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A phase-field model was used to investigate the simultaneous effects of grain boundary energy anisot-
ropy and the presence of second-phase particles on grain growth in polycrystalline materials. The system
of grains with anisotropic grain boundary energies was constructed by considering models of low and
high misorientation angles between adjacent grains. Systems without particles reached a steady state
grain growth rate, and this rate decreased by including the grain boundary energy anisotropy. In addition,
the presence of particles significantly altered the microstructures during grain growth. This study showed
that for systems including particles, the critical average grain size to stop grain growth depends not only
on the volume fraction and size of particles, but also on the grain boundary energy anisotropy.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Mechanical properties of metallic alloys, such as their strength,
hardness, ductility, elastic modulus, and toughness, are deter-
mined and controlled primarily by their grain microstructures
[1]. Because of the extensive use of metallic components in differ-
ent industries [1,2], predicting and controlling the microstructure
evolution during different materials processing are of the most
important tasks in materials science and engineering.

One of the most common microstructural evolutions resulting
from different materials processing is grain growth [3–10]. There
have been several numerical studies in this area based on different
computational approaches such as the sharp interface [11–18],
Monte Carlo [19–21], cellular automata [22,23], and phase field
methods [24–30]. Most of these models either consider a single
phase for the polycrystalline material without considering the pin-
ing effect of second-phase particles, or do not include the effects of
anisotropic grain boundary energy on the microstructural evolu-
tion during the grain growth. The presence of second-phase parti-
cles can mitigate or even freezes the grain growth process and
results in different microstructural configuration usually with finer
grain sizes that can be accountable for different materials proper-
ties [30,31]. Grain growth process in the presence of second-phase
spherical and stationary particles was considered by the Zener
theory [32] and has been studied using the phase-field model by
Moelans et al. [33,34] and Chang et al. [35]. Long et al. [29] used
ll rights reserved.

e Zaeem).
a similar phase-field model to study the effects of pre-aging d-Ni2Si
particles on grain growth during re-aging process in Cu–Ni–Si al-
loy. These models did not include the important effects of aniso-
tropic grain boundary energy resulted from misorientation angles
between neighboring grains, which could lead to substantially dif-
ferent microstructures [36,37].

In this paper, a phase-field – finite element model is used to
simulate the microstructural evolutions during grain growth con-
sidering the simultaneous effects of anisotropic grain boundary en-
ergy and second-phase particles on the growth rate. For the
numerical computations, a finite element model similar to that
developed in [38–40] is utilized.
2. Phase-field model

In the phase-field theory, a polycrystalline microstructure can
be described by many orientation field variables or non-conserved
order parameters (giðr; tÞ, i = 1, 2, . . ., n, where n is number of dif-
ferent orientations) [24]. These field variables are continuous func-
tions in time (t) and space dimensions (r) and represent different
orientations for different grains (Fig. 1). The value of the field vari-
ables varies between 0 and 1; for example for grains having the qth
orientation: gi¼qðr; tÞ ¼ 1 and gi–qðr; tÞ ¼ 0 and this transition from
0 to 1 in the grain boundaries is smooth (Fig. 2). The total grain
boundary energy of a microstructure is a function of these field
variables and their gradients. The free energy of the grains system
including stationary particles (or inert particles) is [33–35]:
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Fig. 1. Schematic of various crystal orientations using different orientation field
variables for each grain. The solid-lines are grain boundaries.

Fig. 2. Profiles of two field variables (g1 and g2) for the two neighboring grains in
Fig. 1.

Fig. 3. Scaled grain boundary energy versus misorientation angle for the Read–
Shockley (RS) model and the Modified Read–Shockley (MRS) model in comparison
with the isotropic limiting case.
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where ji are the gradient energy coefficients. The local free energy
density, f, used by Moelans et al. [33,34], has this form:
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a, b, c, and e are phenomenological parameters, and U = 1 inside a
particle and U = 0 in the matrix. Here n is the number of different
orientations for grains while no orientations are considered for par-
ticles. When U = 1, f has one minimum at all gi equal to 0. If in Eq.
(2) e is considered to be equal to c, both Moelans et al. [33,34] and
Chang et al. [35] models recover same results.

The evolution equations of non-conserved order parameters can
be obtained from time-dependent Ginzburg–Landau (TDGL) [41]
equation given by the following,

@giðr; tÞ
@t

¼ �Li
dF

dgiðr; tÞ
; i ¼ 1;2; . . . ;n; ð3Þ

where Li are the relaxation coefficients related to the grain bound-
ary mobility.

To include misorientation angles between adjacent grains (an-
gle hij between grains i and j) which result in anisotropic grain
boundary energies in the system, first we recall the relationship
between gradient energy coefficient and grain boundary energy,
E(hij), [37,42]:

ji ¼ jjE
2ðhijÞ; hij ¼ hi � hj; ð4Þ

where hi is the orientation angle of a grain with respect to a refer-
ence angle, and jj is considered to be a constant. Since in our model
we are following the evolution of the order parameter and not the
orientation angle of each grain, to calculate hij for each grain bound-
ary between two adjacent grains, we assume a random orientation
angle (hi ¼ 0 p½ �), which corresponds to each order parameter
(Fig. 1).

A grain boundary energy model considering low misorientation
angles between adjacent grains (hij < 20�) was presented by Read
and Shockley (RS) [36]. In the RS model, the energy from low-angle
grain boundaries was assumed to stem from two contributions: (1)
energy from dislocation cores, Ec, and (2) energy from the strain
field surrounding the dislocations, Es:

E hij
� �

¼ hij Ec � Es ln hij

�� ��� �
: ð5Þ

The conventional form of Eq. (5) using a computational ap-
proach [27] is the following,
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hij

hm
1� ln

hij

hm

����
����

� �
; hij < hm; ð6Þ

where E0 is a material constant and is proportional to the total den-
sity of dislocations, and hm is the maximum misorientation angle for
RS model (hm = 20�). For hij P 20�, E(hij)/E0 = 1, same as isotropic
cases (see Fig. 3). For large misorientation angles, modified RS
(MRS), was developed by Wolf [43]:

EðhijÞ ¼ E0 sinð2hijÞ 1� r ln sinð2hijÞ
�� ��� �

; ð7Þ

where r is a constant and in our simulations r = 0.683 same as [44]
to make (E(hij)/E0)max = 1.

In Fig. 3, the scaled grain boundary energy is plotted against the
misorientation angles for the isotropic, RS, and MRS models.



(a) Initial condition  

(b) Type I (c) Type II (d) Type III

(e) Type IV (f) Type V (g) Type VI

(h) Type VI

Fig. 4. Microstructural evolution. In (b–h) t = 2000. In (e–g) Vf = 0.015, and in (h) Vf = 0.03; rp = 2 in (e–h).
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Fig. 6. Average grain radius versus time of evolution for systems with particles:
rp = 2, Vf = 0.015; �Vf = 0.03.
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3. Results and discussions

The parameters of the model are considered here to be con-
stants, which closely correlates to the hypothesis to the original
model by Fan and Chen [24]: a = b = c = 1 (e = c), jj ¼ 2, Li = 1,
and E0 = 1 so that when hij = p/4 the value of the gradient energy
coefficient becomes the same as an isotropic system (ji = 2 in
Fan and Chen [24]). We solve Eq. (3) in a 400 � 400 square domain
using the finite element method. To discretize the domain for all
systems, a uniform mesh consisting of 22,000 triangular elements
with quadratic interpolation functions is used. Time step size of
iterations is Dt = 0.2. To simulate the polycrystalline material prop-
erly, 36 order parameters are used [24]. For all simulations, the ini-
tial grains configuration is similarly chosen to be a Voronoi
tessellation diagram with 36 random initial orientation angles cor-
responding to order parameters (Fig. 4a). For cases including parti-
cles, particles are randomly distributed in the grains system where
Vf and rp are the volume fraction and size of particles, respectively.

Six different types of systems are considered:

� Type I: grains system without particles considering isotropic
grain boundary energy.
� Type II: grains system without particles considering RS model.
� Type III: grains system without particles considering MRS.
� Type IV: grains system with particles considering isotropic

grain boundary energy.
� Type V: grains system with particles considering RS model.
� Type VI: grains system with particles considering MRS model.

Examples of these six types of systems are presented in Fig. 4b–
h. Fig. 4 reveals that including the effects of anisotropic grain
boundary energy significantly alters the microstructures in both
systems with and without particles.

Fig. 5 shows the average grain radius versus time of evolution in
systems without particles. All systems reach a steady state grain
growth rate, and this rate decreases from isotropic to anisotropic
grain boundary energy models. To compare grain growth coarsen-
ing rates for systems without particles, we use the coarsening
power law:

ðrtÞm � ðr0Þm ¼ Kt; ð8Þ
Fig. 5. Average grain radius versus time of evolution for systems without particles;
nonlinear fits are plotted using Eq. (8).
rt and r0 are the average radius of grains at time t and 0, respec-
tively, K is the coarsening rate constant and is a function of volume
fraction of precipitates, and m is the coarsening exponent. From
Fig. 4a r0 ffi 17.5. For non-linear fits in Fig. 5, the least squares meth-
od is used. The correlated values of m for isotropic, RS, and MRS are
2.06, 2.15, and 2.27, respectively.

In the cases with particles, the grain growth stops after several
time steps and does not follow the coarsening power law (see
Fig. 6). The previous analytical and numerical models for Zener
pinning predicted a similar effect [29,32]. Accordingly, they pro-
posed a model in which the grain growth stopped after reaching
a critical average grain size (�rc

g) computed to be:

�rc
g ¼ b

rp

ðVf Þn
: ð9Þ

Values of b and n vary in different works [29,33,34]. To find these
values for our model, we use rp = 1.5, 2, and 2.5, and Vf = 0.005,
Fig. 7. Final grain size versus volume fraction of particles with rp = 2; nonlinear fits
are plotted using Eq. (9).



Table 1
Estimated values of b and n in (9); 0:005 6 Vf 6 0:09.

Isotropic RS MRS

rp 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5
b 8.38 6.04 4.49 9.01 6.42 4.84 9.85 7.05 5.08
n 0.142 0.161 0.187 0.110 0.133 0.155 0.072 0.089 0.130
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0.015, 0.03, 0.06 and 0.09. The final grain size of systems including
particles with rp = 2 is shown for isotropic, RS, and MRS models in
Fig. 7. Estimated values for b and n are determined by fitting Eq.
(9) using the least squares method (see Table 1), and these values
are somehow different from those reported in previous investiga-
tions [29,33–35]. Because of their numerical algorithm, all the pre-
vious works had to consider very small initial average grain sizes,
which were close to zero [29,33–35]. In reality, relatively larger
grains already exist from primary recrystallization, whether static
or dynamic, before or after second-phase particles nucleate and sta-
bilize. So when higher volume fractions of particles are present in
the system, i.e. grain growth is considerably slow (or no grain
growth happens), the minimum average grain size is almost equal
to the initial average grain size of the grain microstructure. From
Fig. 6 and Table 1, it is clear that including anisotropic grain bound-
ary energy significantly affects the grain growth morphology. The
critical average grain size to stop the grain growth depends not only
on volume fraction and size of particles, as predicted by other mod-
els, but also on the grain boundary energy anisotropy.

4. Conclusions

A phase-field model was used to study the concurrent effects of
anisotropic grain boundary energy and presence of second-phase
inert particles on grain growth rate. The concluding remarks are
the following:

� Including the anisotropic grain boundary energy mitigated the
grain growth, and this decrease was more significant when
the effects of high misorientation angles were considered. Even-
tually, all systems without particles reached a steady state grain
growth rate.

� The presence of particles significantly decreased grain growth
rate and changed the ultimate grain microstructure. The critical
average grain radius necessary to stop the grain growth was not
only a function of the volume fraction and size of the second-
phase particles but also significantly depended on the grain
boundary energy anisotropy, especially in systems with low
volume fraction of particles.
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