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Abstract
A multiphysics micromechanics model is developed to predict the effective properties as well as
the local fields of periodic smart materials responsive to fully coupled electric, magnetic,
thermal and mechanical fields. This work is based on the framework of the variational
asymptotic method for unit cell homogenization (VAMUCH), a recently developed
micromechanics modeling scheme. To treat the general microstructure of smart materials, we
implemented this model using the finite element technique. Several examples of smart materials
are used to demonstrate the application of the proposed model for prediction of multiphysical
behavior.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Smart materials are responsive to multiple fields, such as
electric, magnetic or thermal fields, in addition to the
traditional mechanical field. Multiphysical behavior of such
materials will be coupled and analysis tools with predictive
capabilities are essential for effective design and analysis of
such materials. In addition to the complexity due to the
interplay of multiple fields, smart materials are also engineered
with more than one single constituent for the desirable
performance needed for real applications. Furthermore, such
heterogeneous smart materials might exhibit new properties
not existing in any of the constituents due to the coupling
of different fields. For example, the most interesting
behavior of smart composites consisting of piezoelectric and
piezomagnetic constituents is that the magneto-electric effect,
which is only present in composites but absent in constituent
phases, is created by the interaction between the constituent
phases, a result of the so-called product property [1]. The
mechanical constitutive response of the active materials
can be coupled with the non-mechanical effects [2]. For
example, a piezoelectric material under a temperature field

* A preliminary version of this paper was presented at the 2008 ASME
Conference on Smart Materials, Adaptive Structures and Intelligent Systems,
Ellicott City, MD, USA.
1 Present address: Center of Advanced Vehicular Systems, Mississippi State
University, MS 39762, USA.

can exhibit piezoelectric, along with pyroelectric, effects. It
has been experimentally observed that an interphase region
exists between an inclusion and the surrounding matrix.
This interphase region is of the same length scale as the
particulate inclusion and could play an important role in the
macroscopic properties of the composites [3]. The importance
of this interphase in the product property is also investigated
analytically using homogenization techniques [4, 5].

Generally speaking, smart materials could have fully cou-
pled electro-magneto-thermo-elastic behavior which exhibits
both piezoelectric and piezomagnetic coupling effects as well
as pyroelectric, pyromagnetic and electromagnetic effects. For
linear behavior among all these fields, the constitutive equa-
tions can be expressed as

σi j = Ci jklεkl − eki j Ek − qki j Hk +�i jθ

Di = eiklεkl + kik Ek + aik Hk + piθ

Bi = qiklεkl + aik Ek + μik Hk + miθ

(1)

where Ci jkl , eki j , qki j and �i j are the elastic, piezoelectric,
piezomagnetic and thermal stress tensors, respectively (note
that �i j = −Ci jklαkl with αkl as the thermal expansion strain
tensor); σi j and εi j are the stress tensor and strain tensor,
respectively; kik , aik and μik are the dielectric, magneto-
electric and magnetic permeability tensors, respectively; pi

and mi are the pyroelectric and pyromagnetic vectors; Di , Ek ,
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Bi and Hi are the electric displacement, electric field, magnetic
induction and magnetic field vectors. θ denotes the difference
between the actual temperature and the reference temperature.
Here and throughout this paper, Latin indices assume 1, 2 and 3
and repeated indices are summed over their range except where
explicitly indicated.

Li and Dunn [6] employed the Mori–Tanaka method [7]
for predicting the average fields and effective moduli of
fully coupled magneto-electro-elastic composites where the
closed-form expressions are obtained for effective magneto-
electro-elastic properties of circular cylinder fibrous and
laminated two-phase composites. Aboudi [8] developed a
micromechanics method for the prediction of the effective
properties of magneto-electro-thermo-elastic composites using
the framework of the high-fidelity generalized method of cells.
The predictions of this model agree well with those of the
Mori–Tanaka model. Lee et al [9] developed a finite-element-
analysis-based micromechanics approach through averaging
of the representative volume element (RVE) to determine
the effective dielectric, magnetic, mechanical and coupled-
field properties of this composite as functions of the phase
volume fractions, the fiber arrangements in RVE and the
fiber material properties with special emphasis on the poling
directions of the piezoelectric and piezomagnetic fibers. The
authors recently developed a micromechanics approach for
the prediction of the effective properties and local fields of
heterogeneous electro-magneto-elastic materials [10]. The
work is based on the framework of the variational asymptotic
method for unit cell homogenization (VAMUCH) [11–14], in
which the unit cell (UC) is defined as an RVE with the smallest
possible size. VAMUCH is an application of the variational
asymptotic method (VAM) [15] to micromechanics. It carries
out an asymptotic analysis of the governing functional to find
the corresponding asymptotic expansion of the field variables,
which is different from the well-known two-scale asymptotic
homogenization theory (AHM) [16–18]. In AHM, also called
mathematical homogenization theories (MHT), the solution
is sought in the form of multiscale asymptotic series which
can be obtained through a formal asymptotic analysis of the
governing differential equations along with assumed periodic
boundary conditions for the a priori unknown functions in fast
variables, while in VAMUCH, both the multiscale asymptotic
series and the periodic boundary conditions are derived from
the asymptotic analysis of the governing functional.

In this paper, we are going to extend VAMUCH
for smart heterogeneous composites to capture the fully
coupled multiphysical behavior including electric, magnetic,
thermal and elastic behavior and their interactions. The
resulting theory and companion code will be able to predict
effective multiphysical properties (including the effective
elastic, piezoelectric, piezomagnetic and magneto-electric
coupling coefficients as well as the thermal stress coefficients,
pyroelectric constants, pyromagnetic constants and specific
heats) and calculate the local multiphysical field distribution
within the microstructure. This work is build upon the
variational asymptotic method [19] along with two essential
assumptions associated with the micromechanics concept for
heterogeneous materials:

• Assumption 1. The exact solutions of the field variables
have volume averages over UC. For example, if ui , φe

and φm are the exact displacements, electric potential and
magnetic potential within the UC occupying a volume �,
respectively, there exist vi , ψe and ψm such that

vi = 1

�

∫
�

ui d� ≡ 〈ui 〉

ψe = 1

�

∫
�

φe d� ≡ 〈φe〉

ψm = 1

�

∫
�

φm d� ≡ 〈φm〉.

(2)

• Assumption 2. The effective material properties obtained
from the micromechanical analysis of the UC are
independent of the geometry, the boundary conditions
and loading conditions of the macroscopic structure,
which means that effective properties are assumed to
be the intrinsic properties of the material when viewed
macroscopically.

Note that these assumptions are not restrictive. The
mathematical meaning of the first assumption is that the
exact solutions of the field variables are integrable over the
domain of the UC, which is true almost all the time and the
very basic requirement for us to perform the homogenization.
The second assumption implies that we can neglect the
size effects and loading effects of the material properties
in the macroscopic analysis, which is an assumption often
made in the conventional continuum mechanics necessary
for the definition of material properties. Of course, the
micromechanical analysis of the UC is only needed and
appropriate if h/ l � 1 with h as the characteristic size
of the UC and l as the characteristic length scale of the
macroscopic behavior of the heterogeneous material. Other
assumptions common in the literature such as a particular
geometry shape and arrangement of the constituents, specific
boundary conditions applied to the UC and prescribed relations
between local fields and global fields are not needed for this
study.

2. Theoretical formulation

Three coordinates are used in our formulation including two
Cartesian coordinates x = (x1, x2, x3) and y = (y1, y2, y3),
and an integer-valued coordinate n = (n1, n2, n3); see figure 1.
We use xi as the global coordinates to describe the macroscopic
structure and yi parallel to xi as the local coordinates to
describe the UC. We choose the origin of the local coordinates
yi to be the geometric center of the UC. To uniquely locate
a UC in the heterogeneous material we also introduce integer
coordinates ni . The integer coordinates are related to the global
coordinates in such a way that ni = xi/di , with di denoting the
edge lengths of the UC (no summation over i ). It is emphasized
that, although only a two-dimensional (2D) UC is sketched
in figure 1, the present theory has no such limitations and is
also capable of handling other microstructures including one-
dimensional (1D) and three-dimensional (3D) UCs.
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Figure 1. Coordinate systems for heterogeneous materials (only 2D UC is drawn for clarity).

The VAMUCH formulation starts from a variational
statement of the continuum mechanics description of the
multiphysical behavior of smart materials. For this purpose,
we need to express the thermodynamic potential corresponding
to the constitutive equations in (1) as

U = 1

2
εT Lε + εTηθ + 1

2
cv
θ2

T0
(3)

where

ε = � ε11 2ε12 ε22 2ε13 2ε23 ε33

E1 E2 E3 H1 H2 H3 �T (4)

is a multiphysical field vector containing the 3D strain field εi j ,
the 3D electric field Ei and the 3D magnetic field Hi , which are
defined for a linear theory as

εi j(n; y) = 1

2

[
∂ui(n; y)
∂y j

+ ∂u j(n; y)
∂yi

]

Ei(n; y) = −∂φ
e(n; y)
∂yi

Hi(n; y) = −∂φ
m(n; y)
∂yi

(5)

and L is a 12 × 12 multiphysics matrix containing all the
necessary material constants for characterizing completely
coupled electro-magneto-elastic materials such that

L =
[

C −e −q

−eT −k −a
−qT −aT −µ

]
(6)

where C is a 6 × 6 submatrix for elastic constants, e is a
6 × 3 submatrix for piezoelectric coefficients, q is a 6 ×
3 submatrix for piezomagnetic coefficients, k is a 3 × 3
submatrix for dielectric coefficients, a is a 3 × 3 submatrix
for electromagnetic coefficients and µ is a 3 × 3 submatrix for
magnetic permeability. Other terms in equation (3) include η,
which is a 12 × 1 matrix containing the second-order thermal
stress tensor �i j , the vector of pyroelectric pi and the vector
of pyromagnetic mi expressed as

η = ��11 �12 �22 �13 �23 �33

p1 p2 p3 m1 m2 m3 �T.

The coefficient in front of the last term cv is the specific heat
per unit volume at constant volume, while T0 is the reference
temperature at which the constituent material is stress-free.

The second assumption implies that we could obtain
the same effective material properties from an imaginary
unbounded and unloaded smart material with the same
microstructure as the loaded and bounded one. Hence we could
derive the micromechanical analysis from a smart material
which could completely occupy the 3D space R and is
composed of infinitely many UCs. The total thermodynamic
potential of this imaginary material is equal to the summation
of the thermodynamic potential stored in all the UCs, which is

 =
∞∑

n=−∞

∫
�

U d�. (7)

In view of the fact that the infinitely many UCs form a
continuous heterogeneous material, we need to enforce the
continuity of the displacement field ui , the electric potential

3
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field φe and the magnetic potential φm on the interface between
adjacent UCs, which are

ui(n1, n2, n3; d1/2, y2, y3)

= ui (n1 + 1, n2, n3; −d1/2, y2, y3)

ui(n1, n2, n3; y1, d2/2, y3)

= ui (n1, n2 + 1, n3; y1,−d2/2, y3)

ui(n1, n2, n3; y1, y2, d3/2)

= ui (n1, n2, n3 + 1; y1, y2,−d3/2)

φe(n1, n2, n3; d1/2, y2, y3)

= φe(n1 + 1, n2, n3; −d1/2, y2, y3)

φe(n1, n2, n3; y1, d2/2, y3)

= φe(n1, n2 + 1, n3; y1,−d2/2, y3)

φe(n1, n2, n3; y1, y2, d3/2)

= φe(n1, n2, n3 + 1; y1, y2,−d3/2)

φm(n1, n2, n3; d1/2, y2, y3)

= φm(n1 + 1, n2, n3; −d1/2, y2, y3)

φm(n1, n2, n3; y1, d2/2, y3)

= φm(n1, n2 + 1, n3; y1,−d2/2, y3)

φm(n1, n2, n3; y1, y2, d3/2)

= φm(n1, n2, n3 + 1; y1, y2,−d3/2).

(8)

The smart heterogeneous materials considered here are
subjected to a uniform temperature deviation θ . Therefore,
the continuity condition for the temperature field between
adjacent UCs is automatically satisfied. The exact solution
of the present problem will minimize the summation of the
thermodynamic potential in equation (7) under the conditions
in equations (2) and (8). To avoid the difficulty associated with
discrete integer arguments, we can reformulate the problem,
including (5), (7) and (8) in terms of continuous functions
using the idea of a quasicontinuum [20]. The corresponding
formulae are listed below:

 =
∫
R

〈
1

2
εT Lε + εTηθ + 1

2
cv
θ2

T0

〉
dR (9)

εi j(x; y) = 1

2

[
∂ui(x; y)
∂y j

+ ∂u j(x; y)
∂yi

]
≡ u(i| j) (10)

Ei(x; y) = −∂φ
e(x; y)
∂yi

(11)

Hi(x; y) = −∂φ
m(x; y)
∂yi

(12)

and

ui(x1, x2, x3; d1/2, y2, y3)

= ui (x1 + d1, x2, x3; −d1/2, y2, y3)

ui(x1, x2, x3; y1, d2/2, y3)

= ui (x1, x2 + d2, x3; y1,−d2/2, y3)

ui(x1, x2, x3; y1, y2, d3/2)

= ui (x1, x2, x3 + d3; y1, y2,−d3/2)

φe(x1, x2, x3; d1/2, y2, y3)

= φe(x1 + d1, x2, x3; −d1/2, y2, y3)

φe(x1, x2, x3; y1, d2/2, y3)

= φe(x1, x2 + d2, x3; y1,−d2/2, y3)

φe(x1, x2, x3; y1, y2, d3/2)

= φe(x1, x2, x3 + d3; y1, y2,−d3/2)

φm(x1, x2, x3; d1/2, y2, y3)

= φm(x1 + d1, x2, x3; −d1/2, y2, y3)

φm(x1, x2, x3; y1, d2/2, y3)

= φm(x1, x2 + d2, x3; y1,−d2/2, y3)

φm(x1, x2, x3; y1, y2, d3/2)

= φm(x1, x2, x3 + d3; y1, y2,−d3/2).

(13)

Introducing Lagrange multipliers, we can pose the variational
statement of the micromechanical analysis of UCs as a
stationary value problem of the following functional:

J =
∫
R

{〈
1

2
εT Lε + εTηθ + 1

2
cv
θ2

T0

〉
+ λi(〈ui 〉 − vi )

+ λe(〈φ〉e − ψe)+ λm(〈φ〉m − ψm)

+
∫

S1

γi1[ui(x j; d1/2, y2, y3)

− ui (x j + δ j1d1; −d1/2, y2, y3)] dS1

+
∫

S2

γi2[ui(x j; y1, d2/2, y3)

− ui (x j + δ j2d2; y1,−d2/2, y3)] dS2

+
∫

S3

γi3[ui(x j; y1, y2, d3/2)

− ui (x j + δ j3d3; y1, y2,−d3/2)] dS3

+
∫

S1

α1[φe(x j; d1/2, y2, y3)

− φe(x j + δ j1d1; −d1/2, y2, y3)] dS1

+
∫

S2

α2[φe(x j; y1, d2/2, y3)

− φe(x j + δ j2d2; y1,−d2/2, y3)] dS2

+
∫

S3

α3[φe(x j; y1, y2, d3/2)

− φe(x j + δ j3d3; y1, y2,−d3/2)] dS3

+
∫

S1

β1[φm(x j; d1/2, y2, y3)

4
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− φm(x j + δ j1d1; −d1/2, y2, y3)] dS1

+
∫

S2

β2[φm(x j; y1, d2/2, y3)

− φm(x j + δ j2d2; y1,−d2/2, y3)] dS2

+
∫

S3

β3[φm(x j; y1, y2, d3/2)

− φm(x j + δ j3d3; y1, y2,−d3/2)] dS3

}
dR (14)

where λi , λe, λm, γi j , αi and βi are Lagrange multipliers
introduced to enforce the constraints in equations (2) and (13),
Si is the boundary surface normal to the coordinate yi , x j

represents the triplet of x1, x2, x3 and δi j is the Kronecker delta.
The main objective of micromechanics is to find the

microscopic field variables ui , φe and φm in terms of the
macroscopic field variables vi , ψe and ψm, which is a very
difficult problem because we have to solve this stationary
problem for each point in the global system xi as in
equation (14). It will be desirable if we can formulate the
variational statement posed over a single UC only. In view
of equations (2), it is natural to express the microscopic field
variables in terms of the macroscopic field variables plus the
differences, such that

ui (x; y) = vi (x)+wi (x; y)

φe(x; y) = ψe(x)+ we(x; y)

φm(x; y) = ψm(x)+wm(x; y)

(15)

with
〈wi 〉 = 0 〈we〉 = 0 〈wm〉 = 0 (16)

according to equations (2). The very reason that the
heterogeneous material can be homogenized leads us to believe
that wi , we and wm should be asymptotically smaller than
the corresponding macroscopic field variables vi , ψ

e and ψm.
Substituting equations (15) into (14) and making use of
equations (5), we can obtain the leading terms of the functional
as

J1 =
〈

1

2
ε∗T Lε∗ + ε∗Tηθ + 1

2
cv
θ2

T0

〉
+ λi 〈wi 〉 + λe〈we〉

+ λm〈wm〉 +
∫

S1

γi1

(
w+1

i −w−1
i − ∂vi

∂x1
d1

)
dS1

+
∫

S2

γi2

(
w+2

i −w−2
i − ∂vi

∂x2
d2

)
dS2

+
∫

S3

γi3

(
w+3

i −w−3
i − ∂vi

∂x3
d3

)
dS3

+
∫

S1

α1

(
we+1 −we−1 − ∂ψe

∂x1
d1

)
dS1

+
∫

S2

α2

(
we+2 −we−2 − ∂ψe

∂x2
d2

)
dS2

+
∫

S3

α3

(
we+3 −we−3 − ∂ψe

∂x3
d3

)
dS3

+
∫

S1

β1

(
wm+1 −wm−1 − ∂ψm

∂x1
d1

)
dS1

+
∫

S2

β2

(
wm+2 −wm−2 − ∂ψm

∂x2
d2

)
dS2

+
∫

S3

β3

(
wm+3 −wm−3 − ∂ψm

∂x3
d3

)
dS3. (17)

Here the superscript + j implies evaluate the quantity at y j =
d j/2, and − j implies evaluate the quantity at y j = −d j/2, for
example:

w
+ j
i = wi |y j=d j /2, w

− j
i = wi |y j=−d j /2

for j = 1, 2, 3

and

ε∗ = � ε∗
11 2ε∗

12 ε∗
22 2ε∗

13 2ε∗
23 ε∗

33

E∗
1 E∗

2 E∗
3 H ∗

1 H ∗
2 H ∗

3 �T (18)

along with

ε∗
i j = 1

2

(
∂wi

∂y j
+ ∂w j

∂yi

)
E∗

i = −∂w
e

∂yi

H ∗
i = −∂w

m

∂yi
.

(19)

Although it is possible to carry out the variation of
J1 and find the Euler–Lagrange equations and associated
boundary conditions for the unknown functions, which results
in inhomogeneous boundary conditions, it is more convenient
to use a change of variables to reformulate the same problem
so that the boundary conditions are homogeneous. Considering
the last nine terms in equation (17), we use the following
change of variables as

wi = y j
∂vi

∂x j
+ χi (x; y) we = yi

∂ψe

∂xi
+ ζ e(x; y)

wm = yi
∂ψm

∂xi
+ ζm(x; y)

(20)

where χi , ζ e and ζm are the fluctuation functions, satisfying the
following constraints in view of equations (2) when the origin
of the local coordinate system is chosen to be the center of the
UC:

〈χi 〉 = 0 〈ζ e〉 = 0 〈ζm〉 = 0. (21)

Substituting equations (20) into (14), we obtain a stationary
value problem of a functional defined over the UC for χi , ζ e

and ζm according to VAM [19], such that

J� =
〈

1

2
εT Lε + εTηθ + 1

2
cv
θ2

T0

〉
+ λi 〈χi〉 + λe〈ζ e〉

+ λm〈ζm〉 +
3∑

j=1

∫
S j

γi j(χ
+ j
i − χ

− j
i ) dSj

+
3∑

j=1

∫
S j

α j (ζ
e
+ j − ζ e

− j ) dSj

+
3∑

j=1

∫
S j

β j(ζ
m
+ j − ζm

− j) dSj (22)

5
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with

χ
+ j
i = χi |y j=d j /2, χ

− j
i = χi |y j =−d j /2

for j = 1, 2, 3

ζ e
+ j = ζ e|y j =d j /2, ζ e

− j = ζ e|y j=−d j /2

for j = 1, 2, 3

ζm
+ j = ζm|y j =d j /2, ζm

− j = ζm|y j =−d j /2

for j = 1, 2, 3.

The matrix ε can be expressed as

ε = ε̄ + ε1 (23)

with

ε̄ = � ε̄11 2ε̄12 ε̄22 2ε̄13 2ε̄23 ε̄33

Ē1 Ē2 Ē3 H̄1 H̄2 H̄3 �T

ε1 = � ε̂11 2ε̂12 ε̂22 2ε̂13 2ε̂23 ε̂33

Ê1 Ê2 Ê3 Ĥ1 Ĥ2 Ĥ3 �T

(24)

and

ε̄i j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)

Ēi = −∂ψ
e

∂xi
H̄i = −∂ψ

m

∂xi

ε̂i j = 1

2

(
∂χi

∂y j
+ ∂χ j

∂yi

)

Êi = −∂ζ
e

∂yi
Ĥi = −∂ζ

m

∂yi

(25)

ε̄ will be shown later to be the global multiphysics field
variable array containing the strain field, the electric field and
the magnetic field for the material with homogenized effective
material properties.

The functional J� in equation (22) forms the backbone
of the VAMUCH multiphysics micromechanics model. This
stationary value of this functional can be solved analytically
for very simple cases such as binary composites: however, for
general cases we need to use numerical techniques such as the
well-developed finite element method (FEM) to seek numerical
solutions.

3. Finite element implementation

It is not an efficient way to perform the FEM solution in light
of equation (22) because the Lagrange multipliers increase the
number of unknowns. In practice, this variational problem
can be equivalently formulated as minimizing the following
functional:

� = 1

�

∫
�

(
1

2
εT Dε + εTηθ + 1

2
cv
θ2

T0

)
d� (26)

under the following constraints:

χ
+ j
i = χ

− j
i , ζ e

+ j = ζ e
− j , and

ζm
+ j = ζm

− j for j = 1, 2, 3. (27)

The constraints in equations (21) do not affect the minimum
values of � but help uniquely determine χi , ζ e and ζm. We
actually constrain the fluctuation functions at an arbitrary node
to be zero and later use this constraint to recover the unique
fluctuation functions. The degrees of freedom of the nodes
on the positive boundary surface (i.e. yi = di/2) are slaved
to the nodes on the opposite negative boundary surface (i.e.
yi = −di/2). By assembling all the independent active degrees
of freedom (DOFs), we can implicitly and exactly incorporate
the constraints in equations (27).

Introduce the following matrix notation:

ε1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂y1

0 0 0 0
∂
∂y2

∂
∂y1

0 0 0

0 ∂
∂y2

0 0 0
∂
∂y3

0 ∂
∂y1

0 0

0 ∂
∂y3

∂
∂y2

0 0

0 0 ∂
∂y3

0 0

0 0 0 − ∂
∂y1

0

0 0 0 − ∂
∂y2

0

0 0 0 − ∂
∂y3

0

0 0 0 0 − ∂
∂y1

0 0 0 0 − ∂
∂y2

0 0 0 0 − ∂
∂y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ1

χ2

χ3

ζ e

ζm

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≡ �hχ

(28)
where �h is an operator matrix. The multiphysics fluctuation
vector χ can be discretized using finite elements as

χ(xi; yi) = S(yi)X (xi) (29)

with S representing the shape functions and X a column matrix
of the nodal values of the mechanical, electric and magnetic
fluctuation functions. Substituting equations (28) and (29)
into equation (26), the discretized version of the functional is
obtained as

� = 1

2�

(
X T EX + 2X T Dhε ε̄ + ε̄T Dεε ε̄

+ 2X T Dhθ θ + 2ε̄T Dεθ θ + Dθθ

θ2

T0

)
(30)

where

E =
∫
�

(�h S)T D(�h S) d� Dhε =
∫
�

(�h S)T D d�

Dεε =
∫
�

D d� Dhθ =
∫
�

(�h S)Tη d�

Dεθ =
∫
�

η d� Dθθ =
∫
�

cv d�.

Minimizing � in equation (30), we obtain the following
linear system:

EX = −Dhε ε̄ − Dhθ θ. (31)

The fluctuation function X in equation (31) is linearly
proportional to ε̄ and θ so that the solution can be written
symbolically as

X = X0ε̄ + Xθ θ. (32)

6
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Figure 2. Effective thermal expansion coefficients α∗
11 and α∗

33.

Table 1. Material properties of the composite constituents (BaTiO3,
CoFe2O4 and epoxy).

BaTiO3 CoFe2O4 Epoxy

C11 (GPa) 162 269.5 5.53
C12 (GPa) 78 170 2.97
C23 (GPa) 77 173 2.97
C22 (GPa) 166 286 5.53
C55 (GPa) 43 45.3 1.28
k11 (×10−9 C V−1 m−1) 12.6 0.093 0.1
k33 (×10−9 C V−1 m−1) 11.2 0.08 0.1
μ11 (×10−4 N s2 C−2) 0.1 1.57 0.01
μ33 (×10−4 N s2 C−2) 0.05 −5.9 0.01
e11 (C m−2) 18.6 0 0
e21 (C m−2) −4.4 0 0
e51 (C m−2) 11.6 0 0
q11 (N A−1 m−1) 0 699.7 0
q21 (N A−1 m−1) 0 580.3 0
q51 (N A−1 m−1) 0 550 0
α11 (×10−6 K−1) 6.4 10 54
α22 (×10−6 K−1) 15.7 10 54
α33 (×10−6 K−1) 15.7 10 54
cv (kJ m−3 K−1) 3193.62 2000 —

Substituting equation (32) into (30), we obtain the thermody-
namic potential density of the UC as

� = 1

2
ε̄T D̄ε̄ + ε̄Tη̄θ + 1

2
c∗
v

θ2

T0
(33)

with

D̄ = 1

�
(X T

0 Dhε + Dεε )

η̄ = 1

�

[
1

2
(DT

hεXθ + X T
0 Dhθ )+ Dεθ

]

c̄v = 1

�
[X T

θ DhθT0 + Dθθ ]

where ε̄ is a column matrix containing the global strains, global
electric fields and global magnetic fields; D̄ in equation (33)

Figure 3. Effective specific heat c∗
v .

is a 12 × 12 effective material matrix containing the effective
multiphysics material properties which can be expressed as

D̄ =
[

C∗ −e∗ −q∗
−e∗T −k∗ −a∗
−q∗T −a∗T −µ∗

]
(34)

η̄ is a 12 × 1 effective matrix containing the effective second-
order thermal stress tensor�∗

i j , the effective pyroelectric vector
p∗

i and the effective pyromagnetic vector m∗
i ; c̄v is the effective

specific heat. Note that the effective coefficients of thermal
expansion (CTEs) can be calculated as

α∗
i j = −(C∗

i jkl)
−1�∗

kl . (35)

Having obtained the effective multiphysics properties, we
can use these properties to carry out the macroscopic analysis
of the complete structure to predict the global multiphysics
behavior of the engineering system made of smart materials.
Sometimes, we also need the pointwise distribution of the
multiphysical fields within the microstructure. To this end, we
can carry out a recovery procedure based on the fluctuation
functions χ we have obtained in the micromechanical analysis
and the global behavior we predicted from the macroscopic
analysis. Specifically, we can recover the local fields,
such as local displacements, electric potential, magnetic
potential, stresses, electric displacements and magnetic flux
density in terms of the macroscopic behavior including the
global displacements vi , the global electric potential ψe, the
global magnetic potential φm, the temperature variation θ

and the global field variables contained in ε̄. First, the
fluctuation functions should be uniquely determined using the
constraints in equations (21). Then, we can recover the local
displacements, electric potential and magnetic potential using
equations (15) and (20) as

7
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Figure 4. Effective pyroelectric constant p∗
1 .

Figure 5. Effective pyromagnetic constant m∗
1.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1

u2

u3

φe

φm

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1

v2

v3

ψe

ψm

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎣

∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

∂ψe

∂x1

∂ψe

∂x2

∂ψe

∂x3
∂ψm

∂x1

∂ψm

∂x2

∂ψm

∂x3

⎤
⎥⎥⎥⎥⎥⎦

{ y1

y2

y3

}
+ S̄X .

(36)
Here S̄ is different from S due to the recovery of slave
nodes and the constrained node. The local strain field, the
electric field and the magnetic field can be recovered using
equation (23) along with equation (28) as

ε = ε̄ + �h S̄X . (37)

The local stress, the electric displacement field and the
magnetic flux density can be recovered straightforwardly using
the 3D constitutive relations for the constituent material as

σ = Lε + ηθ (38)

Figure 6. Contour plot of σ22 (GPa).

Figure 7. Contour plot of von Mises stress (GPa).

where σ is a column matrix containing 3D stresses, electric
displacements and magnetic flux density such that

σ = � σ11 σ12 σ22 σ13 σ23 σ33

−D1 −D2 −D3 −B1 −B2 −B3 �T (39)

where σi j , Di and Bi denote the stress tensor, the electric
flux density vector and the magnetic flux density vector,
respectively.

Although VAMUCH is implemented using the finite
element technique, it is not one of the finite-element-
analysis (FEA)-based micromechanics approaches and it is
dramatically different from FEA-based approaches, both in its
theory and its application, as pointed out in [21]. Nevertheless,
VAMUCH takes full advantage of the finite element technique
as far as efficiency and convenience concerned including the
versatile discretization capability for arbitrary microstructure,
a highly efficient linear solver, well-developed preprocessing
and postprocessing capabilities.

4. Numerical results

The predictive capability of the effective properties of
VAMUCH has been demonstrated using many examples [14].
In this section, we will use VAMUCH to predict the effective
elastic, piezoelectric, piezomagnetic, dielectric and magnetic
permeability, and electromagnetic coupling constants as well

8
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Table 2. Material properties of PZT-5 and polymer.

C11 (GPa) C12 (GPa) C23 (GPa) C22 (GPa) C44 (GPa) C66 (GPa)

PZT-5 111 75.2 75.4 121 22.8 21.1
Polymer 3.86 2.57 2.57 3.86 0.64 0.64

e11 e21 e51 k11 k33

PZT-5 15.8 −5.4 12.3 7.35 8.11
Polymer 0 0 0 0.079 65 0.079 65

Figure 8. Effective stiffness constants C∗
11 and C∗

22.

Figure 9. Effective stiffness constants C∗
12 and C∗

23.

as the coefficients of thermal expansion, pyroelectric and
pyromagnetic coefficients, and specific heat and recover the

distribution of the local fields.

Figure 10. Effective stiffness constant C∗
44.

Figure 11. Effective stiffness constant C∗
55.

4.1. Two-phase composites

In this section, the first example is a two-phase composite
composed of a CoFe2O4 piezomagnetic matrix reinforced by
BaTiO3 piezoelectric fibers which is an example extensively
investigated in [6, 9, 10]. The piezoelectric fibers are of circular
shape and arranged in a square array. Both constituents are

9
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Figure 12. Effective piezoelectric coupling constants e∗
11 and e∗

21.

Figure 13. Effective piezoelectric coupling constant e∗
51.

transversely isotropic with the axis of symmetry oriented in the
1 direction. The material properties of constituents are given in
table 1, which are taken from [6].

Figures 2 and 3 show the effective coefficients of thermal
expansion (CTEs) and specific heat varying with the volume
fraction of BaTiO3. It can be observed that the effective
transverse CTE α∗

22 and specific heat increase linearly with
respect to the volume fraction of fibers while the effective
axial CTE α∗

11 decreases linearly with respect to the volume
fraction of fibers. The effective pyroelectric and pyromagnetic
constants of the composite are illustrated in figures 4 and
figure 5, respectively, although they are absent in either of
the individual phases. It can be observed that these two
effective properties vary quadratically with respect to the
volume fraction of fibers and reach the minimum when the
volume fraction of the fiber is about 50%.

VAMUCH can also accurately recover the local distri-
bution of the field variables based on the macroscopic be-

Figure 14. Effective dielectric constant k∗
11.

Figure 15. Effective dielectric constant k∗
33.

havior. Figures 6 and 7 show the contour plots of the dis-
tributions of σ22 and von Mises stress within the UC with
a volume fraction of fiber (VOF) 20% induced by a macro-
scopic normal strain ε̄22 = 0.1%, macroscopic electric field
Ē2 = 100 V m−1 and 100 K uniform temperature arising from
a stress-free state. It is pointed out that it is very difficult, if not
impossible, to predict the local fields corresponding to a macro-
scopic state with combined macroscopic field variables using
a finite-element-analysis-based micromechanics approach be-
cause different field variables require different sets of bound-
ary conditions, while VAMUCH has no such difficulty and one
can simultaneously prescribe all the field variables including
mechanical displacements, electric potential, magnetic poten-
tial, strain field, electric field, magnetic field and temperature
field because no boundary conditions on the macroscopic field
variables are needed.

The second example is a piezoelectric fiber-reinforced
polymer matrix composite which is extensively investigated

10
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Figure 16. Unit cell of a three-phase composite.

Figure 17. Effective stiffness coefficients.

in [22, 23]. The cylindrical PZT-5 fibers are distributed
in a square array in a polymer matrix. The material
properties of both components are shown in table 2, which
are taken from [23]. The units of these properties are:
elastic constants (GPa), piezoelectric constants (C m−2) and
dielectric constants (10−9 F m−1). The effective properties
of the composites predicted by VAMUCH are compared with
those calculated by the two-scale asymptotic homogenization
method (AHM) [16, 24, 25] and finite element analysis. A
brief description of the finite element analysis and AHM are
given in [22]. All effective coefficients are calculated for
six different volume fractions of fibers (0.111, 0.222, 0.333,
0.444, 0.556 and 0.667). We found out that the results of
VAMUCH are almost the same as those of finite element
analysis in [23] so that we only plot the variation of effective
properties with the volume fraction of fibers computed by
VAMUCH and AHM in figures 8–15. It can be seen that the

Figure 18. Effective dielectric permittivity.

results of both approaches have excellent agreement for most
of the effective properties, except the prediction of C∗

44 and
C∗

23 having significant differences at high volume fraction of
fibers. As pointed out in [23], this is mainly due to the assumed
transverse isotropy on which the analytical solution of AHM is
based. It is noted that the AHM results are directly taken from
the tabulated data in [22].

4.2. Three-phase composites

The three-phase electro-magneto-elastic composite considered
consists of an elastic epoxy matrix reinforced with piezoelec-
tric (BaTiO3) and piezomagnetic fibers (CoFe2O4). The piezo-
electric fiber is of circular shape and at the center of the unit cell
while the piezomagnetic fibers in the shape of quarter squares
are located at the four corners of the UC as shown in figure 16.
The material properties of the three constituents are listed in
table 1. Figures 17–26 show the variation of the effective prop-
erties of composites with respect to the volume fractions of the
piezoelectric fibers (BaTiO3) when the matrix volume fraction
is fixed at 0.5.

As one can observe from figure 17, the effective stiffness
coefficient C∗

11 decreases slightly with respect to the volume
fraction of piezoelectric fibers while other stiffness coefficients
including C∗

12, C∗
22 and C∗

44 remain almost the same. One
reason is that the elastic moduli of piezoelectric fibers are
similar to those of piezomagnetic fibers and the total volume
fraction of these two fibers remains fixed.

As one can observe from figure 18, the effective axial
dielectric permittivity k∗

11 increases significantly with respect
to the volume fraction of piezoelectric fibers while the
effective transverse dielectric permittivity k∗

22 remains almost
invariant with respect to the change of the volume fraction
of piezoelectric fibers. A similar trend is found in effective
piezoelectric coefficients, as shown in figure 19. It seems only
e∗

11 is significant and the other piezoelectric coefficients are
almost negligible.

11
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Figure 19. Effective piezoelectric constants.

Figure 20. Effective magnetic permeability.

As one can observe from figure 20, the effective axial
magnetic permeability μ∗

11 decreases significantly with respect
to the volume fraction of piezoelectric fibers while the
effective transverse magnetic permeability μ∗

33 remains almost
invariant with respect to the change of the volume fraction
of piezoelectric fibers. A similar trend is found in effective
piezomagnetic coefficients, as shown in figure 21. However,
except that q∗

11 decreases with respect to the volume fraction
of piezoelectric fibers, q∗

12 also decreases slightly and q∗
51 is

negligible.
Figure 22 shows the distribution of the effective CTEs.

One can observe that the effective transverse CTE α∗
33 is almost

three times the axial CTE α∗
11 although both of them only

change slightly with respect to the volume fraction of the
piezoelectric fibers.

Figure 21. Effective piezomagnetic constants.

Figure 22. Effective CTEs.

We also find out that this composite has some new
material properties which are not available in any of its
constituents but are generated due to the interplay of
different phases. For example, this composite has significant
electromagnetic coupling along both the axial direction and the
transverse direction. The maximum electromagnetic coupling
is generated when the volume fraction is around 25%, as shown
in figures 23 and 24. Some new couplings between the thermal
field and the electromagnetic field represented by pyroelectric
coefficients and pyromagnetic coefficients are also generated
as shown in figures 25 and 26.

5. Conclusion

The variational asymptotic method has been used to construct
a fully coupled micromechanics model for prediction of

12



Smart Mater. Struct. 18 (2009) 125026 T Tang and W Yu

Figure 23. Effective electromagnetic constants a∗
11.

Figure 24. Effective electromagnetic constants a∗
33.

effective properties of smart composites which could be
responsive to thermal, electric, magnetic and mechanical
fields. This multiphysics micromechanics model not only
predicts the complete set of effective multiphysics properties
but also accurately recovers the distribution of the local
fields. Its theoretical derivation invokes two basic assumptions
associated with the micromechanics concept. It has been
implemented in the computer program VAMUCH using the
finite element technique so that it can model microstructures
with any number of phases with arbitrary geometry. It provides
a versatile tool for the design and analysis of smart composite
materials to engineer the microstructure for desirable material
properties.

Figure 25. Effective pyroelectric coefficients p∗
1 .

Figure 26. Effective pyromagnetic coefficients m∗
1.
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