0, roots ξ̄0 1 
and ξ̄0 2 

are real, and as p 2 < 0, roots

0̄ 3 
and ξ̄0 4 

are imaginary. Finally, abscissa ξ̄0 of the stress point

( ̄ξ0 , 0 ) intersecting negative ξ̄ - axis is given as, 

0̄ = f c ξ̄0 1 (B4)

.2. Determining ξ̄1 (q (κ p )) 

The point ( ̄ξ1 ( q ( κ
p ) ) , 1 ) on the cap function F C given by

q. (21) is the transition point such that ∀ ξ̄ ≥ ξ̄1 ( q ( κ
p ) ) :

 C ( ̄ξ , ξ̄1 ( q ( κ
p ) ) ) = 1 . In order to determine ξ̄1 ( q ( κ

p ) ) , we first de-

ermine the stress coordinate which is the maxima of the yield sur-

ace given by Eq. (23) ( q ( κp ) is subsequently referred as q and, as

1̄ ( q ( κ
p ) ) as ξ̄1 ). Let this point be referred as ( ̄ξmax , ρ̄max ) . Differ-

ntiating Eq. (23) and noting that d ̄ρ

d ̄ξ
| 
( ̄ξmax , ̄ρmax ) 

= 0 , we obtain, 

 

[ 

( 1 − q ) 

(
ρ̄max √ 

6 f c 
+ 

ξ̄max √ 

3 f c 

)2 

+ 

√ 

3 

2 

ρ̄max 

f c 

] 

×
[

2 ( 1 − q ) 

(
ρ̄max √ 

6 f c 
+ 

ξ̄max √ 

3 f c 

)]
+ m 0 q 

2 = 0 (B5)

et z = 

ρ̄max √ 

6 f c 
+ 

ξ̄max √ 

3 f c 
, which implies 

( 1 − q ) z 3 + 

( √ 

3 

2 

ρ̄max 

f c 

) 

z + 

m 0 q 
2 

4 ( 1 − q ) 
= 0 (B6)

Eq. (B6) is a cubic equation in z . Next, we define the following

ariables 

0 = −3 ( 1 − q ) 

√ 

3 

2 

ρ̄max 

f c 
; �1 = 

27 

4 

m 0 q 
2 ( 1 − q ) (B7)

Note that �0 ≤ 0 and �1 ≥ 0. As the discriminant of the equa-

ion ( Eq. (B6) ) is less than zero, it only has one real root denoted

s z 0 given by, 

 0 = − 1 

3 ( 1 − q ) 

(
P + 

�0 

P 

)
= 

ρ̄max √ 

6 f c 
+ 

ξ̄max √ 

3 f c 
(B8)

here P = 

3 

√ 

�1 + 
√ 

�1 −4�3 
0 

2 
is approximated as P = 

3 
√ 

�1 for simplifi-

ation. We note that this simplification would result in the deter-

ination the stress point ( ̄ξmax , ρ̄max ) which is very close to the

rue maxima of the yield surface given by Eq. (23) . From Eq. (B8) ,

e obtain the following relation between ξ̄max and ρ̄max , 

ξ̄max 

f c 
= 

ρ̄max √ 

2 f c 

(
3 

P 
− 1 

)
− P √ 

3 ( 1 − q ) 
(B9)

Substituting Eq. (B9) in the yield surface Eq. (23) we obtain a

uartic equation in 

ρ̄max 

f c 
given as 

 1 

(
ρ̄max 

f c 

)4 

+ B 1 

(
ρ̄max 

f c 

)3 

+ C 1 

(
ρ̄max 

f c 

)2 

+ D 1 

(
ρ̄max 

f c 

)2 

+ E 1 = 0 

here, 

A 1 = 

9 ( 1 − q ) 
2 

4 P 4 
; B 1 = 

√ 

3 

2 

( 1 − q ) 

P 2 
;C 1 = 

1 

2 

;
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 1 = 

1 

9 

√ 

2 

3 

P 2 

( 1 − q ) 
+ m 0 q 

2 

( √ 

3 

P 
√ 

2 

−
�
(
cos θ̄ , e 

)
− 1 

√ 

3 

) 

;

E 1 = 

P 4 

81 ( 1 − q ) 
2 

− m 0 q 
2 P 

3 ( 1 − q ) 
− q 2 (B10) 

To solve for ρ̄max , we further define the following variables, 

 1 = 

(
8 A 1 C 1 − 3 B 

2 
1 

)
8 A 

2 
1 

; r 2 = 

(
B 

3 
1 − 4 A 1 B 1 C 1 + 8 A 

2 
1 D 1 

)
8 A 

3 
1 

;

 3 = C 2 1 − 3 B 1 D 1 + 12 A 1 E 1 ; r 4 

= 2 C 3 1 − 9 B 1 C 1 D 1 + 27 A 1 D 

2 
1 + 27 B 

2 
1 E 1 − 72 A 1 C 1 E 1 

 1 = 

⎛ 

⎝ 

(
r 4 + 

√ 

r 2 
4 

− 4 r 3 
3 

)
2 

⎞ 

⎠ 

1 
3 

; s 2 = 

1 

2 

√ 

−2 

3 

r 1 + 

1 

3 A 1 

(
s 1 + 

r 3 
s 1 

)
(B11) 

Finally, ρ̄max is given as, 

¯max = f c 

[
− B 1 

4 A 1 

− s 2 + 

1 

2 

√ 

−4 s 2 
2 

− 2 r 1 + 

r 2 
s 2 

]
(B12) 

We note that the transition point on the cap function F C is given

s ( ̄ξ1 ( q ( κ
p ) ) , 1 ) , and corresponding transition point on the yield

unction F is ( ̄ξ1 ( q ( κ
p ) ) , ρ̄1 ( q ( κ

p ) ) ) . The ordinate ρ̄1 ( q ( κ
p ) ) of the

ransition point on the yield surface F , is considered to be less than

¯max and is given as, 

¯1 = αρ̄max ; 0 < α < 1 (B13)

In this work, we considered α = 

2 

3�( cos ̄θ,e ) 
. Once ρ̄1 is known,

he abscissa ξ̄1 can be determined from the parabolic function for

he loading surface F L ( Eq. (16) ) as follows 

1̄ = 

√ 

3 

m 0 q 2 

( 

f c q 
2 −

m 0 q 
2 �
(
cos θ̄ , e 

)
√ 

6 

ρ̄1 − 3 

2 f c 
ρ̄2 

1 

) 

(B14) 

ppendix C. Gradient of F and F p 

The first derivatives of ξ̄ , ρ̄ and θ̄ with respect to the stress

ensor σ̄i j are determined first which are used subsequently to

valuate the gradient of yield function F and plastic potential F p .

sing Eq. (15) , we obtain the following, 

∂ ξ̄

∂ σ̄i j 

= 

1 √ 

3 

∂ ̄I 1 
∂ σ̄i j 

; ∂ ρ̄

∂ σ̄i j 

= 

1 

ρ

∂ ̄J 2 
∂ σ̄i j 

; ∂ θ̄

∂ σ̄i j 

= 

∂ θ̄

∂ ̄J 2 

∂ ̄J 2 
∂ σ̄i j 

+ 

∂ θ̄

∂ ̄J 3 

∂ ̄J 3 
∂ σ̄i j 

(C1) 

here, 

∂ θ̄

∂ ̄J 2 
= 

3 

√ 

3 

4 sin 

(
3 ̄θ
) J̄ 3 √ 

J̄ 5 
2 

; ∂ θ̄

∂ ̄J 3 
= −

√ 

3 

2 sin 

(
3 ̄θ
) 1 √ 

J̄ 3 
2 

(C2) 

nd, 

∂ ̄I 1 
∂ σ̄i j 

= δi j ;
∂ ̄J 2 
∂ σ̄i j 

= s̄ i j = σ̄i j −
Ī 1 
3 

δi j ;
∂ ̄J 3 
∂ σ̄i j 

= s̄ ik ̄s k j −
2 

3 

J̄ 2 δi j (C3) 

Next, gradient of F and F p are given as follows, 

∂F 

∂ σ̄i j 

= n i j = 

∂F 

∂ ξ̄

∂ ξ̄

∂ σ̄i j 

+ 

∂F 

∂ ρ̄

∂ ρ̄

∂ σ̄i j 

+ 

∂F 

∂ θ̄

∂ θ̄

∂ σ̄i j 

∂ F p 

∂ σ̄i j 

= m i j = 

∂ F p 

∂ ξ̄

∂ ξ̄

∂ σ̄i j 

+ 

∂ F p 

∂ ρ̄

∂ ρ̄

∂ σ̄i j 

+ 

∂ F p 

∂ θ̄

∂ θ̄

∂ σ̄i j 

(C4) 

The derivatives of ξ̄ , ρ̄ and θ̄ with respect to the stress ten-

or σ̄i j used in Eq. (B4) are determined from Eqs. (C1) –(C3) ; using
qs. (21) , (22) , (32) and (33) , derivatives of F and F p with respect

o these stress invariants are evaluated as follows, 

∂F 

∂ ξ̄
= q 2 ( κ p ) 

[{
m 0 �

(
cos θ̄ , e 

) ρ̄√ 

6 f c 
+ 2 F C 

(
m 0 

ξ̄√ 

3 f c 
− 1 

)}
∂ F C 

∂ ξ̄

+ m 0 
ξ̄√ 

3 f c 
F 2 C 

]
(C5) 

∂ F p 

∂ ξ̄
= 

∂F 

∂ ξ̄
+ 

q 2 ( κ p ) 

f c 

[ 

A f exp 

R f 

(
ξ̄
)

B f 

+ C f 

] 

(C6) 

here parameters A f , B f , and C f , and function R f ( ̄ξ ) are described

n Eq. (32) and (33) . 
∂ F C 
∂ ̄ξ

is given as follows, 

∂ F C 

∂ ξ̄
= − 1 

F C 

[ 

ξ̄ − ξ̄1 ( q ( κ p ) ) (
ξ̄0 ( q ( κ p ) ) − ξ̄1 ( q ( κ p ) ) 

)2 

] 

H 

(
ξ̄1 ( q ( κ

p ) ) − ξ̄
)

(C7) 

here H ( x 1 −x ) is a Heaviside step function such that H ( x 1 −x ) = 1

or x 1 > x and = 0 otherwise. 

Next, derivatives of F and F p with respect to ρ̄ and θ̄ are given

s follows, 

∂F 

∂ ρ̄
= 

∂ F p 

∂ ρ̄
= 3 

ρ̄

f 2 c 

+ 

m 0 q 
2 ( κ p ) �

(
cos θ̄ , e 

)
√ 

6 f c 
F C (C8) 

∂F 

∂ θ̄
= 

∂ F p 

∂ θ̄
= m 0 q 

2 ( κ p ) 
ρ̄√ 

6 f c 
F C 

∂�
(
cos θ̄ , e 

)
∂ θ̄

here, 

∂�
(
cos θ̄ , e 

)
∂ θ̄

= 

1 

2 

(
1 −e 2 

)
cos θ̄+ ( 2 e −1 ) 

√ 

4 

(
1 −e 2 

)
cos 2 θ̄+ 5 e 2 −4 e⎛ 

⎝ −8 

(
1 − e 2 

)
cos θ̄ sin θ̄ + 

(
4 

(
1 − e 2 

)
cos 2 θ̄ + ( 2 e − 1 ) 

2 
)

⎛ 

⎝ 2 

(
1 − e 2 

)
sin θ̄ + 

4 ( 2 e − 1 ) 
(
1 − e 2 

)
cos θ̄ sin θ̄√ 

4 

(
1 − e 2 

)
cos 2 θ̄ + 5 e 2 − 4 e 

⎞ 

⎠ 

⎞ 

⎠ (C9)
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