Introduction

Problems Caused
Smutgrass \([Sporobolus indicus\ (L.)\ R.Br.]\) is a perennial, tufted grass typically problematic in areas where grasses are desired, such as pastures, turf, and roadsides (Figure 1) throughout the Mid-South. It can often be distinguished in late summer and fall but the presence of a black smut throughout the inflorescence, hence the name smutgrass. It is spread by small seed and plants can tolerate poor compacted soils.

Regulations
Smutgrass is not regulated as a noxious weed in the Mid-South.

Description

Vegetative Growth
Smutgrass is a tufted, perennial warm-season grass (Figure 2) reaching around 3 feet in height. Leaves are mostly basal, usually rolled, to around 1 foot long and 0.2 inches wide. Sheathes are hairless, while margins are hairy toward the apex. Ligules are obscure.

Flowering
The inflorescence is a spike-like appressed to ascending panicle, around 1 foot long, 0.6 inches across, and dark green in color (Figure 3). Flowering typically occurs from July to October. Spikelets are small, around 0.08 inches long with obtuse somewhat unequal glumes that are about half the length of the spikelet. Palea and lemma are pointed on the end and nerveless. The caryopsis (grain) is very small, reddish, flat, oblong, and around half the length of the spikelet (Figure 3).

Dispersal
Smutgrass seed are very small and can be dispersed by soil movement or hay for livestock, or attached to equipment, animals, etc. Storms events may disperse seed, either by water or wind.

Spread By
Spread by human and animal activity and possibly storm events.

Habitat
Smutgrass can be a problem in pastures, flatwoods, waste areas, prairies, fields, turf, and roadsides (Figure 1). It generally forms dense clumps in open sites of poor, compacted compact soils, but may occur elsewhere in open sites. Once established, smutgrass can be difficult to control.
Control Methods

Biological
No widespread biological controls are currently used on smutgrass in the United States.

Chemical
Chemical control tactics include Roundup (glyphosate) as a spot treatment and Velpar (hexazinone) as a spot treatment or as a broadcast treatment (Table 1).

Mechanical
Small patches may be mechanically removed by hand, although this method is labor intensive. In fields used for grazing, thorough tillage that destroys established clumps followed by seeding ryegrass for winter forage has been reported by cattle producers as an effective management tactic. However, this practice must be repeated yearly to prevent reestablishment.

Physical
Currently, no physical control treatments are in widespread use.

Distribution

US
While it is believed smutgrass is native to Asia, there have been questions recently about its origin. Once restricted to the southeastern United States, it now occurs from New York to Florida and Texas, as well as on the West Coast.

Mid-South
Smutgrass occurs in all Mid-South states and under the right conditions it can be quite common on roadsides and pastures. It is spread by seed, which are very small.

More Information

The Genus Sporobolus belongs to the Grass (Poaceae or Gramineae) Family. Worldwide there are roughly 160 species of Sporobolus with an estimated 34 species in the United States. Several species of Sporobolus are native to the Mid-South, but smutgrass is not. Native Sporobolus species are variable in habit including annuals and tufted to rhizomatous perennials. However, they do not tend to be as leafy and robust as smutgrass and some species occur primarily on calcareous soils or sand. There are two botanical varieties of smutgrass in the southeastern United States. Sporobolus indicus var indicus [Syn.: S. poiretii (Roem. & Schult.) Hitchc.] occurs in the Mid-South and S. indicus var. pyramidalis (P. Beauv.) Veldkamp (Syn.: S. jacquemontii Kunth), or West Indian dropseed, is apparently restricted to central and southern Florida. Both species are native to Asia.

References


Table 1. Control tactics for Smutgrass [Sporobolus indicus (L.) R.Br.].

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Method</th>
<th>Rate</th>
<th>Method</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundup</td>
<td>Spot treatment</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velpar</td>
<td>Broadcast</td>
<td>3.5 pt/A</td>
<td>Spot treatment</td>
<td>2%</td>
</tr>
</tbody>
</table>

Victor Maddox, PhD
Mississippi State University
Geosystems Research Institute
Box 9555
Mississippi State, MS 39762-9652
Ph. (662)325-2123, vmaddox@gri.msstate.edu
www.gri.msstate.edu