
Topic Modeling and Visualization for Big Data in
Social Sciences

Nitin Sukhija∗, Mahidhar Tatineni‡, Nicole Brown†, Mark Van Moer†, Paul Rodriguez‡, and Spencer Callicott∗

∗Distributed Analytics and Security Institute

Mississippi State University

Mississippi State, MS 39762, USA

{nitin@, spencer@}dasi.msstate.edu

†National Center for

Supercomputing Applications

Illinois, USA

{brownda1@, mvanmoer@}illinois.edu

‡San Diego Supercomputer Center

University of California San Diego

San Diego, USA

{mahidhar@, prodriguez@}sdsc.edu

Abstract—Topic modeling is a widely used approach for
analyzing large text collections. In particular, Latent Dirichlet
Allocation (LDA) is one of the most popular topic modeling
approaches to aggregate vocabulary from a document cor-
pus to form latent ”topics”. However, learning meaningful
topic models with massive document collections which contain
millions of documents and billions of tokens is challenging,
given the complexity of the data involved and the difficulty in
distributing the computation across multiple computing nodes.
In recent years some data processing frameworks, such as
Spark, Mallet and others have been developed to address the
issues associated with analyzing large volumes of unlabeled
text pertaining to various domains in a scalable and efficient
manner. In this paper, we will present a preliminary case study
demonstrating the scholarship achieved in the study of political
consumerism via XSEDE resources. The experimental study
will showcase the use of digitized social sciences data and
text analytics toolkits to generate topic models and visualize
topics for empowering intersectional research engaging the
relationship between consumption and race, class and gender in
the area of sociology. Consequently, this comparative big data
textual analysis involving use of JSTOR data, LDA modeling
toolkit’s, visualization techniques and computational compo-
nents is of paramount importance, especially for researchers
from academic domain dealing with social science applications
involving big data.

Keywords-Topic Modeling; Big Data; LDA; Text Analytics;
Spark; Mallet; Machine learning; Visualization; Scalability;
Social Science.

I. INTRODUCTION

In recent years there has been a quantum leap in the

amount of digitized data available regarding scientific, na-

tional security, business and social community’s domains.

Furthermore, with this surge in the availability of textual

data, the challenges involved in summarizing, understanding,

and making sense of the rapidly increasing data for advanc-

ing new discoveries in political, social and other areas have

also surged. Text analytics have received increased attention

over the years for analyzing and integrating the textual data

within a collection of documents (known as a corpus) to

realize the untapped potential in many real-world domains.

The ability to organize a corpus of documents according to

some underlying characteristic is an important function for

text analytics. Clustering methods are capable of partitioning

documents into groups, according to similarity metrics [1]

[2]. However, the more recent method of topic modeling

has the more satisfying outcome of modeling the words

that appear in documents according to dependencies between

documents and topics, and dependencies between topics and

words. The topics themselves are not given a priori, and it

is part of an algorithm to search for latent topics [3].

The most widely used method for assigning topics is

using the Latent Dirichlet Allocation (LDA) process [4].

The LDA is a probabilistic topic model for performing

unsupervised analysis of large document collections and

require no manual construction of the training data. Using

a Bayesian formulation, documents are treated as a bag

of words (i.e. without sequence information), and word-

document dependencies on topics are given a probabilistic

framework. In fact, it is the probabilistic framework that

gives LDA expressive and interpretative power over standard

clustering algorithms like K-means. However, the cost is a

more complicated algorithm, more complex processing, and

possibly more computational demands. Moreover, there are

also several algorithms for finding topics, and accompanying

parameters and metrics, which are not obvious how to

choose or compare. While LDA and related models can

be easily applied to discover the topics and an assignment

of topics to documents in a corpus, one of the major

challenges in executing these models on big datasets is the

computational complexity and the cost involved in execut-

ing them in high performance computing environments. In

general, the topic modeling is computationally expensive as

it requires both large amount of memory and considerable

amount of computational power. The performance of these

models is often essential, even critical sometimes, to achieve

the objectives proposed by the domain areas which are

making use of them. Therefore, many research efforts have

been attempted to optimize performance. These optimiza-

tions include improving performance (per core), increasing

scalability of their execution in parallel and distributed

environments, and dealing with dynamically changing large

data sets. In recent years few toolkits such as, Mallet [5],

2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing

and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress

978-1-5090-2771-2/16 $31.00 © 2016 IEEE

DOI 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.89

1198

Apache Spark [6] and others have been developed to

address some of the computational challenges related to

the execution of the topic models using big datasets [7].

The dataset used in this research work is characterized by

a collection of documents from the JSTOR’s [8] Data

for Research website (dfr.jstor.org). The corpus comprises

of almost 200,000 publications written between 1965 and

2014 corresponding to the identified search criteria’s such

as, realms of power, neoliberalism, consumerism, welfare

rights, and others [9].

In this work, we present an experimental case study that

involves the text analytics of the JSTOR digitized data

of social articles to understand the Intersectional political

consumerism defined as consumer activities motivated by

one’s intersecting social locations (race, class and gender).

The research presented herein encompasses the usage of high

performance computing resources, the big data sets and the

topic modeling toolkits to characterize broadly what themes

are included within discussions of business/industry (con-

sumerism), the government, economic policy (neoliberal-

ism), and economic condition; specifically, (the feminization

and blackening of) poverty.

The rest of the paper is organized as follows. A review of

the topic modeling techniques and their scalability, together

with a description of representative text processing toolkits

are presented in Section II. The design and organization of

the methodology to select the most important topics using

high performance data processing frameworks is described

in Section III. The simulation analysis and the evaluation

of the experimental results are discussed in Section IV. The

conclusions and possible future directions are summarized

in Section V.

II. BACKGROUND AND RELATED WORK

A. Topic Modeling and Latent Dirichlet Allocation (LDA)

With the exponentially increasing amounts of intellectual

data being generated, digitized, and stored each year, discov-

ering useful information from that data becomes more and

more challenging. Furthermore, this extreme proliferation of

digitized data necessitates the use of complex computational

tools to not only explore, but also to summarize archives of

documents in a thematic manner [10] [11].

Topic modeling is one method developed by machine

learning researchers that comprises probability based al-

gorithms which enables surveying large amounts of data

related to defined themes. Topic modeling is a form of

computational analysis that uses statistical modeling to

discover abstract themes within a collection of documents,

also known as a corpus. The documents are presented as

a ’bag of words’ and the emerging statistically correlated

themes across documents have corresponding probabilities

of occurrence within the corpus. Themes are grouped to-

gether as ”topics”, based on their pattern of distribution

and the topic output consists of a word list which provides

context for the topic. This paper explores topic modeling

approaches in order to organize and analyze textual data

for extracting insightful political intelligence from a large

collection of documents and for using such information to

discover present and absent themes that pervade within the

larger discourse on consumerism and the various realms of

power [9].

Many topic models based on unsupervised and super-

vised learning techniques exist [12] [13], and have been

exhaustively used by both academia and industry to perform

text analytics in their respective domains. However, the

Latent Dirichlet Allocation (LDA) topic model has been the

most popular among other models and its implementation is

readily available to community at large [4].

LDA is an unsupervised machine learning technique used

to recognize the latent topic structure of textual documents.

In general, LDA is a probabilistic, generative model enables

identification of groups of words (latent topics) in the corpus

that frequently occurs together within documents. Further-

more, learning in this model is unsupervised, meaning that

there are no training set with keywords or tags categorizing

the topics; the input corpus only details the words within

documents. It employs a ”bag of words” approach, which

characterizes each document as a vector of word counts.

More formally, each topic is represented as a probability

distribution over a fixed vocabulary, while each document is

characterized as a probability distribution (random mixture)

over some topics. In LDA model, the topics, their distri-

butions and the topic assignments of each word are latent

(needs to be estimated) and these latent (hidden) variables

are combined with documents word counts for each word of

the fixed vocabulary to form a generative process for each

document in the collection. Herein, the words are generated

in two steps. In first step, a topic is randomly chosen from its

distribution over topics for each document. Then, a second

step is performed for each word in the document, where a

topic is randomly chosen from the distribution over topics

determined in first step. Thereafter, a word is randomly

chosen from the distribution over the vocabulary associ-

ated with the chosen topic. Once the generative procedure

is established to define the joint distribution over hidden

(topics and their distributions, assignments) and observable

variables (document word counts for each word of the fixed

vocabulary), then this distribution is used to form posterior

distribution for the latent variables and can be optimized

through an approximation to the Expectation-Maximization

(EM) algorithm [14] [15].

B. An Overview of Text Processing Toolkits

Topic modeling is computationally expensive, thus in

recent years many open source big data processing tools

have been designed and developed for enabling scalable and

efficient topic modeling of big data pertaining to multitude

of domains.

1199

1) R Topic Model Package: The ’topicmodels’ is a R

package from [16] which provides an interface for C-based

LDA implementations. The R code also builds upon the

document processing package ’tm’ (text mining) to provide

functions for building a document-term matrix from corpus.

The LDA algorithms supported include Gibbs sampler, Vari-

ational Expectation-Maximization, and the Correlated Topic

Model.

The main advantage of using the R package is that R is

a popular language for statistical analysis, relatively easy

to use, and the interface provides additional functional-

ity for inferencing, and manipulating data. The document

processing is fairly efficient and robust, and having the

option of running different LDA algorithms is beneficial.

We found that running the LDA model with Gibbs sampling

through a corpus of 5K documents, with about 6K words,

and about 25M tokens, takes about 5 hours using all cores

on 1 compute node on Comet. Unfortunately, for large

datasets, with many more documents, R Gibbs sampling

implementations could be greatly limited because it does

not easily scale to a multinode implementation.

2) Machine Learning for Language Toolkit (Mallet):
Mallet [5] is an open source java-based machine learning

package that include sophisticated tools for statistical natu-

ral processing, document classification, sequence tagging,

numerical optimization, topic modeling, and others. The

topic model package of Mallet toolkits is comprised of:

1) scalable and efficient implementation of Gibbs sampling,

2) efficient approaches for document-topic hyperparameter

optimization, and 3) tools for inferring topics on unseen

documents using the trained models. The Mallet tool can be

easily downloaded and can be efficiently used for learning

and exploring topic modeling involving smaller datasets. The

Mallet’s java code is multithreaded and can be scaled on

single machine. However, it is still memory intensive and

large corpus size leads to frequent garbage collection, thus

the code is not scalable when big datasets are involved.

Moreover, it is hard to achieve horizontal scaling of the

Mallet’s code across multiple nodes of a cluster.

3) Apache Spark: Data processing frameworks such as,

Apache Spark [17] and Hadoop [18] are designed and

developed to analyze large quantities of data in a timely

manner by parallelizing the work. Spark executes large-scale

data applications up to 100 times faster than Hadoop MapRe-

duce in memory, or 10 times faster on disk. In comparison

with Hadoop, Spark framework was developed to execute

complex iterative algorithms commonly involved in machine

learning and graph processing for exploring the data. One

of the major problems with complex multi-pass applications

is the overhead due to data replication and disk I/O attached

with sharing the data across multiple MapReduce steps. This

overhead accounts for more than 90% of the execution time

of the iterative algorithms implemented on Hadoop. The

Spark addresses this problem by providing a fault tolerant

and read-only collection of objects partitioned across a set

of machines called resilient distributed dataset (RDD). The

RDD’s forms the key abstraction in Spark where an RDD

can be cached in memory or disk and can be reused among

different parallel operations.

Modern high performance computing platforms feature

processors with tens of cores, can be heterogeneous with

many-core processors like Intel MIC [19] and accelerators

like NVIDIA GPGPUs [20], and feature Remote Direct

Memory Access (RDMA)-enabled commodity networking

technologies like InfiniBand [21], RDMA over Converged

Enhanced Ethernet (RoCE) [22], and 10/40-Gigabit Eth-

ernet with Internet Wide Area RDMA Protocol (iWARP)

[23]. The HiBD [24] group at OSU developed RDMA

Spark [25] and Hadoop implementations with an advanced

communication and I/O runtime. These implementations can

provide large performance benefits by taking advantage of

the latest multi-/many-core (MIC, GPU) architectures, net-

working (RDMA), and storage technologies (NVRAM/SSD

and parallel file systems such as Lustre) that are available

on typical HPC machines (like SDSC Comet). These im-

plementations are based on the standard Apache releases

of the software, and done in a manner transparent to Big

Data applications that already use the Apache framework.

Hence, no code changes are required for existing users of the

Apache Spark, Hadoop frameworks. Given the performance

benefits and the ability to use large HPC platforms efficiently

to support processing of large datasets, we have chosen

Apache Spark with the RDMA enhancements as the big data

framework for implementing and testing the topic models of

social science data.

III. MODELING TOPICS FOR INTERSECTIONAL

POLITICAL CONSUMERISM

The Spark framework includes a library namely MLlib,

which enables the practical implementation of the machine

learning algorithms for large datasets in a very convenient

and scalable manner. This library supports various learning

algorithms, such as, classification, regression, clustering,

collaborative filtering, dimensionality reduction, as well as

underlying optimization primitives and higher-level pipeline

APIs. The clustering algorithm implemented in MLlib pack-

age supports various unsupervised models, such as, K-

means, Gaussian Mixture, Power iteration clustering (PIC),

Latent Dirichlet allocation (LDA), Bisecting k-means and

Streaming k-means. In this paper, we mainly consider basic

LDA model supported by the Apache Spark MLlib library.

We first briefly review the model and then discuss the

adaptation of its parameters to train topic models on the

social science data.

The LDA implemented in the Spark MLlib package

(we call it Spark-LDA) can be considered as a clustering

algorithm since it takes a collection of documents as vectors

of word counts and clusters the data points into a predefined

1200

number of cluster centers, which corresponds to the topics.

Moreover, instead of using a traditional distance, the Spark

LDA uses a setOptimizer functionality which defines the

inference algorithms to be used for estimating clustering.

The Spark-LDA uses EMLDAOptimizer and OnlineLDAOp-

timizer, which employ expectation-maximization on the

likelihood function and iterative mini-batch sampling for

online variational inference, respectively to learn clustering.

Furthermore, few parameters, such as, number of topic

clusters to be determined, optimizer to learn LDA model,

number of iterations, checkpointing interval, needs to set for

executing Spark-LDA in scalable computing environments.

The previous section briefly discussed various toolkits

for investigating LDA topic models in scalable computing

environments. Our design and organization of the workflow

used to model topics for political consumerism comprises

of four stages described as: 1) Preprocessing, 2) Training,

3) Analysis and Reporting, and 4) Visualization. The first

stage is preprocessing, where the application reads in the

input dataset, partitions it, and returns a corpus, or a vector

RDD of pairs in the form of (word, frequency) for each

word in each document. During the next stage, the corpus

is run through Spark’s LDA on each executor. A report is

then generated based on the time of both the preprocessing

and training as well as the log-likelihood of the model. The

LDA model obtained is saved and can be used to infer the

topics from the unseen documents. Finally, squarified-layout

treemaps are generated from topic modeling output using the

Processing media programming environment.

Dataset Description
The dataset used in this research work is characterized

by a collection of documents from the JSTOR’s Data for

Research website (dfr.jstor.org). The corpus comprises of

almost 236,929 publications written between 1965 and 2014

corresponding to the identified search criteria’s such as,

realms of power, neoliberalism, consumerism, welfare rights,

and others. We trained our models on subset of the data

collected, where different models were obtained using first

10,000- 50,000 documents of the entire dataset available.

Preprocessing
The first stage in our workflow implementation is the

preprocessing stage. During preprocessing, text from an

input dataset is partitioned and arranged into a format that

Spark’s LDA can accept as an input. This grouping of

documents is referred to as the corpus. The first step inside

preprocessing is to tokenize documents from the dataset.

Next, the words are counted and the counts are summed. The

tokens are then filtered by the stopwords, which removes

common and some unwanted words from the text. The

execution time is captured before and after preprocessing

stage, and the output obtained after executing the workflow

will report the corpus size, vocabulary count, and the total

time taken in the preprocessing stage. At the end of this

stage, a vector RDD is created containing pairs of tokens

and their frequency in the document, with one record for

each document.

Training
In this stage, various basic factors involved in configuring

Spark with the goal of efficient utilization of computing

cluster are considered. The training stage begins by instan-

tiating Spark LDA model with the parameters determined

beforehand for achieving good parallel execution perfor-

mance. Some of the variables which acts as an input to the

model are number of topics to be determined, number of

executor cores, number of partitions, memory allocated to

the executor, number of iterations to obtain useful topics, and

others. Next, the master node in Spark runs a driver program

that starts the model with the preprocessed corpus RDD and

generates a data flow graph by applying transformations to

RDDs. Moreover, the program performs load balancing by

defining the partitions ownership of data to worker nodes

within the computing cluster. After the LDA model finishes

running, the total execution time is calculated and then the

trained model is passed to the analysis and exporting stage.

During this stage, we tested both Spark and RDMA-Spark

frameworks for scalability in an attempt to determine the

best default values for each of the input variables.

Analysis and Exporting
Finally, the workflow is placed in the analysis and export-

ing stage. In this stage, a report is generated as an output

from the workflow. The report comprises of various sections

where, the preprocessing details are placed at top, followed

by a section containing the log-likelihood and training time

of the trained LDA model obtained during the second stage.

Finally, the topics and topic words for the number of topics

specified as the model’s input variable are reported in the

last section. Moreover, the trained LDA model can be saved

and can be used to infer topic distribution in the unseen (i.e.,

out-of-training) documents.

Visualization
The output of the third stage comprises of topics defined

as a distribution over words. However, interpreting the

highest-weighted words in the obtained topics to understand

what the topic is about is extremely challenging. Thus,

obtaining meaningful visualizations are of paramount im-

portance for representing and extracting complex relation-

ships in formats that are easier to analyze than the mental

interpretation of the columns of word numbers of a CSV

file. In this stage, squarified-layout treemaps were generated

from topic modeling output using the Processing media

programming environment and the resulting treemaps were

used to evaluate and find the intersections of words among

topics from different runs of Spark.

IV. EXPERIMENTAL ANALYSIS AND EVALUATION

This section illustrates the experiments designed to per-

form the topic modeling on the digitized social science data

to explore sociological questions and create new knowledge

1201

on a scale previously unimaginable. We conducted our ex-

periments on the San Diego Supercomputer Center’s Comet

cluster. The comet system is a dedicated XSEDE cluster

delivering almost 2 petaflops computing capability. The

Comet cluster has 1944 compute nodes with a FDR Inifini-

Band based hybrid fat-tree architecture. Each compute node

in this cluster has two twelve-core Intel Xeon E5-2680v3

processors, 128GB DDR4 DRAM, and 320GB of local SSD

with CentOS 6.7 operating system. The network topology

in this cluster is 56Gbps FDR InfiniBand with rack-level

full bisection bandwidth and 4:1 oversubscription cross-

rack bandwidth. The Apache Spark 1.5.2 and the RDMA-

Spark (which is based on Apache Spark 1.5.1) version 0.9.1

were used to implement the topic models pertaining to the

intersection political consumerism. The experimental results

obtained not only confirm the expectations raised by the

earlier preliminary study [9], but also extend the analysis

of the topic models in larger scale systems for investigating

big data in field of social science.

A number of experiments have been performed for differ-

ent values of Topics (10-100 topics), number of documents

(1K-50K), number of iterations (5-100), number of nodes(1-

8) where each node has 24 cores and with two different big

data processing frameworks (Spark and RDMA-Spark).

There has been many research efforts focused on develop-

ing techniques for tuning and parallelizing LDA. However,

managing large scale communication involved in all the

proposed strategies is extremely challenging. Likewise, the

first challenge encountered in implementing topic modeling

mentioned in Section III was the limit on the amount of

memory Spark utilizes during the execution runs on the

cluster. By default, Spark program only allocates around

1GB of RAM per executor, with one executor per node.

However, the application would run out of memory and

crash, when large datasets or larger number of iterations

was used in the implementation. To address this issue,

the Spark program was allocated close to the maximum

amount of memory on the system running the application.

Moreover, the jobs were executed on the large memory

nodes with 1.5 TB DRAM. After allowing more memory

per node, experiments were conducted using datasets with

larger number of iterations of LDA.

During the testing phase of the workflow described in

Section III, the Spark’s built-in web UI was employed

to debug memory and other issues with the jobs running

on the computing system Specifically, we used the GUI

pertaining to the executors in order to tune the amount

of executor memory input parameter. The web UI (shown

in Figure 1) illustrates the total amount of RAM available

to each executor in Spark framework, the status of each

executor, as well as other crucial information about the

running jobs. The value of the maximum iteration count

parameter was investigated by evaluating and comparing the

log-likelihood of the trained model, which was captured in

Figure 1. Spark’s Graphical User Interface enables online reporting
pertaining to the status of the executing jobs on cluster

the report generated during stage 3 of the workflow. The

experiments shown in Table I illustrates that a value of

around 30 iterations proved to be most effective, as after 30

iterations the log-likelihood of the probabilistic model did

not decrease significantly.The value of the number of parti-

tions variable also impacts the performance of LDA Spark

as it enable balancing of load among the worker nodes.

This number is largely variable on the distribution of data in

Figure 2. Execution performance of Spark LDA with varying
partition sizes and 100 topics, 10,000 documents on 4 compute
nodes

the input dataset. However, by running some experimental

tests it was determined that when the partition value was

equal to the total number of processors divided by 2, better

Table I
LOG-LIKELIHOOD VALUES FOR VARYING NUMBER OF ITERATIONS AND

DOCUMENTS WITH 4 NODES AND 100 TOPICS

Number of Iterations
Documents 10 20 30 40
1K -50691.478 -46167.935 -45190.125 -45101.844
5K -49061.203 -45807.338 -44638.861 -44425.472
20K -49545.712 -46932.907 -45406.471 -45159.748

1202

performance was achieved. Moreover, increasing the number

of partitions will drastically increase the number of network

communications and disk I/O. This becomes a bottleneck in

LDA Spark applications, as they rely heavily on memory

for speed, and transferring data over the network or to disk

is much slower than keeping it in memory. In general, a

smaller number of partitions than what is recommended by

Spark documentations gave us better execution performance

(shown in Figure 2).

The scalability of the Spark program was also experi-

mented with respect to the values of the number of executors

and number of nodes along with the values determined by

the above experiments for number of partitions, iterations,

and memory. Sometimes, increasing the number of executors

on a Spark job could affect the overall execution time.

However, in our experiments fewer executors (1 per node,

with 24 cores per executor) gave the most effective parallel

performance (shown in Figure 3 and Figure 4). This is

probably due to the fact that less executor’s results in less

overall communication, and the jobs were able to complete

in less time Also, our results showed that LDA Spark does

Figure 3. Execution performance of Spark LDA with varying nodes
and varying executors with 100 topics, 10,000 documents and 10
iterations

not scale well by increasing number of nodes (shown in

Figure 5). During the 40 iteration test runs, the execution

time increased significantly as nodes were added. The im-

plementation of LDA in Spark’s MLlib library contains a

large amount of shuffling, a process that requires data be

transferred from every executor to the driver to be totaled

and then redistributed in the next iteration of LDA. From our

test runs, it was discovered that as the number of partitions

and executors increases, the execution times increases by

a significant amount with the standard Apache Spark im-

plementation (shown in Figure 6). Given that the RDMA-

Spark implementation has extensive optimizations for some

of the underlying communication and I/O tasks, specifically

benefiting from Comet’s HPC architecture features, the next

step was to run the same test cases with RDMA-Spark. Two

Figure 4. Execution performance of Spark LDA with varying nodes
and varying executors with 100 topics, 10,000 documents and 20
iterations

Figure 5. Execution performance of Spark LDA with varying nodes
and varying executors with 100 topics, 10,000 documents and 40
iterations

Figure 6. Execution performance of Spark with 20,000 documents,
100 topics and 40 iterations

1203

Figure 7. Convenient side-by-side comparisons of topic distributions generated by three different trained LDA models

sets of runs were conducted: 1) Scaling with a fixed number

of documents (20k), and various node sizes (2, 4, and 8), and

2) Scaling with document sizes 1k, 5k, 20k, and 50k, with

8 nodes (+1 namenode/master) and for 40 iterations. The

results are shown in Figure 8 and Figure 9. As seen from the

Figure 8. Execution performance of RDMA-Spark with 20,000
documents, 100 topics and 40 iterations

results, RDMA-Spark shows much better scaling even with

40 iterations case. For the fixed document size, nearly linear

scaling is seen with increasing node count. For the large doc-

ument counts, the increased memory utilization/operations

lead to a drop in performance. However, with RDMA-Spark

a solution was obtained in reasonable time. Scaling studies

for large document sizes at much higher node counts are

planned for the future. Comet’s architecture scales out to

72 nodes without any oversubscription making such runs

feasible. A possible way to increase performance beyond

the tuning we accomplished would be to use a serialized

RDD and Spark’s KryoSerializer to decrease the overall

memory usage and GC overhead. We found that we were

Figure 9. Execution performance of RDMA-Spark with varying
document sizes, 100 topics and 40 iterations on (8+1) compute
nodes

not using enough memory to necessitate changing to using

serialized RDDs, but others have found that it increases

performance significantly. The trained LDA models obtained

by conducting above mentioned experiments were stored

and used to infer new topic distributions on out-of-training

unseen documents. The log-likelihood and the log perplexity

of the inferred model were recorded. The results obtained

showed low perplexity for smaller number of topics but the

log perplexity increased as the number of topics increased.

The relationship between log perplexity and inferred models

will be investigated in future.

To visualize the topics distributions, the squarified-layout

treemaps were generated from topic modeling output us-

ing the Processing media programming environment. The

Python script was used to post-process the output of Spark’s

topic distributions to give sorted listings of the top N word

weights per topic which were then used as the basis for

1204

the treemaps. The hue brightness afforded a secondary cue

to differentiate word weights magnitudes. A second Python

script was used to find intersections of words among topics

from different runs using different thresholds, allowing a

quick way to do a surface-level evaluation if different trained

models were producing similar topics (shown in Figure 7).

The ImageMagick tool [26] was used to stitch together

treemaps corresponding to the results of the intersection tests

from the independent modeling runs for convenient side-by-

side comparisons.

V. CONCLUSIONS AND FUTURE WORK

There exist different approaches for handling larger

amounts of data for analysis, or clustering in particular.

One approach is to take samples of the full datasets as

an approximation to the best analytic characterization. For

summary statistics this can work well, or at least it can

produce reasonable expectations with variances estimates.

For document analysis, where words can be rare or spe-

cialized, one has to be more careful. Another approach is

to take approximations to the learning algorithm. This has

been applied to topic modeling early on, using different

techniques, such as Variational EM methods that trades the

computational complexity of LDA for working with simpler

distributions that bound underlying model, or collapsed

Gibbs sampling, which is a more efficient sampling scheme,

or by combining sampling schemes so that Gibbs sampling is

used more sparingly, depending on the word characteristics.

A third approach is to use distributed processing to speed up

the Gibbs sampling itself. This approach is often used across

cores using threads, but it is becoming more feasible across

compute nodes, and perhaps more user friendly, as new tools

like Spark become common. Moreover, with the potential for

data growth outpacing the possible sampling improvements,

using distributed processing becomes extremely important.

Topic models provide a useful tool in analyzing complicated

text collections, but their computation complexity has hin-

dered their use in large-scale and real-time applications. In

this work, we presented a experimental study that involves

the usage of high performance computing resources like

Comet, the big data sets of social articles and the topic

modeling toolkits like Spark to obtain topic distributions

for exploring sociological questions and for creating new

knowledge on a scale which was previously unimaginable.

Our immediate future work includes employing tuning

mechanisms to increase the overall performance of Spark

and to investigate models which can be used with Spark to

obtain accurate inferred topic models.
Acknowledgments: This work is in part supported by the National

Science Foundation award IIS 1447861 (to the San Diego Supercomputer
Center, University of California San Diego), by XSEDE ECSS staff and by
the XSEDE fellowship award 362663.

REFERENCES

[1] G. A. Mishne et al., Applied text analytics for blogs, 2007.

[2] D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak, A. Tomkins,
and J. Zien, “How to build a webfountain: An architecture for very
large-scale text analytics,” IBM Systems Journal, vol. 43, no. 1, pp.
64–77, 2004.

[3] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth, “The author-
topic model for authors and documents,” in Proceedings of the 20th
conference on Uncertainty in artificial intelligence. AUAI Press,
2004, pp. 487–494.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[5] Machine learning for language toolkit. [Online]. Available:
http://mallet.cs.umass.edu/

[6] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine
learning in apache spark,” arXiv preprint arXiv:1505.06807, 2015.

[7] X. Hu and H. Liu, “Text analytics in social media,” in Mining text
data. Springer, 2012, pp. 385–414.

[8] Digital library. [Online]. Available: http://www.jstor.org/
[9] N. M. Brown, “Flawed consumers: understanding the impact of

intersectional political consumerism during the chicago welfare rights
era,” Ph.D. dissertation, University of Illinois at Urbana-Champaign,
2015.

[10] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh, “On smoothing
and inference for topic models,” in Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence. AUAI Press,
2009, pp. 27–34.

[11] J. D. Mcauliffe and D. M. Blei, “Supervised topic models,” in
Advances in neural information processing systems, 2008, pp. 121–
128.

[12] T. Hofmann, “Probabilistic latent semantic analysis,” in Proceedings
of the Fifteenth conference on Uncertainty in artificial intelligence.
Morgan Kaufmann Publishers Inc., 1999, pp. 289–296.

[13] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-Graber, and D. M.
Blei, “Reading tea leaves: How humans interpret topic models,” in
Advances in neural information processing systems, 2009, pp. 288–
296.

[14] D. M. Blei, “Probabilistic topic models,” Communications of the
ACM, vol. 55, no. 4, pp. 77–84, 2012.

[15] D. M. Blei and J. D. Lafferty, “Topic models,” Text mining: classifi-
cation, clustering, and applications, vol. 10, no. 71, p. 34, 2009.

[16] K. Hornik and B. Grün, “topicmodels: An r package for fitting topic
models,” Journal of Statistical Software, vol. 40, no. 13, pp. 1–30,
2011.

[17] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, pp.
10–10, 2010.

[18] T. White, “Hadoop: the definitive guide: the definitive guide:“o’reilly
media, inc.”,” 2009.

[19] Intel many integrated core architecture. [Online]. Available:
http://www.intel.com/technology/architecturesilicon/mic/index.htm

[20] General-purpose computation on graphics processing units (gpgpu).
[Online]. Available: http://gpgpu.org

[21] Infiniband trade association. [Online]. Available:
http://www.infinibandta.org

[22] H. Subramoni, P. Lai, M. Luo, and D. K. Panda, “Rdma over
ethernet—a preliminary study,” in Cluster Computing and Workshops,
2009. CLUSTER’09. IEEE International Conference on. IEEE, 2009,
pp. 1–9.

[23] Rdma consortium (2016) architectural specifications for rdma over
tcp/ip. [Online]. Available: http://www.rdmaconsortium.org/

[24] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda,
“Accelerating spark with rdma for big data processing: Early experi-
ences,” in High-Performance Interconnects (HOTI), 2014 IEEE 22nd
Annual Symposium on. IEEE, 2014, pp. 9–16.

[25] M. W.-u. Rahman, X. Lu, N. S. Islam, and D. K. Panda, “Homr: A
hybrid approach to exploit maximum overlapping in mapreduce over
high performance interconnects,” in Proceedings of the 28th ACM
international conference on Supercomputing. ACM, 2014, pp. 33–
42.

[26] C. Reas and B. Fry, “Processing: programming for the media arts,”
AI & SOCIETY, vol. 20, no. 4, pp. 526–538, 2006.

1205

