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Abstract: Simulation-based design and analysis of biotreatment systems depends to a great extent on the accuracy of the model parameters
used. In many cases, site-specific parameter estimates are not available and parameter values recommended in the literature are adopted along
with a measure of judgment to account for bioprocess uncertainty. To better quantify process certitude associated with this approach and thus
provide guidance to process designers lacking site-specific parameter values, stochastic simulations were conducted and the empirical fre-
quency distributions derived from the simulation results were interpreted in terms of process certitude. In general, the simulation results
confirmed field experience and current practice in biotreatment from a probabilistic standpoint and provided context in terms of process
certitude. The certitude of achieving specific treatment levels increased with sludge age, validating the application of a design safety factor on
the minimum solids retention time. The increase in process certitude was not substantial, however, beyond a sludge age of about 4 days for the
removal of organic material or about 10 days for the removal of ammonia. Process certitude was also declined when the hydraulic behavior of
the treatment system approached complete mixing, which could result from such operational strategies as increasing the recycle ratio or the
utilization of step feed. DOI: 10.1061/(ASCE)EE.1943-7870.0000570. © 2012 American Society of Civil Engineers.
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Introduction

Biotreatment process design and analysis involves the application
of mathematical relationships along with appropriate biokinetic
parameter values to determine and evaluate design and operating
parameters required to meet treatment objectives. The selection
of biokinetic parameter values, however, inherently entails some
uncertainty because the performance of a specific bioprocess instal-
lation cannot be fully known in advance. Furthermore, the scale of a
project may not justify the acquisition of detailed kinetic and stoi-
chiometric data or the use of a simulation-based approach. Safety
factors are consequently utilized to account for uncertainties
stemming from inadequate understanding or characterization of the
biotreatment process. Their selection, however, is heuristically
based, and common safety factors tend to provide a design that
is very conservative with respect to achieving typical effluent goals.
For example, a typical activated sludge system has an implied safety
factor of 10–80 based on the minimum solids retention time nec-
essary to sustain biomass growth (Rittmann and McCarty 2001).

The design and analysis of activated sludge systems has been
greatly facilitated by computer-based simulation. Activated Sludge
Model No. 1 (ASM1) was developed to simulate carbon and nitro-
gen removal systems (Henze et al. 1987a, b), and includes eight

processes, 13 components, five stoichiometric coefficients, and
14 kinetic parameters (Table 1). Substantial work has been done
to validate ASM1 and to calibrate its parameters, and recommended
parameter values and ranges provided by the model developers
continue, for the most part, to be widely accepted or at any rate
serve as a starting point for system simulation and design. Model
calibration based on field performance of full-scale installations
(e.g., Kappeler and Gujer 1992; Siegrist and Tschui 1992; Garman
et al. 1996; and Petersen et al. 2002) has provided a range of param-
eter estimates whose distributions have, in turn, been characterized
(Cox 2004). The incorporation of ASM1 and its successor models
into a number of software packages designed specifically for waste-
water bioprocess simulation and analysis has facilitated these de-
velopments and has also served to promote widespread acceptance
and adoption of the model.

Performance evaluation of wastewater treatment plants by un-
certainty analysis is a relatively new approach in decision making
and assessing the uncertainty associated in achieving treatment
objectives. Belia et al. (2008) concluded that the field of uncertainty
analysis of wastewater models is in an initial stage as there are a
range of topics that need more research. This particular aspect of
bioprocess modeling has since been studied by several researchers
in the recent past.

Refsgaard et al. (2007) proposed a general framework and guid-
ance of role and interaction of uncertainty in environmental
modeling process using an array of different methods. Others like
Benedetti et al. (2006), Neumann et al. (2007), Martin et al. (2007),
and Sin et al. (2008) have used the Monte Carlo simulation tech-
nique to address a variety of issues concerning water-related
research. More recently, Flores-Alsina et al. (2008) used the same
technique in evaluating wastewater treatment control strategies
and addressed critical issues like variation in degree of fulfillment
of control objectives, identification of environmental, legal, techni-
cal, and economic contribution to existing variability, and the
impact of control strategies during selection of alternatives. A more
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specific approach of estimating uncertainty due to stoichiometry,
biokinetics, influent fractions, hydraulics, mass transfer, and their
combination was studied by Sin et al. (2009) using the Monte Carlo
simulation process to address practical engineering questions.
Further, Sin et al. (2011) showed that a global sensitivity analysis
can be useful to prioritize possible sources of uncertainty and
quantify their effect on performance in wastewater treatment plant
design.

Further, Flores-Alsina et al. (2008) indicated that the Monte
Carlo simulation technique is a practical method to mimic the in-
trinsic random behavior of biological processes using deterministic
models. Benedetti et al. (2010) used triangular probability density
functions (PDFs) of ASM1 parameters as suggested by Rousseau
et al. (2001) and Reichert and Vanrolleghem (2001) for studying
multicriteria analysis of wastewater treatment plant design and con-
trol scenario. In analyzing the uncertainty of the model application
for a wastewater treatment plant, Sin et al. (2009) assumed uniform
probability distribution for all biokinetic parameters with three
classes of predefined uncertainty corresponding to 5, 25, and
50% of variability around their mean values, an approach earlier
proposed by Brun et al. (2002). Deterministic multicriteria analysis
was performed by Flores-Alsina et al. (2008) to include the vari-
ability in activated sludge model (ASM) parameters by using their
probability distribution functions based on available knowledge.

This current study specifically explored the relationship be-
tween biokinetic uncertainty, process design, with three different
flow regimes, e.g., completely mixed, plug flow, and stepfeed, and
treatment performance of activated sludge (AS). Probabilistic mod-
eling was conducted to develop data that could permit identification
or at least inform the selection of design and operational strategies
and of design safety factors that enhance the level of certitude in
achieving wastewater treatment targets. In this context, it would be
relevant to mention that “certitude” can be defined as the certainty

or statistical probability of achieving any stipulated treatment target
in an activated sludge process as stochastic simulation results are
plotted to generate empirical cumulative frequency distributions
(CFDs) for effluent concentrations under defined operating
conditions.

Methodology

Probability density functions for the different model parameters
obtained by Cox (2004) through Bayesian analysis of expert-
recommended values and field calibration results were used for
stochastic simulation. Of the 19 ASM1 parameters (Table 1), four
(f 0

D, iN=XB, iN=XD, and ka) were considered invariant with respect to
the specific treatment setting, while 14 (YH , bH , μ̂H , KS, KNO,
KO;H , YA, μ̂A, bA, KNH, KO;A, kh, KX , and ηh) conformed with log-
normal PDFs (Eq. 1) and one (ηg) with a uniform PDF (Eq. 2)

PðxÞ 1

xσ
ffiffiffiffiffiffi
2π

p exp

�
− ðln x − ξÞ2

2σ2

�
(1)

PðxÞ ¼
� 1

b−a ; a ≤ x ≤ b;

0; x < a or x > b
(2)

where PðxÞ = probability that a model parameter has a value x; ξ
and σ = central value and variance, respectively, of the log-
transformed parameter values; and a and b = minimum and maxi-
mum, respectively, of the parameter values. Excel (Microsoft
Corporation, Redmond, WA) was used to generate 1,000 random
combinations of parameter values according to their respective
PDFs. Use of 1,000 random combinations was found reasonable
to contain adequate sample space and thus be representative of the
possible trend of PDF for any particular effluent parameter.

Table 1. Typical Parameter Values, Ranges, and Distribution at Neutral pH and 20°C for Domestic Wastewater (Dey and Magbanua 2010, Courtesy of Mary
Ann Liebert, Inc.; Data from Cox 2004)

Symbol Units

Statistical parameters

Mean valueξ σ

Heterotrophic coefficients
YH mg biomass COD formed/mg COD oxidized −0.45 0.12 0.64
μH day−1 1.14 0.60 3.13
KS mgCOD=L 1.44 0.76 4.22
bH day−1 −1.06 0.81 0.35
KNO mgNO−

3 − N=L −1.55 1.01 0.21
KO;H mgO2=L −1.46 0.83 0.23
ηg Fraction a a 0.50
Autotrophic coefficients
YA mg biomass COD formed/mg N oxidized −1.52 0.55 0.22
μA day−1 −0.51 0.44 0.60
bA day−1 −1.97 0.28 0.14
KNHNH mgNH3 − N=L −0.68 1.00 0.51
K0;A mgO2=L −0.82 0.96 0.44
Hydrolysis coefficients
kh mg slowly biodegradable COD=mg cell COD-day 0.83 0.36 2.29
KX mg slowly biodegradable COD=mg cell COD −2.82 1.34 0.06
ηh Fraction −0.86 0.62 0.42
Other coefficients
f 0D mg debris COD=mg biomass COD b b 0.08
iN=XB mg N=mg COD in active biomass b b 0.086
iN=XD mg N=mg COD in biomass debris b b 0.06
ka L=mg biomass COD—h b b 0.1608

Note: COD = chemical oxygen demand.
aηg follows a uniform probability density function with a minimum of 0.10 and a maximum of 0.90.
bValues represent recommended parameter values.
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Activated sludge process simulations were performed using
GPS-X (Hydromantis, Inc., Hamilton, Ontario, Canada). All sim-
ulations were performed using influent properties typical of domes-
tic wastewater (Table 2). Simulations were performed for three
different AS process configurations [completely mixed activated
sludge (CMAS), conventional activated sludge (CAS), and step-
feed activated sludge (SFAS)] at selected operating parameter
ranges (Table 3) for each of the 1,000 parameter combinations ob-
tained as described above. Hence, the stochastic simulations under
the selected operating conditions each consisted of 1,000 Monte
Carlo shots. In addition, discrete simulations were performed using
the mean parameter values (Table 1). Steady state effluent concen-
trations were obtained by relaxation, i.e., allowing simulations to
run for at least five times the adopted solids retention time (SRT),
until the state variables converged. In all simulations, the secondary
clarifier was modeled as an ideal biomass separator achieving
100% particulate removal efficiency to eliminate the influence
of physical separation and focus on the effect of the biochemical
processes on overall system performance. Consequently, the efflu-
ent contained only soluble components, i.e., SS and SIð¼ 0Þ for
organic species and SNH, SNO, and SND for nitrogenous species.
The dissolved oxygen (DO) set point in the aeration tank was
2.0 mg=L to ensure that biokinetics were not oxygen limited. Was-
tage was withdrawn directly from the aeration tank in accordance
with the Garrett configuration (Grady et al. 1999) at the rate nec-
essary to maintain the specified SRT. Stochastic simulation results
were conducted to develop empirical CFDs for the effluent concen-
trations and examined using a number of graphical approaches to

evaluate the certitude of attaining treatment targets under specific
process conditions.

Results and Discussion

Solids Residence Time

The solids residence time (SRT) or sludge age is the principal
design variable controlling biotreatment process performance.
The sludge age is selected to ensure that the minimum SRT required
to establish a stable microbial population, θmin

C , is exceeded, usually
by a significant factor of safety (Rittmann and McCarty 2001)

ς ¼ θC
θmin
C

¼ θC · ðμ̂ − bÞ (3)

where ς = safety factor; θC = SRT. and the model parameters μ̂ and
b are as defined in Table 1. Although the influent concentration is
normally considered when calculating θmin

C and ς, a concentration-
independent form, i.e., the limiting value at an infinitely high
influent concentration, was used here in order to focus on the bio-
kinetic parameters. For the mean parameter values and influent
properties used in this study, θmin

C was about 0.4 − d for hetero-
trophic growth and 2.2 − d for autotrophic growth, with no signifi-
cantly increase even if influent concentrations were considered.
Autotrophs have a much higher θmin

C due to their slow growth
relative to heterotrophs. Design safety factors are typically fairly
high, and biotreatment systems are considered to operate at a high
loading rate when 3 ≤ ς ≤ 10, at conventional loading when
10 ≤ ς ≤ 80, and at low loading when ς ≥ 80. Hence, when
no site-specific parameters have been determined, ς provides some
assurance to the design engineer that the desired microbial popu-
lations will be maintained within the treatment system. That certi-
tude level could be assessed, however, by evaluating θmin

C for each
of the 1,000 parameter combinations and examining the empirical
CFDs (Fig. 1).

The probability levels could be interpreted as the certitude that
the associated SRT would equal or exceed the θmin

C in the biotreat-
ment system. The θmin

C values calculated using the mean parameters
corresponded to certitude levels that, not surprisingly, were near the
midpoint of each CFD at around 54% for heterotrophs (0.4 − d)
and 52% for autotrophs (2.2 − d). Application of a safety factor
of 10 to the θmin

C of each population, resulting in SRTs of 4 − d
for heterotrophs and 22 − d for autotrophs, increased the certitude
to > 99%. Further gains in certitude, however, would come at the
expense of greatly increasing the SRT and the safety factor.

Stochastic simulations of a CMAS system (θ ¼ 6 − h; R ¼ 0.5;
and 1 ≤ θC ≤ 30 − d) were performed to further investigate the
effects of SRT on system performance. For the model structure

Table 2.Model Components (Dey and Magbanua 2010, Courtesy of Mary
Ann Liebert, Inc.)

Component ASM1 symbol Concentrationa

Particulate inert organic material XI 30
Slowly biodegradable substrate Xs 165
Active heterotrophic biomass XB;H 0
Active autotrophic biomass XB;A 0
Debris from biomass death and lysis XD 0
Inert soluble organic material SI 0
Readily biodegradable substrate SS 115
Oxygen SO 0
Nitrate nitrogen SNO 0
Ammonia nitrogen SNH 25
Soluble biodegradable organic nitrogen SND 6.5
Particulate biodegradable organic nitrogen XND 8.5
Alkalinity SALK 5.0
aTypical concentrations for domestic wastewater (Grady et al. 1999).
Concentrations are expressed in mg=L chemical oxygen demand for
organic components, mg=L N for nitrogenous species, and mM=L for
alkalinity.

Table 3. Process Configurations and Operating Conditions Utilized in Stochastic Simulations (Dey and Magbanua 2010, Courtesy of Mary Ann Liebert, Inc.)

Configuration Description Parameter rangea

CMAS: Completely-mixed activated sludge Completely-mixed aeration basin θc: 1–30 days; θ: 2–12 h
CAS: Conventional activated sludge Plug flow aeration basin modeled as a series

of five completely-mixed tanks
θc: 1–30 days; R: 0.25–3.0

SFAS: Step-feed activated sludge Plug flow aeration basin with influent distributed along
its length modeled as a series of five completely-mixed tanks
with provision to inject influent into each tank

θc: 1–30 days;
influent distribution: 1=5–5=5 tanks

aParameter symbols: θc = solids residence time; θ = hydraulic retention time; and R = recycle ratio. Parameter ranges were typical of each AS process
configuration (Rittman and McCarty 2001; Tchobanoglous et al. 2002). Influent distribution refers to the number of upstream tanks in an SFAS system
among which the influent is equally divided, e.g., 3=5 means that the first three of five completely mixed tanks in the series receive one-third of the
influent flow.
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of ASM1, a CMAS system provides a conservative assessment of
biotreatment performance at a particular SRT. The empirical CFDs
of the steady state effluent concentrations (Fig. 2) could be inter-
preted in terms of the certitude that a certain effluent quality would
be produced by the specified process configuration and operating
conditions.

At a 5-day SRT, the discrete simulation predicted an effluent
chemical oxygen demand (COD) concentration of 0.96 mg=L.
The corresponding CFD, however, suggested that the certitude
of attaining this effluent COD concentration was about 43%. That
is, a CMAS system operated at 5-day SRT, 6-h HRT, and 0.5
recycle, treating a typical municipal wastewater described in
Table 2, and designed using only the mean parameter values listed
in Table 1 and no site-specific parameter estimates would have a

43% certitude of achieving a COD effluent concentration of
0.96 mg=L or lower. Similarly, the discrete simulation predicted
an effluent NH3 − N concentration of about 1.26 mg=L, corre-
sponding to a certitude of about 37%. Increasing the SRT to 30 days
reduced the effluent COD and NH3 − N to 0.63 mg=L (47% cer-
titude) and 0.28 mg=L (45% certitude), respectively. Since mean
parameter values were used for the discrete simulations, it was
not surprising that the associated certitude levels were close to
50%. Interestingly, increasing the SRT resulted in a corresponding
increase in certitude level even though the parameter PDFs and the
specific parameter values used in the stochastic simulations were
unchanged. Comparison of the CFDs at 5 and 30 days, correspond-
ing to safety factors (12.5 and 75) within the conventional loading
range for heterotrophs and in the high (2.7) to conventional (13.6)
range for autotrophs, also showed the differing response of COD
and NH3 − N in a CMAS system. For COD, the CFD at 5 and
30 days were almost identical in shape, although the certitude levels
were slightly higher at 30 days. The certitude that θmin

C for hetero-
trophs would be exceeded at an SRT of 5 days was already 99%
(Fig. 1) so increasing SRT further did not greatly enhance the
certitude of COD removal. For NH3 − N, similarly increasing
the SRT resulted in a marked increase in certitude levels, which
also decreased less rapidly, i.e., exhibited a flatter slope, as effluent
NH3 − N target levels became more stringent (Fig. 3).

The certitude that θmin
C for autotrophs would be exceeded was

89 and 99% at SRTs of 5 and 30 days, respectively. Hence, the
certitude levels for attaining some target effluent concentration
at a given SRT and for establishing a stable microbial population
within the bioreactor were closely related.

The certitude of attaining a specific treatment goal as a function
of the SRT (Fig. 3) was also plotted to further examine the effects of
sludge age. As might be expected, greater certitude could be
attained by selecting a less stringent treatment goal or a longer
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SRT. Two levels of treatment targets were selected for this analysis
and these were 10 and 20 mg=L for effluent COD concentration
and 2 and 5 mg=L for effluent NH3 − N. The benefits realized from
increasing the SRT, however, differed for COD and NH3 − N. For
COD removal, the certitude level at 5 days had attained around 95%
and did not increase greatly as the SRTwas increased. The certitude
of NH3 − N removal, on the other hand, benefitted more substan-
tially, rising from around 40% at 5 days to about 90% at 30 days.
Again, this difference was attributed to the much slower growth of
autotrophs as compared to heterotrophs. In effect, the certitude that
a stable nitrifying population could be maintained determines the
certitude level of nitrogen removal.

Field experience in wastewater biotreatment indicates that an
SRT of 0.5–2 days is required for removal of biogenic soluble
organic matter, 2–4 days for removal of particulate organic matter,
and 2–15 days for nitrification (Grady et al. 1999; Tchobanoglous
et al. 2002). Hence, the stochastic simulation results were consis-
tent with field experience and support the use of a multiplier on the
minimum SRT as a safety factor.

Reactor Configuration

Stochastic simulations were likewise run for CAS and SFAS
systems (θ ¼ 6 − h; R ¼ 0.5; and 1 ≤ θC ≤ 30 − d) to compare
their performance to a CMAS system. For the CAS system (Fig. 4),
the CFDs for the effluent COD concentration at 5-and 30 day
SRTs were almost identical so that the certitude of COD removal
was essentially unaffected by the SRT. However, the certitude of
NH3 − N removal increased substantial as SRT increased from 5
to 30 days. Furthermore, comparison of Figs. 2 and 4 suggested
that the CAS system could attain greater certitude of COD and
NH3 − N removal than a CMAS system operated at the same
SRT. Superior biotreatment performance was expected in the

CAS system, as pointed out above, because the plug flow regime
results in a concentration gradient that permits a higher average
volumetric reaction rate within the aeration basin.

The certitude levels for attaining a specific treatment goal as a
function of SRT were similar for CMAS (Fig. 3) and CAS (Fig. 6)
systems, although the CMAS system appeared to experience a
greater decrease in certitude when the treatment goal became more
stringent.

For the SFAS system, the shape of the effluent concentration
CFDs depended greatly on the influent distribution scheme. The
mixing regime of the aeration basin approached plug flow when
influent was injected solely into the first tank, and approached
complete mixing when influent was distributed between all five
tanks (Fig. 5). Consequently, SFAS behavior at these extremes
was similar to the CAS or to the CMAS system, respectively.

Hydraulic Retention Time

Stochastic simulations of the CMAS system (θC ¼ 5 − d; R ¼ 0.5;
and 2 − h ≤ θ ≤ 12 − h) indicated that the effect of HRT on the
certitude of meeting COD treatment targets was minimal, particu-
larly at an HRT beyond 4h (Fig. 7). For NH3 − N removal, on the
other hand, the certitude level was very low at 2h and increased
substantially with HRT.

Recycle Ratio

Stochastic simulations of a CAS system (θC ¼ 5 − d; θ ¼ 6 − h;
and 0.25 ≤ R ≤ 3.0) indicated that treatment certitude decreased
very slightly with increasing recycle ratio. The hydraulic and
kinetic behavior of the plug flow system with recycle approaches
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the completely mixed regime as the recycle ratio is increased
(Gillespie and Carberry 1966; Magbanua Jr. and Bowers 1998).
A CMAS system would not be similarly affected by the recycle
ratio as complete mixing already prevails.

Influent Distribution

Stochastic simulations of an SFAS system (θC ¼ 5 − d; θ ¼ 6 − h;
and R ¼ 0.5) over a range of influent distribution scenarios (1=5 to
5=5) indicated that the certitude of meeting COD targets increased
as the influent was distributed among fewer tanks (Fig. 8). Distrib-
uting the influent over a greater number of tanks reduced the maxi-
mum substrate concentration and flattened out the concentration
gradient so that volumetric reaction rates were reduced and a treat-
ment performance and certitude were degraded. However, the
opposite trend was observed for NH3 − N removal to 5 mg=L,
where the certitude decreased when influent was distributed among
fewer tanks.

Distribution of the influent and the oxygen demand over a
greater number of tanks may have permitted the autotrophs to more
effectively compete for oxygen throughout the reactor, resulting in
enhanced nitrification. However, NH3 − N removal to 2 mg=L
exhibited maximum certitude at an influent distribution of 3=5.
It is possible that the contact time between the wastewater and
the autotrophs at influent distributions of 4=5 and 5=5 was insuf-
ficient to ensure reliable attainment of the more stringent treatment
target.

Summary and Conclusion

Stochastic simulation permitted quantitative evaluation of the
certitude levels associated with activated sludge biotreatment.
The relationship between variability of biokinetic parameters
and predicted process performance was studied in this research
effort.

Probability density functions for different stoichiometric and
kinetic parameters as obtained by Cox (2004) through Bayesian
analysis of expert-recommended values and field calibration results
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were used for stochastic simulation. Inclusion of such scientifically
established range of variability of these parameters might be a
logical approach for an uncertainty analysis of activated sludge
systems. At each set of process conditions examined, 1,000 Monte
Carlo simulations that used a unique set of parameter combinations
were performed. The empirical cumulative distribution function of
the simulation results suggested that this number was adequate for
convergence to be attained.

Simulation results generally confirmed industry design practices
that are based on both mechanistic and heuristic considerations, but
provided an added perspective in terms of process certitude. In
other words, while a typical design approach based on deterministic
parameter values provides a deterministic prediction of process
performance, a stochastic approach provided a level of certitude
corresponding to specific treatment targets. The design process,
then, changes from one where a design parameter is specified in
order to meet some treatment standard to one where a tolerable
level of certitude for achieving treatment requirements is selected
and the design parameters are specified accordingly.

The observed effects of specific design and operating parame-
ters on process certitude were
• Treatment certitude increased with SRT. This validates the use

of a safety factor that serves as a multiplier for the minimum
SRT. However, certitude of COD removal did not improve
significantly when SRT exceeded 4 days nor did certitude for
NH3 − N removal when SRT exceeded 10 days.

• Treatment performance and certitude in a CAS system was
generally superior to a CMAS system due to the mixing regime
in the reactor.

• Treatment certitude increased with HRT, but improvement was
slight beyond about 6h for COD removal or 10h for NH3 − N
removal.

• Operational strategies that shifted the mixing regime away from
plug flow reduced the performance and certitude of the biotreat-
ment process. Such changes included increasing the recycle
ratio in a CAS system, although this effect was minimal, and
distributing the influent along a greater length of the aeration
basin in an SFAS system.
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Notation

The following symbols are used in this paper:
bA = decay coefficient for autotrophic biomass;
bH = decay coefficient for heterotrophic biomass;

f 0D = fraction of biomass leading to debris;
iN=XB = mass of nitrogen per mass of COD in biomass;
iN=XD = mass of nitrogen per mass of COD in products from

biomass;
KNH = ammonia half-saturation coefficient for autotrophic

biomass;
KNO = nitrate half-saturation coefficient for denitrifying

heterotrophic biomass;
KO;A = oxygen half-saturation coefficient for autotrophic

biomass;
KO;H = oxygen half-saturation coefficient for heterotrophic

biomass;

KS = SS half-saturation coefficient for heterotrophic biomass;
KX = half-saturation coefficient for hydrolysis of slowly

biodegradable substrate;
ka = ammonification rate;
kh = maximum specific hydrolysis rate;
YA = yield factor for autotrophic biomass;
YH = yield factor for heterotrophic biomass;
ηg = correction factor for μH under anoxic conditions;
ηh = correction factor for hydrolysis under anoxic conditions;
μA = maximum specific growth rate for autotrophic biomass;

and
μH = maximum specific growth rate for heterotrophic biomass.
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