Comparison of Daytime and Night-time Applications of Diquat and Carfentrazone-ethyl for Control of Parrotfeather and Eurasian Watermilfoil

RYAN M. WERSAL1, J. D. MADSEN1,2, J. H. MASSEY3, W. ROBLES3AND J. C. CHESHIER3

INTRODUCTION

Parrotfeather (Myriophyllum aquaticum Vell. Verdc.) and Eurasian watermilfoil (Myriophyllum spicatum L.) are non-native invasive species that are often difficult to control. Once established, these species thrive in a variety of environmental conditions and have shown resiliency to control techniques. To date, chemical control has been the most effective method for managing infestations of these species. Contact herbicides such as diquat (6,7-dihydrodipyrido (1,2-a:2’,1’-c) pyrazinedium dibromide) and carfentrazone-ethyl (a,2-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]-4-fluorobenzenepropanoic acid, ethyl ester) are used to rapidly kill standing biomass (Westerdahl and Getsinger 1988, Moreira et al. 1999). These rapid-acting contact herbicides often provide only short-term control and significant regrowth of non-impacted plant tissues is common.

Diquat is a photosynthesis inhibitor that interferes with electron flow by accepting electrons from photosystem I. The interference of electron flow leads to the production of superoxide radicals that ultimately results in the peroxidation of cell membranes (Hess 2000, Senseman 2007). Diquat symptoms appear within hours of application in full sunlight, with complete foliar necrosis by 1 to 3 days after application (Senseman 2007). Diquat has shown excellent efficacy on Eurasian watermilfoil where 90 to 100% control was achieved (Senseman 2007). Diquat applications resulted in considerable amounts of herbicide being transported away from the point of contact. This relationship was also noted with paraquat (N,N-dimethyl-4,4’-bipyridinium dichloride) (Slade and Bell 1966). The objective of this study was to compare the effectiveness of subsurface applications of diquat and carfentrazone-ethyl applied to parrotfeather and Eurasian watermilfoil under light and dark conditions. This study is a first account of diquat efficacy on parrotfeather, especially as a subsurface application.

MATERIALS AND METHODS

The study was conducted in an outdoor mesocosm facility at the R. R. Foil Plant Science Research Center, Mississippi State University, Starkville, Mississippi, for 6 weeks in September to October 2006. The study was conducted as a randomized complete block design with two rates of diquat, two rates of carfentrazone-ethyl, two application times, and an untreated reference. Each treatment was replicated three times. Parrotfeather and Eurasian watermilfoil used in this study were planted from greenhouse stock maintained at Mississippi State, University, Mississippi State, MS 39762-9652. Received for publication June 28, 2009 and in revised form September 19, 2009.
RESULTS AND DISCUSSION

Parrotfeather

In all treatments, diquat at each concentration and application time significantly reduced biomass of parrotfeather by 52 to 82% across diquat concentrations (Figure 1). Allowing for a dark exposure after herbicide application did not result in increased efficacy of diquat on parrotfeather at the concentrations tested. Although parrotfeather biomass was reduced with respect to untreated plants, regrowth was evident, and plants would have recovered given sufficient time. Plant recovery was occurring through regrowth via root crowns and the formation of new shoots from the nodes of surviving plants.

Interestingly, parrotfeather treated with diquat formed a necrotic region on the stolon at the air-water interface. The necrotic region caused the abscission of the stolon resulting in fragmentation of emergent shoots. These fragments where likely viable 4 WAT as they were developing adventitious roots. Fragments were collected and included in plant mass determinations. It is unclear as to the mechanism causing this fragmentation, but it appears that diquat movement in the xylem stopped at the air–water interface. A possible explanation may be differences in the anatomical structure of submersed and emergent parrotfeather tissues (Sutton and Bingham 1973) resulting in the incomplete movement of the herbicide; however, more research is needed to further investigate this mechanism.

The use of carfentrazone-ethyl was also effective at reducing parrotfeather at both concentrations and application times (Figure 1). A 64 and 65% reduction in parrotfeather biomass was obtained when carfentrazone-ethyl was applied at 0.20 mg ai L\(^{-1}\) during a dark and light exposure period, respectively. Similar to diquat, the dark exposure did not result in increased efficacy of carfentrazone-ethyl against parrotfeather. Gray et al. (2007) reported similar biomass reductions of parrotfeather (63%) using carfentrazone-ethyl at 0.20 mg ai L\(^{-1}\). Unlike the present study where a 24-h contact time was used, Gray et al. (2007) used a static exposure. Data from this study suggest that increasing the exposure time of carfentrazone-ethyl has little effect on increasing the control of parrotfeather. However, in both this study and Gray et al. (2007) the pH of the water likely impacted the efficacy of carfentrazone-ethyl more so than the exposure time used. The water used in this study was taken from an irrigation reservoir where the pH fluctuates between 7.8 and 9. A pH approaching 9 would result in a half life of approximately 3 to 4 hours, reducing the contact of the plants to a lethal dose of the herbicide (Ngim and Crosby 2001).

Eurasian watermilfoil

Eurasian watermilfoil was highly susceptible to diquat, with 85 to 100% biomass reductions for all diquat treatments (Figure 1). The dark exposure period did not increase diquat efficacy on Eurasian watermilfoil as all diquat treatments were similar. Reductions in Eurasian watermilfoil biomass of 97% to 100% was achieved using similar diquat concentrations at half lives of 2.5 and 4.5 h, which would equate to exposure times much less than that used in this study (Skogerboe et al. 2006). Conversely, carfentrazone-ethyl was not efficacious against Eurasian watermilfoil. Biomass of treated plants and the untreated reference plants were statistically similar. Biomass reductions in this study were only 25 and 37% for the 0.20 mg ai L⁻¹ light and dark treatments, respectively. These data contrast those reported by Gray et al. (2007) where carfentrazone-ethyl resulted in control (100% biomass reduction) of Eurasian watermilfoil at a concentration of 0.20 mg ai L⁻¹.

Absorption and translocation of herbicides were not directly measured in this study; however, if greater absorption or translocation was occurring in plants treated in the dark, then increased control should have occurred. Our results suggest that a period of darkness following applications of diquat and carfentrazone-ethyl did not necessarily increase herbicide movement in treated plants because control was not different among treatments. The lack of movement of bipyridinium herbicides has been documented in terrestrial plants where a 12-h dark period following paraquat and diquat applications did not enhance movement of either herbicide in wheat (Coats et al. 1966). The movement of paraquat out of treated leaves of capeweed (Arctotheca calendula) was slow in the dark where after 72 h, 80% of the paraquat was still in the treated leaves (Soar et al. 2003). Preston et al. (2005) reported <4% of absorbed paraquat was translocated in a basipetal direction in susceptible plants. Therefore, a period of dark exposure may not be an important means of diquat or carfentrazone-ethyl movement as previously thought.

Based on the results of this study there was no increase in efficacy of diquat or carfentrazone-ethyl on parrotfeather or Eurasian watermilfoil with treatments made in the dark. The pH of the water used in this study likely reduced the half life of carfentrazone-ethyl in the tanks, thereby reducing overall herbicide efficacy, especially with respect to Eurasian watermilfoil. The use of a shorter herbicide exposure time and or lower herbicide rates may have allowed for the discerning of differences. For example, an 8h exposure time would have allowed morning applications to be completely in the light and night applications completely in the dark. Future research may be directed toward determining light–dark exposure relationships for floating species using foliar herbicide applications.

ACKNOWLEDGMENTS

The authors would like to thank Waldemar Robles, Jimmy Peeples, and Matt Gower for assistance with setting up the study. We thank Dr. Patrick Gerard for his guidance with the statistical analyses of our data. Syngenta and FMC Corporation provided the herbicides. We also thank LeeAnn Glomski, Angela Poovey, and Dr. Linda Nelson for internal reviews of an earlier version of this manuscript. This manuscript has been approved for publication as Journal Article No. J-11610 of the Mississippi Agricultural and Forestry Experiment Station, Mississippi State University.

LITERATURE CITED