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1. Abstract
Appropriate sampling of training points is one of the primary factors affecting the fidelity of surro-
gate models. This paper investigates the relative advantage of probability-based uniform sampling over
distance-based uniform sampling in training surrogate models whose system inputs follow a distribution.
Using the probability of the inputs as the metric for sampling, the probability-based uniform sample
points are obtained by the inverse transform sampling. To study the suitability of probability-based
uniform sampling for surrogate modeling, the Mean Squared Error (MSE) of a monomial form is for-
mulated based on the relationship between the squared error of a surrogate model and the volume or
hypervolume per sample point. Two surrogate models are developed respectively using the same number
of probability-based and distance-based uniform sample points to approximate the same system. Their
fidelities are compared using the monomial MSE function. When the exponent of the monomial function
is between 0 and 1, the fidelity of the surrogate model trained using probability-based uniform sampling
is higher than that of the other one trained using distance-based uniform sampling. When the exponent
is greater than 1 or less than 0, the fidelity comparison is reversed. This theoretical conclusion is suc-
cessfully verified using standard test functions and an engineering application.
2. Keywords: Surrogate modeling, Probability-based sampling, Distance-based sampling

3. Introduction
Surrogate modeling is a statistical approach used to develop approximation functions that adequately
represent the relationship between inputs and outputs based on known data[1]. To alleviate the burden of
high experimental or computational costs resulting from complex engineering design problems, surrogate
modeling has been frequently used as an efficient approach[2, 3]. To develop the surrogate model of
a system, sample points of the inputs to the system need to be generated. These sample points and
their corresponding system outputs are used to train the surrogate model. Distance-based sampling uses
coordinate-distances as the metrics between points in the sample space. If the inputs to the system are
physical parameters whose probability of occurrence is known or predefined, probability-based sampling
can use the difference of probability as the metrics between points. These sampling approaches can
generate sample points uniformly in terms of distance and probability, respectively.
Radial Basis Function (RBF) and Kriging are expressed as combinations of basis functions[1]. Since
their overall error is related to the sample density, or equivalently the volume or hypervolume per sample
point, this paper formulates the Mean Squared Error (MSE) of a monomial form based on the relationship
between the squared error of a surrogate model and the volume or hypervolume per sample point. The
overall MSEs of the two surrogate models of the same system developed respectively using the probability-
based uniform sampling and the distance-based uniform sampling are compared.
Section 4 introduces the probability-based sampling approach. Section 5 presents the estimation of the
MSE of a surrogate model. Section 6 illustrates the measure of a region associated with a sample point.
Section 7 formulates the MSE of the monomial form used to analyze the fidelity of surrogate models. The
suitability of probability-based uniform sampling is studied in Sec. 8. Section 9 discusses how to fit the
MSE of the monomial form. Section 10 tests the conclusion of the suitability of probability-based sam-
pling. Section 11 applies probability-based sampling to the development of surrogate models for window
performance evaluation. The concluding remarks are presented in Sec. 12.

4. Probability-based Sampling
The popular approaches to generate sample points from a probability distribution include inverse trans-
form sampling[4], rejection sampling[5], importance sampling[6], Markov Chain Monte Carlo methods[7].
In this paper, inverse transform sampling is used to evaluate the values of random variables corresponding
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to their designated probabilities. It generates sample points from a probability distribution given the
Cumulative Distribution Function (CDF). In an n-dimensional space Rn, x(k), k = 1, 2, . . . , n, is used to
represent the kth random variable. Suppose the n random variables are independent. Function Fk(x

(k)) is

the CDF of the variable x(k). A set of numbers c
(k)
i ∈ [0, 1], i = 1, 2, . . . ,m, are the values of probability

of x(k). The probability-based sample points x
(k)(p)
i corresponding to the set of probabilities c

(k)
i are

evaluated by

x
(k)(p)
i = F−1

k

(

c
(k)
i

)

. (1)

Suppose the lower and upper boundaries of x(k) are x
(k)
min and x

(k)
max, respectively. The distance-based

sampling scales the set of numbers c
(k)
i to the coordinates x(k)(d) by

x
(k)(d)
i = x

(k)
min + c

(k)
i

(

x(k)
max − x

(k)
min

)

. (2)

Many sampling sequences have been developed to address different design space exploration demands.
Full factorial sampling sequence[1], low-dispersion sequence[8], and low-discrepancy sequence[9] are pop-
ular uniform sequences used for optimization, surrogate modeling, and numerical integration. Scaled or
inversely transformed from the sequences, the distance-based and probability-based sample points are
uniform in terms of distance and probability, respectively.

5. Estimation of MSE

5.1. Integrated Estimation of MSE
The output y of a system is approximated as a function h(x) of the system input x. The CDF of x is
F (x). The integrated MSE of the surrogate model h(x) is given by[10]

MSEI =

∫

(y − h(x))
2
dF (x). (3)

5.2. Empirical Estimation of MSE
In practical engineering problems, the output y of a system is usually only known at a limited number
of test points. The integrated estimation of the MSE is not readily available. Using a set of test points
(xj , yj), j = 1, 2, . . . , s, the empirical estimation of the MSE is evaluated by[10]

MSEE =
1

s

s
∑

j=1

(yj − h(xj))
2
. (4)

If the probability distribution of the test points xj follows the distribution of x, the empirical estimation
of the MSE should be close to the integrated estimation as the number of test points becomes sufficiently
large.

6. Measure of a Region
The measure of a one-dimensional, two-dimensional, three-dimensional, or higher-dimensional region is
a length, an area, a volume, or a hypervolume, respectively. In this paper, volume is used to represent
the measure regardless of the number of dimensions. The measure of a region and the probability of a
region are two important concepts used in this paper. Their values are always nonnegative.
The study in this paper involves the relationship between the overall error of a surrogate model and
the sample density of its inputs. In a sample space, its sample density can be equivalently represented
by the measures of regions associated with individual sample points. One approach to divide a sample
space into regions is the Voronoi diagram[11]. Before a sequence ci in [0, 1]n is scaled into distance-based
sample points, or inversely transformed into probability-based sample points, the domain [0, 1]n can be
partitioned into regions by the Voronoi diagram of the sequence. For any point in the Voronoi region of
ci, ci is its closest sample point using the Euclidean distance. Figures 1(a) and 1(b) show the Voronoi
diagrams for the Sukharev grid (a low-dispersion sequence)[12] and the Sobol sequence (a low-discrepancy
sequence)[13], respectively. A sample point is approximately in the center of each Voronoi region. The
points on an edge have equal distances to the sample points whose Voronoi regions are bounded by
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the edge. When the sequence is scaled into distance-based sample points in the x space, or inversely
transformed into probability-based sample points in the x space, the edges of the cells in [0, 1]n are also
converted into edges in the x space. The whole region of the x sample space is separated into subregions
by the edges. The measure of each region associated with a sample point in the x space is used in the
formulation of the monomial MSE function in Sec. 7.
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(a) 64-point Sukharev grid
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(b) 64-point Sobol sequence

Figure 1: Voronoi diagrams

The sample density of the inputs to a system can also be equivalently represented by the measures of the
regions confined by sample points. The circles in Fig. 2 are the 64 full factorial sample points equally
distributed from edge to edge. In Fig. 2(a), the squares that are confined by sample points at their
vertices and have no inside sample points are the regions that represent sample density. If the points on
the boundaries are viewed as half points, and the points at the four vertices ((0, 0), (1, 0), (0, 1), and (1, 1))
are viewed as quarter points, the area of each square is 1 divided by the equivalent number of sample
points. It is the same as the area of each Voronoi region in Fig. 2(b). The Voronoi regions bordering the
boundaries are viewed as half regions, and the regions bordering the four vertices are viewed as quarter
regions. The measure of the confined region or the Voronoi region is also the same as that in Fig. 1(a),
since the number of sample points is the same. Therefore, the Voronoi regions and the regions confined
by sample points can be viewed equivalently for the purpose of analyzing the relationship between the
overall error of a surrogate model and its sample density.
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(a) Confined regions
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(b) Voronoi diagram

Figure 2: 64-point full factorial sampling equally from edge to edge

The Sobol sequence has a desirable property that the sequence of m points in an n-dimensional space
is a subset of m + 1 or more points in an n + 1 or higher-dimensional space. The number of regions in
an x sample space can increase continuously. The full factorial sampling and the Sukharev grid do not
have this property. The Sobol sequence is recommended for the study of the monomial MSE of surrogate
models.
The considered region in an x sample space is A. It consists of subregions Ai, i = 1, 2, . . . ,m, associated
with sample points xi, i = 1, 2, . . . ,m. Any two subregions Ai and Aj in A satisfy Ai ∩Aj = ∅ for i 6= j.
Therefore, the region A = ∪Ai. The measure of the region Ai is Vi. The measure of the entire region A
is V =

∑

Vi. The probability of the region Ai is Fi. The probability of the region A is F =
∑

Fi. If the
entire x sample space is considered, its probability F is 1.
Distance-based uniform sampling divides a sample space into m equal regions. The measure of each
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region, V
(d)
i , is given by

V
(d)
i =

V

m
. (5)

Probability-based uniform sampling divides a sample space into m regions with equal probability. The

probability of each region, F
(p)
i , is given by

F
(p)
i =

F

m
. (6)

7. MSE of a Monomial Form
RBF and Kriging are expressed as combinations of basis functions[1]. A basis function is a function of
the distance between a sample point and the input to RBF or Kriging. If the number of sample points
increases, the number of basis functions will also increase, and the distance between the input and its
closest sample point will decrease. Meanwhile, the overall error of the surrogate model is expected to
decrease. The error of a surrogate model is expected to be related to the distances between sample points,
or equivalently the volume per sample point. This paper formulates the Mean Squared Error (MSE) of a
monomial form based on the relationship between the squared error of a surrogate model and the volume
per sample point.
Since the change of the MSE is related to the change of the volume per sample point, the MSE of the
subregion Ai associated with xi is statistically approximated as a monomial function of its volume Vi,
which is given by

MSE(Ai) = aV l
i . (7)

Equation 7 statistically reflects the relationship between the MSE and the measure of a region. It is not
necessarily accurate for each individual subregion. When Vi changes, a and l can also change.
Since Vi > 0, then V l

i > 0. Since MSE is nonnegative, the parameter a is also nonnegative. The parameter
a and the exponent l determine how the MSE changes as the measure Vi changes. Generally, the exponent
l > 0. It indicates that, as Vi becomes smaller, the error also becomes smaller. It is not common that
the exponent is l < 0.
For different values of the exponent l, the shapes of the MSE are different. For the same value of a, Fig. 3
shows the shapes for five different scenarios: (1) l = 0, (2) l = 1, (3) 0 < l < 1, (4) l > 1, and (5) l < 0.
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l < 0
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Figure 3: Monomial MSE for different l

As described in Sec. 6, in a sample space A with a measure of V and probability of F , V =
∑

Vi and
F =

∑

Fi. The Mean Square Error (MSE) of the surrogate model in region Ai is evaluated by

MSE(Ai) =

∫

Ai

(y − h(x))
2
dF (x)

∫

Ai

dF (x)
=

∫

Ai

(y − h(x))
2
dF (x)

Fi
. (8)

Therefore,

MSE(Ai)Fi =

∫

Ai

(y − h(x))
2
dF (x). (9)

The MSE over the entire space A is given by

MSE =

∫

A

(y − h(x))2 dF (x) =
m
∑

i=1

∫

Ai

(y − h(x))2 dF (x) =
m
∑

i=1

MSE(Ai)Fi. (10)
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Substituting MSE(Ai) by the monomial MSE expressed by Eq. 7, the overall MSE is given by

MSE =

m
∑

i=1

aV l
i Fi. (11)

8. Fidelity Comparison using the MSE of a Monomial Form

8.1 Power Mean Inequality
Power mean[14]: If q is a nonzero real number, the weighted power mean with exponent q of positive
real numbers bi, i = 1, 2, . . . ,m is defined as

Mq (b1, . . . , bm) =

(

1

m

m
∑

i=1

bqi

)1/q

. (12)

Power mean inequality[14]: For power means, if q1 < q2, then Mq1(b1, . . . , bm) ≤ Mq2(b1, . . . , bm), and
the two means are equal if and only if b1 = · · · = bi = · · · = bm.

8.2. Comparison of Overall MSE
Using the MSE of a monomial form, the fidelities of the two surrogate models of the same system
developed respectively using probability-based and distance-based uniform sampling are compared.

For distance-based uniform sampling, substituting Vi in Eq. 11 by V
(d)
i in Eq. 5, the overall MSE is

MSE(d) = a

m
∑

i=1

(

V

m

)l

Fi = a

(

V

m

)l m
∑

i=1

Fi = aF

(

V

m

)l

. (13)

For probability-based uniform sampling, substituting Fi in Eq. 11 by F
(p)
i in Eq. 6, the overall MSE is

MSE(p) = a

m
∑

i=1

(

V
(p)
i

)l F

m
=

aF

m

m
∑

i=1

(

V
(p)
i

)l

. (14)

The comparison between MSE(d) and MSE(p) are performed for five different scenarios: (1) l = 0, (2)
l = 1, (3) 0 < l < 1, (4) l > 1, and (5) l < 0.
Scenario 1: l = 0.

MSE(d) = aF

(

V

m

)0

= aF. (15)

MSE(p) =
aF

m

m
∑

i=1

V 0
i = aF. (16)

When l = 0, the overall MSE is aF for both distance-based and probability-based uniform sampling. If
the entire x space is considered, its probability is F = 1, and the overall MSE is a.
Scenario 2: l = 1.

MSE(d) =
aFV

m
. (17)

MSE(p) =
aF

m

m
∑

i=1

Vi =
aFV

m
. (18)

When l = 1, the overall MSE is aFV/m for both distance-based and probability-based uniform sampling.
If the entire x space is considered, the probability is F = 1, and the overall MSE is aV/m.
To compare MSE(d) and MSE(p) under scenarios 3, 4, and 5, rewrite the two equations 13 and 14 as
follows.

(

MSE(d)

aF

)
1

l

=

(

1

m

m
∑

i=1

(

V
(p)
i

)1
)1

. (19)

(

MSE(p)

aF

)
1

l

=

(

1

m

m
∑

i=1

(

V
(p)
i

)l
)

1

l

. (20)
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Scenario 3: 0 < l < 1.
Using the power mean inequality, when 0 < l < 1,

(

MSE(p)

aF

)
1

l

≤

(

MSE(d)

aF

)
1

l

. (21)

Since l > 0,
MSE(p)

aF
≤

MSE(d)

aF
. (22)

Since a > 0 and F > 0, MSE(p) ≤ MSE(d). MSE(p) = MSE(d) only and only if V
(p)
1 = · · · = V

(p)
i = · · · =

V
(p)
m = V/m.

Scenario 4: l > 1.
Using the power mean inequality, when l > 1,

(

MSE(p)

aF

)
1

l

≥

(

MSE(d)

aF

)
1

l

. (23)

Since l > 1,

MSE(p)

aF
≥

MSE(d)

aF
. (24)

Since a > 0 and F > 0, MSE(p) ≥ MSE(d). MSE(p) = MSE(d) only and only if V
(p)
1 = · · · = V

(p)
i = · · · =

V
(p)
m = V/m.

Scenario 5: l < 0.
Using the power mean inequality, when l < 0 < 1,

(

MSE(p)

aF

)
1

l

≤

(

MSE(d)

aF

)
1

l

. (25)

Since l < 0,

MSE(p)

aF
≥

MSE(d)

aF
. (26)

Since a > 0 and F > 0, MSE(p) ≥ MSE(d). MSE(p) = MSE(d) only and only if V
(p)
1 = · · · = V

(p)
i = · · · =

V
(p)
m = V/m.

Conclusion to fidelity comparison: Two surrogate models of the same system are developed respec-
tively using probability-based and distance-based uniform sampling with the same number of sample
points. Suppose the MSE of the volume per sample point has the form of aV l

i . The MSEs of the two
surrogate models, MSE(p) and MSE(d), have the following relations for different values of exponent l.

1. l = 0. MSE(p) = MSE(d) = aF .

2. l = 1. MSE(p) = MSE(d) = aFV/m.

3. 0 < l < 1. MSE(p) ≤ MSE(d). MSE(p) = MSE(d) only and only if V
(p)
1 = · · · = V

(p)
i = · · · = V

(p)
m =

V/m.

4. l > 1. MSE(p) ≥ MSE(d). MSE(p) = MSE(d) only and only if V
(p)
1 = · · · = V

(p)
i = · · · = V

(p)
m = V/m.

5. l < 0. MSE(p) ≥ MSE(d). MSE(p) = MSE(d) only and only if V
(p)
1 = · · · = V

(p)
i = · · · = V

(p)
m = V/m.

9 Fitting Monomial MSE
The expression of the MSE (Eq. 13) for distance-based uniform sampling provides an approach to fit the
parameter a and the exponent l. The probability F and the entire volume V of a sample space are known
for a specific problem. If pairs of MSE(d) and m are available, a and l can be obtained by regression.
Distance-based uniform sampling can generate a series of sets of sample points. The numbers of points in
these sets arem1,m2, . . . ,mt. The corresponding volumes per point are V/m1, V/m2, . . . , V/mt. The val-

ues of MSE(d) of the surrogate models developed using these sets of points areMSE
(d)
1 ,MSE

(d)
2 , . . . ,MSE

(d)
t .
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The parameter a and the exponent l in Eq. 13 are fitted using the pairs of V/m1, V/m2, . . . , V/mt and

MSE
(d)
1 ,MSE

(d)
2 , . . . ,MSE

(d)
t .

Since the parameter a and the exponent l can change for different values of Vi, the series of the numbers
of sample points should be appropriately selected. If many numbers are used to fit one set of a and l,
the fitted values cannot accurately show how the value of l changes when the number of sample points
is slightly changed. The details of the change of exponent l are lost. However, if the series is too small,
the fitted result will have considerable noises. If the volumes of subregions for probability-based uniform
sampling are not very different from V/m1, V/m2, . . . , V/mt, the fidelity comparison conclusion is ex-
pected to be accurate.

10. Testing the Fidelity Comparison Conclusion
In this section, RBF and Kriging are developed for test functions. The probability distributions of all
the variables are assumed as independent Gaussian distributions. The full factorial sequence is scaled to
distance-based uniform sample points, and also inversely transformed to probability-based sample points.
For each test function, two series of RBF and Kriging models are developed respectively using these
two sampling approaches. The parameter a and the exponent l are fitted using the surrogate models
developed using the distance-based uniform sampling. The Root Mean Squared Error (RMSE) is the
root of the MSE. The overall RMSE of a surrogate model is evaluated using test points.
Test function 1: 1-Variable function

f(x) = (6x− 2)2 sin(2(6x− 2)), (27)

where x ∈ [0, 1]

The probability distribution of x is a Gaussian distribution with a mean of 0.5 and standard deviation of
0.15. Figure 4(a) shows the fitted values of exponent l for different numbers of sample points. Figures 4(b)
and 4(c) show the RMSE of the surrogate models developed using Kriging and RBF, respectively. The
value of exponent l is consistently greater than 1. The RMSE of the surrogate models developed us-
ing probability-based uniform sampling is consistently larger than that developed using distance-based
uniform sampling.
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(a) Fitted exponent l
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Figure 4: Test function 1

Test function 2: Booth function in two-dimensional space

f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2, (28)

where x1 ∈ [−10, 10], x2 ∈ [−10, 10]

The probability distribution of x1 and x2 is a bivariate Gaussian distribution with both means of 0 and
standard deviations of 3.5. Figure 5(a) shows the fitted values of exponent l for different numbers of
sample points. These fitted values for Kriging and RBF are significantly different. Figures 5(b) and 5(c)
show the RMSE of the surrogate models developed using Kriging and RBF, respectively. For the surrogate
models constructed using Kriging, the exponent l is very close to 0. The RMSE of Kriging for probability-
based uniform sampling is generally lower than that for distance-based uniform sampling. The RMSE
values of Kriging for both sampling approaches are close to 0. For the surrogate models constructed
using RBF, the exponent l is larger than 1. The RMSE of RBF for probability-based uniform sampling
is higher than that for distance-based uniform sampling.
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(b) RMSE of Kriging
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Figure 5: Test function 2

Test function 3: Hartmann function in three-dimensional space

f(x) = −

4
∑

i=1

ciexp







−

n
∑

j=1

Aij(xj − Pij)
2







, (29)

where x = (x1, x2, . . . , xn) xi ∈ [0, 1]

The parameter vector, c, is given by c = [1, 1.2, 3, 3.2]T . The parameters, A and P , are given by

A =











3.2 10 30

0.1 10 35

3.0 10 30

0.1 10 35











,

and

P =











0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.03815 0.5743 0.8828











.

The probability distribution of x1, x2, and x3 is a trivariate Gaussian distribution with all three means
of 0.5 and standard deviations of 0.15. Figure 6(a) shows the fitted values of exponent l for different
numbers of sample points. Figures 6(b) and 6(c) show the RMSE of the surrogate models developed using
Kriging and RBF, respectively. When the number of sample points is small, l is smaller than 1. The
RMSE of both Kriging and RBF developed using probability-based uniform sampling are smaller than
those developed using distance-based uniform sampling. When the number of sample points becomes
large, l becomes larger than 1. The RMSE of the surrogate models developed using probability-based
uniform sampling are larger than those developed using distance-based uniform sampling.

0 200 400 600 800
0.5

1

1.5

2

Number of sample points

E
xp

on
en

t

Kriging
RBF

(a) Fitted exponent l

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

Number of sample points

R
M

S
E

 o
f K

rig
in

g 

DIstance
Probability

(b) RMSE of Kriging

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Number of sample points

R
M

S
E

 o
f R

B
F

 

Distance
Probability

(c) RMSE of RBF

Figure 6: Test function 3

11. Surrogate Models Used for Window Performance Evaluation
Distance-based and probability-based uniform sampling approaches are used to develop surrogate models
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representing the heat transfer rates of a triple pane window under varying climatic conditions[15]. Three
climatic conditions, namely, the air temperature, the wind speed, and the solar radiation, are the inputs
to the surrogate models. The heat transfer rate of the window is the output of each of the surrogate
models. January and August are chosen as the typical months in winter and summer, respectively. The
heat transfer rates under sampled climatic conditions are evaluated by Fluent[16] simulations.
The target location for window performance evaluation is Michigan, ND. Its climatic data are obtained
from the North Dakota Agricultural Weather Network[17]. The distributions of air temperature, wind
speed, and solar irradiance are assumed to be a Gaussian distribution, a Weibull distribution, and a
Gamma distribution, respectively. All the distributions are fitted using the maximum likelihood estima-
tion method[18]. In either January or August from 2006 to 2010, there are 3720 observations of climatic
conditions. They are used as test points to evaluate the MSE and RMSE of the surrogate models. The
fitted value of l is constrained to be grater than 0 in this section. The Kriging models are developed
using the DACE Matlab Kriging toolbox[19].

11.1. Sample Points Transformed from the Sobol Sequence
Probability-based and distance-based sample points are generated from Sobol sequences for both January
and August. Four series of Kriging surrogate models are developed respectively using probability-based
sample points for January, distance-based sample points for January, probability-based sample points for
August, and distance-based sample points for August. The numbers of training points for Sobol sequences
used for these four surrogate models are 27 to 1000. The exponent of the monomial MSE is fitted using
the MSE(d) of the surrogate models developed using consecutively increasing numbers of distance-based
sample points. To fit the exponent for a specific number of sample points, 9 surrogate models trained by
consecutively-increasing numbers of sample points are used. The fitted value of the exponent is for the
middle number of each group of 9 numbers.
The RMSEs of the two surrogate models for January are shown in Fig. 7(a). Figure 7(b) shows the
values of the exponent of the monomial MSE function for January. The RMSEs of the two surrogate
models for August are shown in Fig. 8(a). Figure 8(b) shows the values of the exponent of the monomial
MSE function for August. Generally, when the exponent is between 0 and 1, the RMSE of the surrogate
models developed using probability-based sampling are less that of the surrogate models developed using
distance-based sampling. Generally, when the exponent is greater than 1, the comparison result is
reversed.
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Figure 7: Kriging models for January using Sobol sequences

11.2. Sample Points Transformed from Full Factorial Sampling Sequence
Probability-based and distance-based sample points are generated from full factorial sampling sequences
equally distributed from edge to edge for both January and August. The numbers of points in each
dimension are 3, 4, 5, 6, 7, 8, 9, and 10. Correspondingly, the total numbers of training points in
the three-dimensional sample space are 33, 43, 53, 63, 73, 83, 93, and 103; and the total numbers of
confined cubes are 23, 33, 43, 53, 63, 73, 83, and 93. Four series of Kriging surrogate models are developed
respectively using probability-based sample points for January, distance-based sample points for January,
probability-based sample points for August, and distance-based sample points for August. The exponent
of the monomial MSE is fitted using the MSE(d) of surrogate models trained by consecutively increasing
numbers of distance-based sample points. To fit the exponent for a specific number of sample points, 3
consecutively-increasing numbers of training points are used. The fitted value of the exponent is used for
the middle number of the 3 numbers of training points.

9



0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of points

R
M

S
E

Distance
Probability

(a) RMSE

0 200 400 600 800 1000
0

1

2

3

4

Number of points

E
x
p

o
n

e
n

t

(b) Exponent

Figure 8: Kriging models for August using Sobol sequences

The RMSEs of the two surrogate models for January are shown in Fig. 9(a). Figure 9(b) shows the
values of the exponent of monomial MSE function for January. The RMSEs of the two surrogate models
for August are shown in Fig. 10(a). Figure 10(b) shows the values of the exponent of monomial MSE
function for August. The RMSE values of the two on Fig. 9(a) are very close. Figure 10(b) shows that
the values of exponent for the surrogate models of August are between 0 and 1. Figure 10(a) shows that
the RMSE values of surrogate models developed using inverse transform sampling are less than those
using direct full factorial sampling.
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Figure 9: Kriging models for January using full factorial sampling
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Figure 10: Kriging models for August using full factorial sampling

12. Concluding Remarks
The mean squared error of a monomial form is formulated in this paper based on the relationship be-
tween the mean squared error of a surrogate model and the volume or hypervolume per sample point.
Probability-based and distance-based uniform sampling approaches generate points uniformly distributed
in sample space in terms of probability and distance, respectively. Using these two sampling approaches
with the same number of points, two surrogate models are developed to approximate the same system.
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Their fidelities are compared using the monomial MSE function. When the exponent of the monomial
function is between 0 and 1, the fidelity of the surrogate model trained using probability-based uniform
sampling is higher than that of the other one trained using distance-based uniform sampling. When the
value of the exponent is greater than 1 or less than 0, the fidelity comparison is reversed. This theoretical
conclusion is successfully verified using standard test functions and an engineering application.
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