

CAVS REPORT
MSU.CAVS.CMD.2009-R0008

Towards the robustness of high-performance
execution of multiscale numerical simulation
codes hosted by the Cyberinfrastructure of
CAVS @ MSU

Project: MFERD/ICME/SRCLID
Project Leaders: Paul Wang, Mark Horstemeyer
Task 2: Cyberinfrastructure
Task 2 Leader: Tomasz Haupt
Task 2 Members: Ricolindo L. Carino, Anand Kalyanasndara, Florina M. Ciorba
External Collaborator: Ioana Banicescu

Prepared by Florina M. Ciorba
Center for Advanced Vehicular Systems
Mississippi State University
Mississippi State, MS 39762

Web site: http://www.cavs.msstate.edu

For public release.

http://www.cavs.msstate.edu/�

TABLE OF CONTENTS

1. Background ... 3

2. Introduction ... 11

3. Overview of DLS methods ... 14

3.1. Equal speed processors with known μj and σ2
j

3.2. Weighted processors speeds with known μ

 ... 15

j and σ2
j

3.3. Weighted & adapted processors speeds with known μ

 ... 16

j and σ2
j

4. Hierarchical management system model .. 17

 .. 16

5. Robustness – definition .. 20

6. Designing robustness metrics using FePIA ... 22

6.1. Towards robust DLS algorithms ... 23

6.2. Robustness of DLS against perturbations in system load ... 25

6.3. Robustness of DLS against resource failures .. 31

7. Notes on the usefulness of the proposed metrics .. 35

8. Computational cost analysis .. 38

9. Conclusions and directions for future work .. 40

Acknowledgments ... 41

References ... 41

Appendix – Paper accepted at ISPDC 2009 ... 44

1. Background

The creativity of researchers is hampered by the intimidating complexity of computational sys-

tems (shared memory systems, distributed memory systems, single processor machines, multiple

processors or multicores machines) and disciplines (physics, materials science, and solid mechan-

ics), heterogeneity and multidisciplinary nature of the simulation codes, as well as the dispersion

of codes, data, and information. Moreover, the rapid development of computer technology and

commercial simulation tools has enabled researchers to solve more complex problems, as well as

to obtain more details to enhance knowledge. The increased complexity has, however, increased

significantly the computational cost, which in turn prevents scientists and engineers from combin-

ing the simulation tool with an optimization method, which is an iterative procedure that requires

hundreds, or even thousands, of simulations to perform one design. In order to exploit the recent

transformative research in materials science at the Center for Advanced Vehicular Systems at the

Mississippi State University (involving multiscale physics-based predictive modeling, multiscale

experiments and design), it is imperative to create a cyberinfrastructure that provides the necessary

support in an effective and efficient manner.

In the framework of Task 2 of the DOE SRCLID research project, the main objective of the

cyberinfrastructure of CAVS @ MSU (Figure 2) is to develop a computational infrastructure sup-

porting the multidisciplinary design optimizations. The cyberinfrastructure will result in the devel-

opment of a ”community of practice” portal that allows the development and integration of mul-

tiscale physics-based materials models, multiscale experiments, and design for selected properties

and processes. The advent of large-scale computing systems organized into cyberinfrastructures

enables the emergence of new classes of applications (e.g. large and very large scale simulations),

which need to be handled carefully in order to harness efficiently the full capabilities of these re-

sources. Moreover, the large-scale computing systems are unstable computing environments sub-

ject to multiple sources of uncertainties, have a high management complexity, and are comprised

of computing resources of various types, quantity and availability. Therefore a successful cyber-

infrastructure will need to manage effectively and efficiently the large-scale computing resources,

provide mechanisms for efficient resource discovery (hardware, software and data), employ meth-

ods for flexible and reliable workflow allocation, and seamlessly integrate simulation programs

(including multiphysics and multiscale simulations with uncertainty), CAD/CAE tools and various

functional components, such as design of experiments, metamodeling, and design optimization.

The sequence of operations associated with using the material models, experiments and sim-

ulation programs via the cyberinfrastructure portal (CI-P) for the purpose of designing advanced

materials with selected properties, can be modeled and represented by workflows. The CI-P is

intended to be a multi-user portal, which will enable access of multiple users at a time. This will

result in multiple workflows that will need to be handled simultaneously. Many software systems

exist to support workflows in particular domains. Such systems manage tasks such as resource

discovery, partially automated processing and integration between different functional software

applications and hardware systems that contribute to the successful management of the underlying

workflows. The cyberinfrastructure system will have to manage two types of workflows (Figure 1):

service workflows (the sequences of operations performed via web services of the cyberinfrastruc-

ture portal) and scientific workflows (the sequences of steps performed for solving the scientific

application of interest). Both types of workflows can be hierarchical - allowing complex tasks to be

composed of simpler components. A scientific workflow is a combination of data and processes into

a structured set of steps (sequential or repetitive), that implement semi-automated computational

solutions of a scientific problem. Scientific workflows require support for large data flows, execu-

tion monitor and control (including workflow ad-hoc changes), execution in dynamic environments

where resources are not know a priori and may need to adapt to unforeseen changes, parameterized

and hierarchical execution of scientific applications tasks, with sub-workflows that can be created

and destroyed as necessary, as well as support services for integration on large-scale computing

systems (grid portals, web portals, autonomic computing systems). The scientific workflows have

science domain specific requirements, such as materials science, physics, biology, etc.

Figure 1. Workflows managed by the cyberinfrastructure

The cyberinfrastructure will enable the autonomous execution of multiple complex scientific

workflows on the high-performance computing resources it manages, while satisfying a set of

desired goals (in the context of Task 2.3 - Develop and deploy services for remote resource al-

locations and services for accessing remote file systems and databases). To ensure the autonomous

execution of multiple complex computational workflows, advanced methods for scheduling, al-

location and management are required. These methods must feature the following properties:

(1) self-optimization (adaptive scheduling in high-performance heterogeneous distributed environ-

ments and adaptive resource management), (2) self-healing (robustness through monitoring of re-

source availability, fault detection and recovery, and conditional workflows), (3) self-protection

(context-sensitive security), and (4) self-configuration (automatic detection of new hardware, soft-

ware, and data components).

The design of the cyberinfrastructure will enable it to accommodate multiple users concurrently,

each of which may desire to use a different range of services, and their individual goals may be

competitive against the goals of the other users. The management of high-performance computing

resources (onto which the services selected by the users – translated into jobs – are deployed for fast

serial or parallel execution) must employ fairness such that the system-wide goals, as well as each

individual user’s goals, are satisfied. The system-wide goals can be complex, multidimensional

and conflicting, and such goals are characteristic particularly to autonomic computing systems.

The high-performance computing system managed by the cyberinfrastructure, in conjunction with

the self-optimization, self-healing, self-protection and self-configuration properties, actually form

an autonomic high-performance computing system, or autonomic computing system, for short,

as illustrated in Figure 3. Due to these properties, autonomic computing systems (ACS) become

Figure 2. The vision - the cyberinfrastructure of CAVS @ MSU will integrate distributed
databases of engineering knowledge and computational workflows for multi-objective,
multiscale design optimizations under uncertainty.

capable of dealing with uncertain and shifting operating conditions that can be known only at

runtime.

The research work in this report addresses the ‘self-optimization’ (flexible workflow schedul-

ing methods capable of adapting to changes in the resources’ availability and capability) and

‘self-healing’ (reliable workflow scheduling methods capable of recovering from failures) proper-

ties of the cyberinfrastructure autonomic computing system (cyber-ACS). The goal of this research

work is to employ state-of-the-art workflow scheduling methods, to enable the autonomous execu-

Figure 3. Cyber-ACS: the cyberinfrastructure autonomic computing systems – charac-
teristics and issues

tion of multiple complex computational workflows, while meeting the system-wide set of desired

goals. Towards achieving this research goal, a theory of robustness for such methods is needed,

including definitions and analyses of robustness, diversity, redundancy, and optimality and their

relationship to one another [11]. The research work in this report is the first step towards a ro-

bustness theory for autonomic complex workflow scheduling methods for high-performance

multiscale numerical methods.

In order to formulate a robustness theory for workflow scheduling methods on the cyber-ACS,

we begin defining the possible causes (and their source) responsible for the computational per-

formance degradation of executing such complex scientific workflows. In this work we focus

on enabling the flexible and reliable execution of scientific workflows, and the fishbone diagram

illustrated in Figure 4 identifies multiple causes impacting the flexibility and reliability of their

execution, having the ultimately the same effect - degradation in the computational performance.

Figure 4. The relationships between the multiple causes and their effect on the com-
putational performance of the execution of scientific workflows

With regards to the scientific workflow scheduling methods, in this work we focus on dynamic

loop scheduling (DLS) methods, which have been demonstrated to be a powerful approach to-

wards improving the performance of scientific and engineering applications, expressed as complex

workflows, via load balancing. DLS methods provide application-level load balancing of repetitive

computations, expressed as loop iterates, with the goal of maximizing application’s performance

on the underlying system. These methods use performance information about the application exe-

cution (for which irregularities change over time) at run-time. In addition, many DLS methods are

based on probabilistic analyses, and therefore account for unpredictable variations of application-

and system-related parameters. Scheduling scientific and engineering applications in large-scale

distributed computing systems (possibly shared with other users, as in the case of the cyberinfras-

tructure) makes the problem of scheduling complex workflows, with the goal of achieving the best

possible performance, all the more challenging. Therefore, a hierarchical approach is needed for

obtaining satisfactory performance using DLS.

The distributed, heterogeneous and shared nature of the computational resources managed by

the cyberinfrastructure, greatly increases the chances of failures (such as processor or link failure)

occurring during the execution. In this report, we present the theoretical results of investigating the

robustness of three hierarchical DLS methods (FAC, WF and AWF), for scheduling applications

expressed as irregular computational workflows in large-scale heterogeneous distributed systems,

with respect to variations of two system parameters: load and resource failures. In this work, our

focus is to devise robustness metrics for a class of hierarchical task scheduling algorithms, for a

class of applications as well. Using a general methodology proposed by other researchers for devis-

ing robustness metrics, we propose two robustness metrics for three hierarchical DLS algorithms.

These metrics will be used in conjunction with the hierarchical DLS methods, to provide quantita-

tive and qualitative information such as: performance level, correctness and quality of execution,

of scientific applications expressed as complex workflows, in large-scale heterogeneous systems,

such as the cyber-ACS.

2. Introduction

The advent of large-scale computing systems enabled the emergence of new classes of applica-

tions, in order to harness the great capabilities of these resources. Researchers and scientists from

various fields are interested in the accurate modeling and simulation of various complex phenom-

ena. These phenomena are of great importance for the validation and calibration of new theoretical

simulation models at different length scales, in areas such as mechanics, materials, physics, chem-

istry, biology, applied mathematics, and others. These simulations are often routines that perform

repetitive computations (in the form of DO/FOR loops) over very large data sets, which if not

properly implemented, may become a bottleneck for advancing the research in deriving new state-

of-the-art models. The number of repetitive computations (iterations) in these codes is not always

constant. Moreover, their nature (or computational requirements) may be irregular, in the sense that

one computation may take more time than others, depending on the simulation. The resources in

a large-scale system are widely distributed and highly heterogeneous. Consequently, they are usu-

ally shared among multiple users, and their availability cannot always be guaranteed or predicted.

Hence, the quality and quantity of resources available to a single user changes continuously.

In this work, dynamic loop scheduling (DLS) techniques are considered to be the key solution for

achieving and preserving the best performance of these applications in such environments. Herein,

it is considered that a ‘loop iteration’ (or a chunk of loop iterations) with variable execution time

refers to a ‘task’ (or a chunk of tasks, among many others within a loop of tasks) with variable

execution time. A considerable number of static and dynamic loop scheduling algorithms has

been proposed for parallel loops, for loops with dependencies, as well as for loops with regular or

irregular execution times per iteration, respectively. The use of static scheduling algorithms has

been limited, due to the fact that nowadays computing systems can be variably loaded, rendering

the initial assumptions of a static schedule invalid. A large number of DLS techniques have been

developed over time. A comprehensive description has been given earlier in a survey by Hurson et

al. in [6] and in the relevant literature after that.

Dynamic loop scheduling methods provide two alternative approaches, non-adaptive and adap-

tive, for achieving a good load balancing on variably loaded resources, as well as for executing

tasks with varying execution times. Most of the techniques described in [6] are based on proba-

bilistic analyses and are non-adaptive. Other non-adaptive techniques that were not mentioned in

the survey above include fractiling [4] and weighted factoring [5]. Subsequent efforts gave birth

to more elaborate techniques, called adaptive, and a few examples are given in [9][12][17]. Most

of the above adaptive methods are based on probabilistic analyses, and use a combination of run-

time information about the application and the system, in order to predict the system capabilities

for the next computational assignments, or to estimate the time future tasks will require to finish

execution, in order to achieve the best allocation possible for optimizing application performance

via load balancing. In this paper, we concentrate on two non-adaptive techniques, factoring [3]

(FAC) and weighted factoring [5] (WF), and one adaptive technique, adaptive weighted factoring

[10] (AWF). The techniques considered herein use probabilistic analyses to dynamically compute

the size of chunks at run-time, such that they are executed before their optimal time with high

probability.

Motivation Scheduling applications on large-scale shared environments makes the task of devis-

ing appropriate DLS methods quite challenging. The challenge is even higher on large-scale hetero-

geneous systems, where chances of faults (for example processor/link failure) are high. Therefore,

a viable DLS-based solution should employ an approach based on hierarchical management and

mechanisms to ensure their robustness. The choice of considering the three FAC, WF and AWF

DLS methods is due to the fact that they are inherently robust, because they are designed in such a

way to address unpredictabilities in the application and the system. Until recently, the robustness

of resource allocations or task scheduling algorithms was addressed individually for a single re-

source allocation algorithm, or a single task scheduling method, or even a single application. Ali et

al. [18], proposed a general methodology for devising robustness metrics for resource allocations.

The goal of this work is to use this general methodology for devising robustness metrics for a class

of task scheduling algorithms, and possibly for a class of applications as well.

Contribution In order to extend the scalability of the three DLS methods (FAC, WF and AWF)

to large-scale heterogeneous platforms, we propose using processor groups as the hierarchical

management approach. Hierarchical DLS methods based on processor groups have been shown

to achieve better performance than centralized DLS methods [13][14][16]. Furthermore, in the

hierarchical approach, the groups of processors are dynamically selected such that the physical

structure of the underlying execution environment is well and easily captured. This leverages the

best possible performance of the application on the large-scale platform. As a first step towards

devising mechanisms for robust DLS, we propose two robustness metrics to quantify the robust-

ness of the FAC, WF and AWF algorithms against variations of two system related parameters:

load and resource failures. The main contribution of our work is using the methodology proposed

by Ali et al. [18] to propose these two robustness metrics for three hierarchical DLS algorithms,

which can be used to schedule a very important and large class of applications: those that have

irregular tasks (expressed as irregular workflows). These metrics are used in conjunction with the

hierarchical DLS methods to provide quantitative and qualitative information regarding the level of

performance, and the quality of execution for executing such applications in uncertain large-scale

heterogeneous systems. The standalone metrics are no better than any other performance mea-

surement metrics (e.g. makespan, communication cost, resource utilization). However, their use

is mandatory towards achieving robustness for the hierarchical DLS algorithms running on such

uncertain systems.

3. Overview of DLS methods

FAC, WF and AWF are intended for serial applications that contain straightforward parallel

loops (1-d loops) or nested parallel loops (2-d loops), as illustrated in Figure 5, using Fortran 90

notation. Each loop iterate (iteration) is considered to be a task. Parallel loops have no depen-

a) 1D-loop
...
DO I=1,N
... I-ITERATE
END DO
...

b) 2D-loop
...
DO J=1,M ! J-LOOP
... PART A OF J-ITERATE
DO I=1,N(J) ! I-LOOP
... I-ITERATE of J-ITERATE
END DO ! I
... PART A OF J-ITERATE
END DO ! J

Figure 5. Target applications model

dencies among their iterates, which can be executed in any order or even simultaneously without

affecting the correctness of the computations.

Assuming a total of N tasks and P processors, let Tj be the execution time of task ai on proces-

sormj . We assume that Tj (1 ≤ i ≤ N and 1 ≤ j ≤ P) are independent random variables (i.r.v.),

and we further assume that Tj are identically distributed (i.d.) for all tasks executed on processor

mj . Denote the mean and the variance of Tj by µj and σ2
j , respectively. Then, the average execu-

tion time ETj(k) of a chunk size of k tasks by processor mj is kµj , with standard deviation
√
kσj .

When the chunk size k is large, by the Central Limit Theorem, we may treat the execution time as

a normal random variable. The execution time of a batch of P chunks of size kj (1 ≤ j ≤ P) tasks

by processors m1, . . . ,mP is the largest order statistic max{Tj(kj), 1 ≤ j ≤ P}. The optimal

execution time for the N tasks is: Topt = k1µ1 = . . . = kPµP , with k1 + . . . + kP = N . The

optimal time can be achieved only if the task execution times are nonrandom.

Based on the processor speeds and knowledge of the mean and variance of task execution times,

the DLS methods considered herein can be distinguished as follows.

3.1. Equal speed processors with known µj and σ2
j

The tasks’ execution times are independent identically distributed random variables (i.i.d.r.v.)

with known µj and σ2
j , regardless of which processor executes them. FAC [3] was devised for this

situation. In FAC, the tasks are scheduled in batches, where the size of a batch is a fixed ratio of the

unscheduled tasks, and the batch is divided into P equal size chunks. The ratio is determined from

a probabilistic analysis such that the resulting chunks have a high probability of finishing before

the optimal time.

3.2. Weighted processors speeds with known µj and σ2
j

In most situations, it is unrealistic to assume that all processors have equal speed. Therefore,

the execution time of a task for different processors will have different µj and σ2
j . The execution

times of all tasks are independent random variables (i.r.v.), but not identically distributed unless

they are executed by the same processor. WF [5] was devised for this situation, and incorporates

information about the relative processor speeds in computing chunk sizes, where these speeds are

assumed to be fixed throughout the execution of the loop.

3.3. Weighted & adapted processors speeds with known µj and σ2
j

A number of methods that generate adaptive size chunks have evolved from FAC and WF. The

requirement for the processor speeds in WF is relaxed in AWF, a method developed to be utilized

in time stepping applications [10] (and references therein). In AWF, the processor weights are

initially set to unity for the first time step. The execution times of chunks during a time step are

recorded, and the data is used to adapt the processor weights at the end of each time step. The

AWF, however, does not adapt to any load imbalance that occurs during the current step.

Generally, the goal of all DLS methods is minimizing the total execution time, TPAR. The

total execution time given by a DLS that uses dynamic load balancing is expressed as the finishing

time of the processor executing the last task. Mathematically, assuming ET j to be the finishing

time of all tasks ai executed by processor mj , the total parallel execution time can be written as:

TPAR = max(ET j , 1 ≤ j ≤ P) (1)

TPAR is minimized when the coefficient of variation (c.o.v.) of all processor finishing times is

very low. The c.o.v. is defined as: c.o.v. =
σET j

Ej
with Ej the mean of these times and σET j

their variance. A c.o.v. ratio close to 0 indicates that all processors have similar finishing times,

suggesting a good load balancing, whereas a ratio closer to 100% indicates a high variability of

the finishing times, suggesting an unbalance in the computational loads that could stem from the

non-uniformity of task execution times, variation of processors load, and/or other forms of system

interference during the parallel execution.

4. Hierarchical management system model

Most loop scheduling methods are developed assuming a central ready work queue of tasks

(central management approach), where idle processors obtain chunks of tasks to execute. This

approach is ideally suited for shared memory architectures. On message-passing distributed sys-

tems, however, these methods are implemented using a foreman-worker strategy. The scheduling

decisions are centralized in the foreman, but since there is no centralized memory, the work queue

of tasks may be replicated on all processors, or partitioned among the processors. In either case,

accessing the foreman may become a bottleneck when a large number of workers attempt to simul-

taneously communicate with it. A well-known disadvantage of centralized approach, especially for

message-passing systems, is its limited practical scalability as the number of processors increases.

To address this bottleneck, a useful modification of the centralized strategy, especially for par-

allel applications with a large amount of communication requirements, is using a partition of the

processors into disjoint processor groups, which concurrently execute independent parts of the

problem while interacting if, and when, necessary. This two-level (hierarchical) programming

strategy is achieved by utilizing multiple-foremen (see Figure 2).

The performance of DLS methods based on the hierarchical management approach has been

shown to be better than that of the centralized management approach [13][14][16]. In the multiple-

foremen strategy, the processors of a group are dynamically selected such that the physical structure

of the underlying platform is well and easily captured. For instance, disjoint groups of processors

may correspond to disjoint clusters (or grid sites), and their size are determined by the clusters’

(or grid sites’) sizes. This dynamic group formation assists the DLS methods to leverage the best

possible application performance on the large-scale platform.

In the hierarchical management approach, the set of N processors are initially divided into

processor groups, the group sizes being chosen to match the degree of concurrency exhibited by

the target application, as well as the structure of the underlying platform. A large application may

require hundreds of processor groups, and a processor group may contain hundreds of processors.

The processors may join and leave the groups voluntarily, or because failures (processor/link) have

occurred. Each group executes the foreman-worker strategy on a specified number of application

tasks (see Figure 6). All groups execute the multiple-foremen strategy in order to execute all tasks

of the target application (see Figure 2). Each foreman processor maintains for its group, the ratio

of the cost of remaining tasks to the number of worker processors, and periodically reports the

ratio to a manager processor (designated at group formation). The frequency of reporting these

ratios to the manager depends on the DLS method used. Upon detecting large differences in the

reported ratios, the manager initiates the transfer of workers between groups to balance the ratios

(see Figure 2 - right), while remaining truthful to the underlying architecture. In the hierarchical

management setting, DLS is accomplished via load balancing at each of the two levels: foreman-

worker and multiple-foremen. A more elaborated description of the interactions and coordination

of processors using the hierarchical management setting is given in [13].

Figure 6. Centralized management system

Figure 7. Hierarchical management system

5. Robustness – definition

Robustness is an emergent multifaceted phenomenon in advanced computing systems. Depend-

ing on the context, the term ‘robustness’ can refer to software robustness (e.g. operating system,

API), system robustness (e.g. embedded systems), scheduling robustness (e.g. resource allocation),

algorithm robustness (e.g. computational algorithms, scheduling algorithms) etc.

The multitude of aspects of robustness, yielded many definitions. It is very difficult (if even

possible) to include all these aspects in one universally valid definition. Nevertheless, for resource

allocations Ali et al. gave the following definition in [18]: “A resource allocation is defined to be

robust with respect to specific system performance features against perturbations (uncertainties)

in specified system parameters if degradation in these features is constrained when limited per-

turbations occur.” This is the closest to application scheduling definition of robustness we could

find.

In the last decade, a trend has emerged towards the design of robust methods for resource allo-

cation, application scheduling, etc. However, another similar trend, that appeared approximately

at the same time, concerns the design of methods that address the issues of fault-tolerance and

resilience [20][21] (and references therein). Even though the robustness of various resource alloca-

tions and scheduling algorithms has been the focus of many researchers in the past years, it is still

considered to be an emergent property leaving room for much research in the years to come. This

is also supported by the multitude of factors that reflect or impend the robustness of such methods.

We are interested in finding the answer to the following question “What is the difference be-

tween robustness and fault-tolerance?” There is no clear distinction between the two research

trends. Following a careful overview of the existing literature in both trends: robustness and fault-

tolerance/resilience in the context of resource allocation and scheduling algorithms, as well as other

studies on the robustness of complex [1] or immune [19] systems, we reached the conclusion that

the concepts of ‘fault-tolerance’ and ‘resilience’ are encompassed by the more generic concept of

‘robustness’. The relationship between the two trends, as given by Gribble in [1]: “complex systems

(in our case advanced scheduling algorithms) must expect failures and plan for them accordingly.”

comes to support our conclusion above. In addition, the statement from [18]: “... the flexibility of a

resource allocation ... is described as the quality of the resource allocation that can allow it to be

changed easily into another allocation of comparable performance when system failures occur.”

is yet another illustration of the connection between robustness and fault-tolerance, particularly

for resource allocations. Hence, we can safely infer that the flexibility of a scheduling algorithm

reflects its robustness against unpredictable failures in the system.

There are several generic guidelines towards the design of robust methods, regardless of the

parameters whose perturbations (uncertainties) have to be asserted. Although some of these guide-

lines are not specifically intended for resource allocations or scheduling algorithms, they are still

applicable in these contexts. One such illustrative guideline given in [1], suggests to avoid design-

ing systems that attempt to gain robustness only by means of predictable information, as they will

be prone to fragility.

Designing specifically for robustness, to its full extent, is however not yet possible. Designing a

scheduling algorithm with the goal of achieving robustness gives no guarantee that the algorithm is

more robust than an algorithm designed without that goal. Robustness benchmarks (or metrics) can,

therefore, be useful to measure how a scheduling method reacts to possible erroneous inputs or en-

vironmental factors. Accordingly, robustness metrics should employ mechanisms for detecting and

identifying such erroneous parameters. Ultimately, such metrics can be very useful and efficacious

for estimating the robustness of the method of interest against certain perturbation parameters. In

this work we focus on designing robustness metrics that model and estimate the robustness of DLS

algorithms on large-scale realistic platforms against various perturbation parameters.

6. Designing robustness metrics using FePIA

This section describes a general methodology for designing robustness metrics for scheduling

algorithms. The target systems are large-scale and consist of distributed and heterogeneous pro-

cessing resources. We use the FePIA (features-perturbation-impact-analysis) procedure [18] (and

references therein) for deriving metrics that model and estimate the robustness of three DLS al-

gorithms against various perturbation parameters. The FePIA procedure consists of four general

steps:

Step 1. Identify the performance features. Describe quantitatively the requirements that make

the algorithm robust: determine the performance features (e.g. makespan, average execution time

per processor or per task) that should be limited in variation to ensure that the robustness require-

ment is met.

Step 2. Identify the perturbation parameters. Determine all uncertainty parameters (application,

system or environment related) whose values may impact the performance features selected in Step

1.

Step 3. Identify and clarify the impact of perturbation parameters (in Step 2) on performance

features (in Step 1).

Step 4. Identify the analysis to determine the robustness. Determine the smallest collective

variation in the values of perturbation parameters identified in Step 2, which will cause any of

the performance features identified in Step 1 to violate their corresponding acceptable variation,

i.e., determine the robustness radius for each type of impact determined in Step 3. This gives

the collective degree of robustness (as the minimum of all robustness radii) of the DLS algorithm

against the parameters selected in Step 2.

6.1. Towards robust DLS algorithms

We outline here the proposed approach for DLS-based task scheduling on large-scale platforms

using hierarchical management. The N tasks are assumed to be independent. The goal is schedul-

ing these tasks onto the set of P processors of the large-scale heterogeneous distributed system,

while minimizing the total parallel execution time (or makespan) TPAR. A minimum TPAR is

achieved via dynamic load balancing, using processor speeds (which in the case of AWF are peri-

odically adapted) and hierarchical management. Each processor in a group executes a set of tasks

(called chunk) at a time. Each task is executed in a non-preemptive fashion, i.e., no other tasks

of higher priority will suspend it. The same holds for the execution of a chunk, or for all chunks

during a single time-step. Table 1 summarizes the notations we used in the following sections.

We define the performance features of interest for the three DLS algorithms: the processors

N total number of tasks
N resch # of tasks that need to be rescheduled
ai i-th task, 1 ≤ i ≤ N
P total number of processors
mj j-th processor, 1 ≤ j ≤ P
Tj execution time of task ai on mj

TW2F
ij communication time between mj and its

foreman for executing ai
TW2W
ij communication time between mj and any other

workers for executing ai (processor regrouping)
ET j finishing time of all tasks computed by mj

TPAR total parallel execution time for the N tasks
λ = [λ1 . . . λP]T vector of processors load (= system load)
F = [f1 . . .FP]T resources status vector (active/failed)
Φ = {φ1, . . .} set of performance features
Π = {π1, . . .} set of perturbation parameters
τ1, τ2, τ3 tolerance factors for performance features
rDLS(,) robustness radius
ρDLS(,) robustness metric

Table 1. Notation

finishing time, ET j , the total parallel time, TPAR, and the number of tasks that need to be resched-

uled, Nresch. These performance features should be limited in variation under certain applica-

tion, system or environment related parameters perturbations. In the context of DLS, the pertur-

bation parameters include variations of the following: irregularities of application computational

requirements, system availability due to unforeseen loads (processors’ delivered computational

speed when shared among multiple users), network latency (delays in the communication speed

due to network congestion), and resource reliability (caused by processor or network failures).

Commonly, all these perturbation parameters vary over time and cannot be accurately predicted

before the parallel execution. A robust DLS algorithm must adapt to any variations of these pertur-

bation parameters, and yield performance parameters that vary in a constrained manner. Designing

robustness metrics that incorporate all these parameters is very challenging [18].

In this work, we devise metrics for measuring the robustness of three DLS algorithms (FAC,

WF and AWF) against perturbations in two system related parameters: system load and resource

failures.

6.2. Flexibility against perturbations in system load

In order to measure the robustness of FAC, WF and AWF against system load perturbations, we

use the FePIA procedure to devise the appropriate metric. We make the following assumptions

with respect to perturbations in the load of the large-scale system during run-time:

A.1 variations of individual worker loads are mutually independent

A.2 individual worker loads may or may not occur simultaneously

A.3 DLS has load variation detection and monitoring mechanisms

In heterogeneous large-scale systems, unforeseen system load variations are to be expected, and

therefore we require that the individual finishing time ET j of processormj be robust against them.

According to eq. (1), this requirement translates into the requirement that the total parallel execu-

tion time TPAR be robust against such variations, as well. We do not assign different “weights”

to the impact of one processor’s finishing time or another’s, due to the fact that each processor is

equally likely to impact TPAR. Assuming system load variations, the actual finishing time ET j of

processor mj must be calculated considering the effects of errors in the estimation of the proces-

sor’s load variation, and must not exceed τ1(> 1) times its estimated value ET origj , where τ1 is a

tolerance factor reflecting the robustness. The FePIA procedure for this analysis is outlined below.

Step 1. Let Φ = {φ1}, where φ1 = ET j and 1 ≤ j ≤ P be the performance features set. The

individual finishing time, ET j , of processor mj is the sum of computation times Tj , of all tasks

ai executed by mj , and the sum of communication times TW2F
j , between processor mj and its

corresponding foreman, and the sum of communication times TW2W
j , between mj and any other

worker processor. Mathematically, for all {tasks i|ai executed on mj}, this is written as:

ET j =
∑N,P
i,j

(
Tj + TW2F

j + TW2W
j

)
(2)

Step 2. Let the perturbation parameters set be Π = {π1}, where π1 = λj and 1 ≤ j ≤ P . For

our analysis, we consider the perturbation parameter to be λj , the individual load of processor mj .

Vector λ contains the load values of all processors in the target system. DLS initially assumes that

the system has λorig load. The value of λorig can be usually determined by executing the first batch

of chunks, as determined by the original factoring rules and their subsequent evolution. The initial

load of mj is λorigj , found at the j-th position in the λorig vector.

Step 3. As explained in the previous subsection, in order to determine the impact of λj over ET j ,

we analyze individually, for all processors, their finishing time given their own load. Each actual

finishing time is expected to vary with according to λj . This is denoted as ET j(λj) – the actual

execution (computation and any communication associated with it) time of all tasks ai assigned to

mj , in the presence of load variation on mj , as indicated by λj . Mathematically, for all {tasks i|ai

executed on mj under varying load λj}, this is written as:

ET j(λj) =
∑N,P
i,j

(
Tj(λj) + TW2F

j (λj) + TW2W
j (λj)

)
(3)

Step 4. At this step, for every parameter in Φ, we need to define the boundary values of the

π ∈ Π under consideration. A key role for deriving appropriate boundary relationships, is played

by the possibility that the perturbation parameter is a continuous or a discrete variable. For our

analysis, Π has only one parameter: π1 = λj . It is really a matter of taste to consider λj a discrete

or a continuous variable. Traditionally, the load of a processor for task scheduling in heterogeneous

systems is measured either as the number of processes in the processor run-queue [2], or as the

processor delivered speed [21]. The first measure renders λj a discrete parameter, taking integer

values larger than or equal to 1. The second measure renders λj a continuous parameter, measured

as availability percentage of the particular processor (in our case mj) for computing our tasks,

usually taking values of 60%, 80% or 95%. For one of their example systems considered in [18]

for resource allocation, Ali et al. assumed that the system load λ is a discrete variable (measured

in units of objects per data set), and for simplicity reasons treated it as a continuous variable.

In this work, we consider λj a continuous variable that measures the availability of processormj

in %. The percentual availability of a procesor expresses its delivered computational speed, which

encompasses all three effects of applications’ requirements, hardware capabilities and network

speed in one. The boundary values of λj must satisfy the following boundary relationships:{
λj ∈

〈
λ′j , λ

′′
j

〉
|
(
f1(λ′j) = βmin

1

)
∧
(
f1(λ

′′
j) = βmax

1

)}
(4)

The tolerable variation interval for the performance feature of interest, i.e., ET j , is given by

〈
βmin

1 , βmax
1

〉
. Even though it is assumed the processor load will be λorigj , this value might differ

in practice, due to inaccuracies in load estimations or unforeseeable changes in the environment.

The tolerable increase in the actual finishing time, ET j , of processor mj , considering the effects

of errors in the estimation of variations of λj , cannot exceed τ1(> 1) times its estimated value

ET origj . Then boundary relationships for this analysis are:{
λj ∈

〈
λ′j , λ

′′
j

〉
|
(
ET j(λj) = τ1ET origj

)
∧ (1 ≤ j ≤ P)

}
(5)

Next, we need to define a robustness radius, which is the largest increase in processor load in

any direction (for any combination of processor load values) from the assumed value, that does

not cause any tolerance interval violation for the execution time of all tasks ai assigned to mj .

To define the robustness radius we need to choose which norm will give us the smallest variation

in the system (and ultimately processor) load. The choice of a particular norm depends on the

DLS algorithm (and target environment), for which we desire to measure the robustness. Another

aspect to be considered when choosing the norm is the actual nature of the selected perturbation

parameters.

According to the nature of λj , we believe that a more intuitive norm to use for determining the

robustness radius would be the `1-norm. We can write the robustness radius using the `1-norm as

follows:

rDLS(ET j , λj) = max ‖λj − λorigj ‖1 s.t. ET j(λj) = τ1ET origj (6)

Finally, the robustness metric is the minimum of all robustness radii:

ρDLS(Φ, λj) = min (rDLS(φ1, λj)) ∀ φi ∈ Φ (7)

The robustness metric indicates that if the difference between the value of the actual system

load and the value of the estimated system load is no larger than ρDLS(ET j , λj), then the actual

finishing time for mj will be at most τ1 times the estimated finishing time ET origj value. An ac-

ceptable value for τ1 was proposed in [18] to be 1,2. Depending on the nature of the application to

be scheduled, one can select a larger value (for instance if the quality of the result of the compu-

tation is more important than the speed of getting it) or a smaller value (as in the case of real-time

applications). For this analysis, ρDLS(ET j , λj) is the robustness metric of the “DLS” algorithm

in general with respect to the each processor’s individual finishing execution time against pertur-

bations in the processor load. And therefore, the robustness metric of the total parallel time TPAR

against variations in the total system load would be

ρDLS(TPAR, λ) = min(ρDLS(ET j , λj)), 1 ≤ j ≤ P (8)

This robustness metric can be used to determine the impact of system load variations on the per-

formance of the three DLS, and differentiate them according to their flexibility against variations

in the system load. Figure 8 illustrates two possible scenarios. The first scenario, describes the sit-

uation when the three DLS methods perform similarly in terms of performance, with the difference

being in the variation in system load that each of them is able to capture. Based on this scenario 1

and Figure 8, one should choose the DLS method that has the lowest impact on DLS performance

and can handle the largest variation of Λ, which in this case is AWF. The second scenario, describes

the situation when for the same captured variation of system load, the three DLS methods perform

differently in terms of computational performance. For this scenario, one should choose the DLS

method that has the lowest impact on DLS performance, regardless of the variation interval of Λ,

which is AWF again.

Figure 8. Possible scenarios to determine the flexibility of FAC, WF and AWF

6.3. Reliability of DLS against resource failures

Motivated by Gribble’s suggestion [1] that the design (of scheduling algorithms) should plan

for failures, we propose a metric to measure the robustness of DLS algorithms against resource

failures. As for the previous metric, we again use the FePIA procedure.

Assuming that system is un-safe (i.e., failures are to be expected) we require that both, the

number of tasks to be rescheduled, N resch, and the total parallel time, TPAR, given by the DLS

algorithm, be robust against that. In the event of resource failures, N resch must not exceed τ2% of

the total number of tasks N , and TPAR must not exceed τ3(> 1) times it’s estimated value T origPAR

(computed under the assumption that the system is completely safe).

In the presence of failures, the DLS algorithm must be able to reschedule the tasks that were

assigned to the failed processors, as well as reschedule other tasks if necessary (for instance, to

preserve load balancing on the remaining processors). To reduce the complexity of the analysis,

we make the following simplifying assumptions:

A.4 only resources (e.g. network link, processor) associated with worker processors fail

A.5 resource failures occur simultaneously

A.6 resource failures are mutually independent

A.7 resource failures are permanent and

A.8 the DLS algorithm has fault-discovery and fault-recovery mechanisms

These assumptions can be relaxed in order to deliver more optimal and general robustness met-

rics. However, in order to ensure the accuracy of a new robustness metric, one should start with

simple realistic assumptions. It is also well known that designing fault-tolerant scheduling algo-

rithms to meet strict performance criteria is not at all trivial. As such, in the last decade it became

an important research area in its own right, which is currently very active. Since there is ongoing

work towards designing fault-tolerant DLS algorithms based on hierarchical management, we in-

tend to integrate them with the robustness metrics proposed in this work. The FePIA procedure for

this analysis is elaborated as follows.

Step 1. In contrast to the first analysis, the set of performance features has two elements in this

case: Φ = {φ1, φ2}, where φ1 = N resch and φ2 = TPAR.

Step 2. In order to identify which processors fail, we use the approach proposed by Ali et al. in

[18]. Thus, let F = [f1f2 . . . fP]T be the vector containing the live status of all resources, defined

as:

fj =


1 if processor/link mj failed

0 otherwise
1 ≤ j ≤ P (9)

The original value of F is expressed by Forig = [0 0 . . . 0]T , indicating that initially all resources

are alive. The perturbation parameters set in this case is Π = {π1}, where π1 = F.

Step 3. In order to determine the impact of Π over Φ, we need to determine separately each of

the two relationships:

φ1 = f11(π1) (10a) φ2 = f21(π1) (10b)

which relate φ1, and φ2, respectively, to π1. The number of tasks that need to be rescheduled is

directly proportional to the number of processors that fail: N resch increases as more processors

fail. Thus, relationship (10a) becomes as N resch = f11(F). In particular,

N resch(F) = N resch
p (F) +N resch

lb (F) (11)

where N resch
p (F) is the total number of tasks assigned to the failed resources that need to be res-

cued (or restarted), and N resch
lb (F) is the total number of ‘surviving’ tasks, assigned to ‘surviving’

resources, which the failure-recovery mechanism will need to reschedule together with N resch
p (F)

with the goal of achieving and then maintaining a good load balancing on the remaining active

processors. Additionally, N resch
lb (F) also depends on the choice of the DLS algorithm in use.

It follows that the total parallel time TPAR increases when the computational resources start to

fail. Hence, TPAR is expected to vary with respect to F and relationship (10b) can be written as

TPAR = f21(F). The exact impact of F over TPAR depends on the choice of DLS algorithm, as

well as on its fault-discovery and fault-recovery mechanisms.

Step 4. At this step, we need to define the boundary values of F, for which each element in Φ is

less than the maximum tolerable number. Recall our discussion in the previous subsection on the

role of considering the perturbation parameter as a discrete or a continuous variable. We consider

F a discrete variable, that measures the number of “living” resources. In this case, we need to

determine all the pairs of F, such that for a given pair, the boundary value is the one that falls in

the robust region. Assume that F′ is a perturbation parameter value, such that the resources that

fail in the scenario represented by F′, include the resources that fail in the scenario represented

by F and exactly one other resource. Then, the boundary relationships can be written as follows,

in which T origPAR is the estimated parallel time assuming that the system is completely safe, i.e.,

Forig = [0 0 . . . 0]T .{
F|
(
N resch(F) ≤ τ2N

)
∧
(
∃F′s.t. N resch(F′) > τ2N

)}
(12){

F|
(
TPAR(F) ≤ τ3T

orig
PAR

)
∧
(
∃F′s.t. TPAR(F′) > τ3T

orig
PAR

)}
(13)

We define a robustness radius for this case in a similar manner to the previous case. Given the

nature of the perturbation parameter, we use the `1-norm for determining the robustness radii:

rDLS(N resch,F) = max ‖F− Forig‖1 s.t. (N resch(F) ≤ τ2N)

∧(∃F′s.t. N resch(F′) > τ2N)(14)

rDLS(TPAR,F) = max ‖F− Forig‖1 s.t. (TPAR(F) ≤ τ3T
orig
PAR)

∧(∃F′s.t. TPAR(F′) > τ3T
orig
PAR)(15)

rDLS(N resch,F) is the largest number of resources that can fail in any combination without

causing the N resch to violate its tolerable value. Similarly, rDLS(TPAR,F) is the largest number

of resources that can fail in any combination without causing the degradation of TPAR beyond

τ3T
orig
PAR. The overhead incurred by the fault-discovery and fault-recovery mechanisms of the DLS

algorithm should be very small, such that the performance of the fault-tolerant DLS algorithm in

the presence of failure achieves speedup over the sequential application. Moreover, assuming that

the system is completely safe and no resource failures occur, T ftPAR given by the fault-tolerant DLS

algorithm should be comparable to the TPAR of the original non fault-tolerant DLS algorithm.

Finally, the robustness metric is the minimum of all robustness radii:

ρDLS(Φ,F) = min (rDLS(φj ,F)) ∀ φi ∈ Φ (16)

The robustness metric indicates that if the difference between the value of the actual number

of “living” resources and the value of the resources assumed to be “living” is no larger than

ρDLS(Φ,F) percents (%), then N resch will be at most τ2 % of the total number of tasks, or that

the estimated TPAR time will be at most τ3 times its original value. For our analysis, ρDLS(Φ,F)

is the robustness metric of the “DLS” algorithm with respect to the number of tasks that have to be

rescheduled, and the total parallel execution time, against resource failures.

This robustness metric can be used to determine the impact of resource failures on the perfor-

mance of the three DLS, and differentiate them according to their reliability against such failures.

Similar to the previous flexibility analysis, we distinguish between two possible scenarios, as illus-

trated in Figure 9. The first scenario, describes the situation when the three DLS methods perform

similarly in terms of performance, with the difference being in the largest number of failures that

they can handle and still achieve this performance. In this case, one should choose the DLS method

that has the lowest impact on DLS performance and can handle the largest number of failures F,

in this case being AWF. The second scenario, depicts the case in which assuming that each DLS

method is reliable agains the same number of resource failures, they yield different computational

performance. Using our reliability metric, one is recommended AWF as the DLS of choice, for it

has the lowest impact on DLS performance, regardless of the variation interval of F.

7. Notes on the usefulness of the proposed metrics

The flexibility and reliability robustness metrics depend on certain application, system or algo-

rithm specific parameters, most of which can be determined apriori. Hence, they can be formulated

offline and integrated in the master to guide the autonomous scheduling process. If certain param-

eters become available (or known) only at runtime, the metrics are formulated using initial values

Figure 9. Possible scenarios to determine the reliability of FAC, WF and AWF

(e.g., every element of vector F is zero, meaning no failed resources), which are updated in the

master when newer values become available (e.g., certain resources have failed, hence vector F

contains non-zero elements). The choice of tolerance factors, τ1, τ2 and τ3 can increase or decrease

the robustness of DLS algorithms. In order to leverage the usefulness the proposed metrics, it is

strongly recommended that the tolerance factors be chosen such that they reflect reality with high

accuracy, rather than being selected based on personal choice. In Figure 10 we suggest some values

for these parameters. Therefore, The usefulness of proposed metrics is twofold:

• the metrics can be formulated offline with application-, system-, and/or algorithm-specific

initial values and integrated into the master to guide and adapt autonomously the scheduling

decisions

• usable in conjunction with other desired performance metrics (e.g. makespan) for differenti-

ating among DLS that have similar performance from the makespan-only viewpoint

Figure 10. Suggested values for the tolerance factors

The choice of τ1 depends on the nature of the application and it should be smaller (for instance<

1.2 as suggested in 6.2) for real-time applications. Accordingly, it can be larger, if the application

output is a single value (a cost or a yes/no answer), if the user might be interested in obtaining the

result, while willing to wait a little longer for the output. The robustness of DLS algorithms under

system loads variation can be improved based on the tolerable differences in the execution ratios

reported to the manager by each group of processors. For a specific tolerable difference, we can

maximize the robustness of the DLS algorithms under system load variations, by maximizing the

tolerable increase in system load that would not violate the difference in the reported ratios. The

key to maximally robust DLS algorithms under system load perturbations is to introduce a high

degree of adaptivity in the scheduling decisions of the manager.

The second tolerance factor, τ2, should be chosen such that the number of tasks that need to be

rescheduled is not more than half of the total number of tasks, meaning τ2 = 50%. An improvement

for this metric would be to express the tolerable impact of resource failures on the number of tasks

to be rescheduled, such that it does not exceed the remaining number of tasks nor violate the

boundary relationship for the total parallel time (eq. (13)), hence eliminating the need for τ2.

The third factor τ3 could be chosen such that for a given expected number of resource failures,

the boundary conditions from eq. (13) are not violated, and in addition τ3T
orig
PAR does not exceed

the sequential execution time of the application on the fastest processor in the platform. The key to

maximally robust DLS algorithms in the presence of resource failures is devising a highly adaptable

fault-tolerant mechanism that will handle failures (of processors, links, etc.) most efficiently. The

existence of direct communication links between workers (of the same group and not only) provides

a critical support for devising such fault-tolerant mechanisms (by enabling checkpointing, sharing

of partial results, etc).

8. Computational cost analysis

The computational cost of each metric is driven by the computational cost of calculating each

robustness radius. The problem of calculating a single robustness radius is equivalent to solving an

optimization problem, and therefore it can generally be formulated as follows:

GENERAL OPTIMIZATION PROBLEM:

maximize
∑
k ||πk − π

orig
k ||p, k > 0

subject to βmin ≤ {Φ = f(πk)} ≤ βmax

where ||πk||p is the Lp-norm of the perturbation parameter πk ∈ Π, the interval 〈βmax, βmax〉 is

the tolerance interval, Φ = f(πk) is equivalent to Φ(πk) = τ · Φ(πorigk), and τ is the tolerance

factor for the performance feature φk ∈ Φ of interest.

More specifically, when the impact on performance feature of interest is due to variations in the

system load, we can formulate the problem of calculating the robustness radius rDLS(TPAR,Λ) as

follows:

OPTIMIZATION PROBLEM FOR FLEXIBILITY:

maximize
∑
k ||Λ− Λorig||1,

subject to PAR(Λ) ≤ {τ1 ·PAR (Λorig)}TPAR(Λ)≤fastest
SEQ

Similarly, when the impact on performance feature of interest is due to resource failures, we

formulate the problem of calculating the robustness radius rDLS(TPAR,F) as follows:

OPTIMIZATION PROBLEM FOR RELIABILITY:

maximize
∑
k ||F− F||1,

subject to N resch(F) ≤ τ2 ·NPAR(F) ≤ {τ3 ·PAR (Forig)}TPAR(F)≤fastest
SEQ

It is well known that all norms are convex function, hence the L1-norm used above is a convex

function. For a complete analysis we need to determine the nature of the function reflecting the

impact of the perturbation parameters over the performance feature of interest, i.e. Φ(Π). There-

fore Φ(Λ) and Φ((F)) are the factors dominating the computational cost, and they can be linear,

convex or concave functions. When both Φ(Λ) and Φ((F)) are linear or convex functions, then

the computational cost of determining the flexibility or reliability of a DLS method is equivalent to

solving a convex optimization problem, for which inexpensive optimal solutions can be found. In

the case when Φ(Λ) and Φ((F)) are concave functions, the optimization problem is more complex

and near-optimal solutions can be found with acceptable costs.

The metrics described in this report are the first step towards a robustness theory for autonomous

complex workflow scheduling methods for high-performance multiscale numerical methods. These

metrics have no effect when no perturbations occur in the parameters against which they quantify

the robustness of a DLS algorithm. However, they offer valuable information for making schedul-

ing decisions when perturbations do occur in those particular parameters, leading to feasible, qual-

itative and efficient schedules.

9. Conclusions and directions for future work

Scheduling today’s applications, such as complex workflows that characterize multiscale numer-

ical methods, on the latest computing platforms, such as cyberinfrastructure’s high-performance

resources, is very challenging, and among other attributes, must be realistic, efficient and robust.

The metrics proposed in this work, combined with dynamic hierarchical management, are essen-

tial to bringing the most adaptive and efficient DLS algorithms to the state-of-the-art performance

and robustness levels imposed by today’s computing platforms and applications. Careful choice

of the tolerance factors and incorporation into the hierarchical DLS methods, renders the proposed

metrics useful towards producing efficient, autonomous, qualitative and reliable schedules for exe-

cution of large and complex scientific workflows

Directions for immediate and future work include: (1) devising robustness metrics for the adap-

tive DLS methods (adaptive factoring and recent variants of AWF), that use probabilistic analyses

to model uncertainties in the execution environment; (2) using multiple performance parameters to

devise realistic robustness metrics that give proper weight to their impact over each performance

features of interest; and (3) implementing these metrics and using them as performance metrics

for evaluating the performance and execution robustness of the adaptive DLS methods in realis-

tic uncertain large-scale high-performance computing platforms, individually or in combination

to traditional performance metrics, such as makespan, resource utilization, etc. In order test and

ensure the correct run-time behavior of complex computational workflows, the robustness metrics

aid in providing a certain level of confidence about the completion and correct behavior of these

workflows on the remote high-performance computational resources.

Acknowledgements

The funding provided for this study by the US Department of Energy under Grant No. 008860-

013 is gratefully acknowledged. The distribution of this report is provided by the Center for Ad-

vanced Vehicular Systems of the Mississippi State University. This support is also appreciated.

References

[1] Gribble, S.D.: Robustness in Complex Systems. 8th Workshop on Hot Topics in Operating

Systems (2001)

[2] T. Kunz. The Influence of Different Workload Descriptions on a Heuristic Load Balancing

Scheme. IEEE Trans. on Soft. Eng., 725–730 (1991)

[3] Hummel, S. F., Schonberg, E., Flynn, L.E.:Factoring: A Method for Scheduling Parallel

Loops. Comm. of the ACM. 35:8, 90–101 (1992)

[4] Banicescu, I., Hummel, S. F.: Balancing processor loads and exploiting data locality in n-

body simulations. Procs. of Supercomputing 95 (1995)

[5] Hummel, S.F., Schmidt, J., Uma, R.N., Wein, J.: Load-Sharing in Heterogeneous Systems

via Weighted Factoring. Procs. SPAA, 318–328 (1996)

[6] Hurson, A., Lim, J., Kavi, K., Lee, B.: Parallelization of DOALL and DOACROSS Loops: A

Survey. Advances in Computers, 45 (1997)

[7] Inacio, C., Ying, S.: Dependable Embedded Systems.

http://www.ece.cmu.edu/˜koopman/des s99/robustness/draft.html (1998)

[8] Banicescu, I., Liu, Z.: Adaptive Factoring: A Dynamic Scheduling Method Tuned to the Rate

of Weight Changes. Procs. high-performance Computing Symp. 122–129 (2000)

[9] Banicescu, I., Velusamy, V.: Load Balancing Highly Irregular Computations with the Adap-

tive Factoring, Procs. IPDPS ’02, 195 (2002)

[10] Banicescu, I., Velusamy, V.: Performance of Scheduling Scientific Applications with Adap-

tive Weighted Factoring. Procs. IPDPS ’01, 84 (2001)

[11] Kephart, J.O. and Chess, D.M.: The Vision of Autonomic Computing. Computer, 36:1, 41–50

(2003)

[12] Banicescu, I., Velusamy, V., Devaprasad, J.: On the Scalability of Dynamic Scheduling Sci-

entific Applications with Adaptive Weighted Factoring. Journal of Cluster Computing, 6:3,

215–226 (2003)

[13] Cariño, R. L., Banicescu, I., Rauber, T., Ruenger, G.: Dynamic Loop Scheduling with Pro-

cessor Groups. Procs. Int’l Conf. P.&D. Comp. Systems (PDCS 2004), pp. 78-84 (2004)

[14] Cariño, R. L., Banicescu, I.: A Framework for Statistical Analysis of Datasets on Heteroge-

neous Clusters. Int’l Conf. on Cluster Comp., 1–9 (2005)

[15] Cariño, R. L., Banicescu, I.: A Load Balancing Tool for Distributed Parallel Loops. Journal

of Cluster Computing, 8:3, 313–321 (2005)

[16] Cariño, R. L., Banicescu, I.: A Dynamic Load Balancing Tool for One and Two Dimensional

Parallel Loops. 5th Int’l Symp. on Parallel and Distributed Computing (ISPDC ’06), 107–114

(2006)

[17] Riakiotakis, I., Ciorba, F. M., Andronikos, T., Papakonstantinou, G.: Self-Adapting Schedul-

ing for Tasks with Dependencies in Stochastic Environments. Procs. Cluster Comput-

ing/HeteroPar ’06 (2006)

[18] Ali, S., Siegel, H. J., Maciejewski, A. A.: Perspectives on Robust Resource Allocation for

Heterogeneous Parallel and Distributed Systems. Chapter 4 of Handbook of Parallel Comput-

ing Models, Algorithms and Applications. MK Publishing (2008)

[19] BioControl Jena GmBH: Survey ‘Robustness in Immune System Models’.

http://www.nisis.risk-technologies.com/downloads.aspx (2008)

[20] Benoit, A., Rehn-Sonigo, V., Robert, Y.: Optimizing Latency and Reliability of Pipeline

Workflow Applications. RR2008-12 (2008)

[21] Chtepen, M., Claeys, F.H.A., Dhoedt, B., De Turck, F., Demeester, P., Vanrolleghem, P.A.:

Adaptive Task Checkpointing and Replication Toward Efficient Fault-Tolerant Grids. IEEE

Trans. on Par. and Dist. Systems, 20:2, 180–190 (2009)

Towards the robustness of dynamic loop scheduling on large-scale heterogeneous
distributed systems

Ioana Banicescu
Dept. of Computer Science & Engineering

and Center for Computational Sciences
Mississippi State University

Mississippi State, USA, Email: ioana@cse.msstate.edu

Florina M. Ciorba and Ricolindo L. Cariño
Center for Advanced Vehicular Systems

Mississippi State University
Mississippi State, USA

Email: {florina,rlc}@cavs.msstate.edu

Abstract

Dynamic loop scheduling (DLS) algorithms provide
application-level load balancing of loop iterates, with the
goal of maximizing application performance on the un-
derlying system. These methods use run-time information
regarding the performance of the application’s execution
(for which irregularities change over time). Many DLS
methods are based on probabilistic analyses, and there-
fore account for unpredictable variations of application
and system related parameters. Scheduling scientific and
engineering applications in large-scale distributed systems
(possibly shared with other users) makes the problem of
DLS even more challenging. Moreover, the chances of
failure, such as processor or link failure, are high in
such large-scale systems. In this paper, we employ the
hierarchical approach for three DLS methods, and propose
metrics for quantifying their robustness with respect to
variations of two parameters (load and processor failures),
for scheduling irregular applications in large-scale hetero-
geneous distributed systems.

1. Introduction

Researchers and scientists from various fields are inter-
ested in the accurate modeling and simulation of various
complex phenomena from various scientific areas. These
simulations are often routines that perform repetitive com-
putations (in the form of DO/FOR loops) over very large
data sets, and the number of repetitive computations (itera-
tions) in these codes is not always constant. Moreover, their
nature (or computational requirements) may be irregular,
making one iteration likely to take more time than others,
depending on the simulation. The resources in a large-scale
system are widely distributed and highly heterogeneous,
and as such, are usually shared among multiple users, and
their availability cannot always be guaranteed or predicted.
Hence, the quality and quantity of resources available to a
single user changes continuously.

In this work, dynamic loop scheduling (DLS) techniques
are considered to be the key solution for achieving and
preserving the best performance of these applications in
such environments. Herein, it is considered that a ‘loop

iteration’ (or a chunk of loop iterations) with variable
execution time refers to a ‘task’ (or a chunk of tasks, among
many others within a loop of tasks) with variable execution
time. A comprehensive description has been given earlier in
a survey by Hurson et al. in [5] and in the relevant literature
after that.

DLS methods provide two alternative approaches, non-
adaptive and adaptive, for achieving good load balancing
on variably loaded resources, as well as for executing
tasks with varying execution times. Most of the techniques
described in [5] are based on probabilistic analyses and are
non-adaptive. Other non-adaptive techniques, which were
not mentioned in the survey above, include fractiling [3]
and weighted factoring [4]. Subsequent efforts gave birth
to more elaborate techniques, called adaptive, and a few
examples are given in [6][8][12]. Most of the above adap-
tive methods are based on probabilistic analyses, and use a
combination of runtime information about the application
and the system, in order to predict the system capabilities
for the next computational assignments, or to estimate the
time future tasks will require to finish execution, in order to
achieve the best allocation possible for optimizing applica-
tion performance via load balancing. In this paper, we em-
ploy a hierarchical management approach, and concentrate
on two non-adaptive techniques, factoring [2] (FAC) and
weighted factoring [4] (WF), and one adaptive technique,
adaptive weighted factoring [7] (AWF). These techniques
use probabilistic analyses to dynamically compute the size
of chunks (a collection of tasks) at run-time, such that they
are executed before their optimal time with high probability.
Due to space limitations, the interested reader is referred
to the appropriate references for details of the above DLS
algorithms.

The performance of DLS methods using hierarchical
management has been shown to be better than that of
the centralized management approach [9][10][11]. Figure
1 illustrates the centralized management approach (left),
and the distributed management approach (right). The
coordination of and interactions between the processors
in the first case are straightforward, whereas for details
of the hierarchical management approach, due to space
limitations, the interested reader if referred to [9].

Motivation Scheduling applications on large-scale plat-

Figure 1. Left: centralized management, right: hierarchi-
cal management system

forms, where chances of faults are high, require an approach
based on hierarchical management and mechanisms to
ensure the robustness of the DLS methods. For this reason
we consider FAC, WF and AWF, which are inherently
robust because their design enables them to address unpre-
dictabilities in the application and the system. Previously,
the robustness of resource allocations/task scheduling algo-
rithms was addressed individually for a single method, or
even for a single application.

Contribution Inspired by the results in [9] we propose
to employ the hierarchical approach in the DLS methods
above. As such, the processors are organized into dynami-
cally selected groups, such that the physical structure of the
underlying platform is easily and well captured. The main
contribution of our work lies in using the methodology
proposed by Ali et al. [13] to propose two metrics that
quantify the robustness of the hierarchical FAC, WF and
AWF DLS algorithms, used for scheduling a very important
class of applications: irregular tasks, against variations of
two system related parameters: load and processor failures.
The proposed metrics in conjunction with the hierarchical
DLS methods provide quantitative and qualitative informa-
tion such as: level of performance, quality of execution,
for irregular applications in uncertain large-scale heteroge-
neous systems. These metrics alone are not more useful
or better than any other performance measurement metrics
(e.g. makespan, communication cost, resource utilization).
Therefore, their use is mandatory towards achieving ro-
bustness for hierarchical DLS algorithms running on such
uncertain systems.

The paper is organized as follows. Section 2 shows
how to design robustness metrics and describes the two
proposed metrics. Details regarding the implementation of
these metrics and their usefulness are outlined in section
3. The paper is concluded in section 4 with an outline of
directions for future work.

2. Robustness metrics design

Robustness is an emergent multifaceted phenomenon in
advanced computing systems.

Designing specifically for robustness, to its full extent,
is however not yet possible. Robustness benchmarks (or
metrics) can be useful to measure how a scheduling method
reacts to possible erroneous inputs or environmental fac-
tors, and hence, should employ mechanisms for detecting

and identifying any erroneous parameters. In this work,
we use the FePIA (features-perturbation-impact-analysis)
procedure (see [13] and references therein for details), to
design metrics that model and estimate the robustness of hi-
erarchical DLS algorithms on large-scale realistic platforms
against two perturbation parameters. The FePIA procedure
consists of four general steps:

S.1 Identify the performance features.
S.2 Identify the perturbation parameters.
S.3 Identify & clarify the impact of perturbation param-

eters (S.2) on performance features (S.1).
S.4 Identify the analysis to determine the robustness.
Assuming that the application tasks are assumed to be

independent and irregular, the goal of the hierarchical DLS
algorithms is scheduling these tasks onto the set of P
processors (divided into disjoint groups) of the large-scale
heterogeneous distributed system, while minimizing the
total parallel execution time (or makespan) TPAR. A mini-
mum TPAR is achieved via dynamic load balancing, using
processor speeds (which in the case of AWF are periodically
adapted) and hierarchical management. Each processor in a
group executes a set of tasks (called chunk) at a time. Each
task is executed in a non-preemptive fashion, i.e., no other
tasks of higher priority will suspend it. The same holds for
the execution of a chunk, or for all chunks during a single
time-step. Table 1 summarizes the notations we used in the
following sections. The performance features of interest:
ET j , TPAR, and Nresch, and they should be limited in
variation under certain application, system, or environment
related parameters perturbations. For hierarchical DLS, per-
turbation parameters include variations in: task execution
times (due only to irregularities of application character-
istics), system load (available computational power of the
processors given their shared use by multiple processors),
network latency (delays in the communication speed due
to network congestion), and processor availability (due to
processor failures). Commonly, all perturbation parameters
vary over time and cannot be accurately predicted before
execution. A robust hierarchical DLS algorithm must adapt
to any variations in these perturbation parameters, and
yield performance parameters that vary in a constrained
manner. Designing robustness metrics that incorporate all
these parameters is very challenging [13].

2.1. Robustness against perturbations in
system load

Assuming unknown system load variations, the individ-
ual finishing time ET j of processor mj must be robust
against them. According to eq. (1), this translates into the
requirement that the total parallel execution time TPAR be
robust against such variations, as well. Assuming system
load variations, the actual finishing time ET j of processor
mj must be calculated considering the effects of errors in
the estimation of the processor’s load variation, and must
not exceed τ1(> 1) times its estimated value ET origj , where

N total number of tasks
Nresch # of tasks that need to be rescheduled
ai i-th task, 1 ≤ i ≤ N
P total number of processors
mj j-th processor, 1 ≤ j ≤ P
Tij execution time of task ai on mj

TW2F
ij communication time between mj and its

foreman for executing ai

TW2W
ij communication time between mj and any other

workers for executing ai (processor regrouping)
ET j finishing time of all tasks computed by mj

TP AR total parallel execution time for the N tasks
λ = [λ1 . . . λP]T vector of processors load (= system load)
F = [f1 . . .FP]T vector of processors status (active/failed) vector
Φ = {φ1, . . .} set of performance features
Π = {π1, . . .} set of perturbation parameters
τ1, τ2, τ3 tolerance factors for performance features
rDLS(,) robustness radius
ρDLS(,) robustness metric

Table 1. Notation

τ1 is a tolerance factor reflecting the robustness. The FePIA
procedure for this analysis is outlined below.

S.1 Let Φ = {φ1}, φ1 = ET j , 1 ≤ j ≤ P be the
performance features set. The individual finishing time for
all {tasks i|ai executed on mj}, is:
ET j =

∑N,P

i,j

(
Tij + TW2F

ij + TW2W
ij

)
(2)

S.2 Let the perturbation parameters set be Π = {π1},
π1 = λj , 1 ≤ j ≤ P . We consider λj to be the individual
load of processor mj , and λ the vector that contains all
processors load values. Initially, the DLS assumes that the
system has λorig load, which can be usually determined by
executing the first batch of chunks, as determined by the
original factoring rules and their subsequent evolution. The
j-th position in the λorig vector is the initial load of mj .

S.3 The impact of λj over ET j , is determined by
analyzing individually, for all processors, their finishing
time given their own load. Each actual finishing time is
expected to vary according to λj , denoted as ET j(λj).
Mathematically, for all {tasks i|ai executed on mj under
varying load λj}, this is written as:
ET j(λj) =

∑N,P

i,j

(
Tij(λj) + TW2F

ij (λj) + TW2W
ij (λj)

)
(3)

S.4 We must define the boundary values of π1 = λj .
First, we must decide whether the perturbation parameter
is a continuous or a discrete variable. There are two
ways to measure the load of a processor in heteroge-
neous systems: number of processes in the processor’s
run-queue [1] (discrete variable), or delivered processor
speed, measured as percentage of processor availability
[?] (continuous variable). In this work, λj is a continuous
variable measuring processor availability, which is highly
advantageous since it expresses the delivered processor
speed, which in fact reflects simultaneously the impact
of: applications’ requirements, hardware capabilities, and
network speed in one. The boundary values of λj must
satisfy the following boundary relationships:{

λj ∈
〈
λ′

j , λ
′′
j

〉
|
(
f1(λ′

j) = βmin
1

)
∧
(
f1(λ

′′
j) = βmax

1

)}
(4)

The tolerable variation interval for ET j (the performance
feature of interest), is given by

〈
βmin

1 , βmax
1

〉
. The tolerable

increase in the actual finishing time ET j of processor

mj , considering the effects of errors in the estimation of
variations of λj , cannot exceed τ1(> 1) times its estimated
value ET origj . The boundary relationships for this analysis
are:{

λj ∈
〈
λ′

j , λ
′′
j

〉
|
(
ET j(λj) = τ1ET orig

j

)
∧ (1 ≤ j ≤ P)

}
(5)

The robustness radius, rDLS(ET j , λj), is expressed as
the largest increase in processor load, for any combination
of processor load values, from the assumed value, that does
not cause any tolerance interval violation for the execution
time of all tasks ai assigned to mj . We must choose the
norm which yield the smallest variation in the system (and
ultimately processor) load, and we believe that a more
intuitive norm to use is the `1-norm, and rDLS(ET j , λj)
can be written as follows:
rDLS(ET j , λj) = min ‖λj − λorig

j
‖1 s.t. ET j(λj) = τ1ET orig

j
(6)

The robustness metric is the minimum of all robustness
radii: ρDLS(Φ, λj) = min (rDLS(φ1, λj)) ∀ φi ∈ Φ (7)

An acceptable value for τ1 was proposed in [13] to
be 1,2. For this analysis, ρDLS(ET j , λj) is the general
robustness metric of the “DLS” algorithm, with respect to
each processor’s individual finishing execution time against
perturbations in the processor load, and ρDLS(TPAR, λ) is
the robustness metric of TPAR against variations in the total
system load:
ρDLS(TP AR, λ) = min(ρDLS(ET j , λj)), 1 ≤ j ≤ P (8).

2.2. Robustness against processor failures

Assuming an un-safe system with expected failures,
Nresch and TPAR, must both be robust against them:
Nresch must not exceed τ2% of the total number of tasks
N , and TPAR must not exceed τ3(> 1) times it’s estimated
value T origPAR (computed under the assumption that the
system is completely safe).

When failures occur, the DLS algorithm must be able
to reschedule the tasks that were assigned to the failed
processors, as well as other tasks if necessary (for instance,
to preserve load balancing on the remaining processors).
To reduce the complexity of the analysis, we make the
following simplifying assumptions: (i) only worker proces-
sors fail, (ii) failures occur simultaneously, and (iii) failures
are permanent. We also assume that the DLS algorithm
has fault-discovery and fault-recovery mechanisms. These
assumptions can be relaxed in order to deliver more optimal
and general robustness metrics. The FePIA procedure for
this analysis is given below.

S.1 In this case the set of performance features has two
elements: Φ = {φ1, φ2}, φ1 = Nresch and φ2 = TPAR.

S.2 To identify the failing processors, we use consider
F = [f1f2 . . . fP]T as the vector containing the statuses of
all processors, defined as fj = 1 if processor mj failed, and
fj = 0 otherwise, 1 ≤ j ≤ P .

Forig = [0 0 . . . 0]T , indicates that all processors are
initially active. The perturbation parameters set is Π =
{π1 = F}.

S.3 To determine the impact of Π over Φ, we need to
determine separately each of the following:

φ1 = f11(π1) (9a) φ2 = f21(π1) (9b)

which relate φ1, and φ2, respectively, to π1. Nresch is
directly proportional to the number of failing processors.
Thus, (9a) becomes Nresch(F) = Nresch

p (F) +Nresch
lb (F) (10)

where Nresch
p (F) is the total number of tasks assigned to

the processors that failed, and Nresch
lb (F) is the total num-

ber of tasks that need to be rescheduled in order to achieve
and maintain a good load balancing on the remaining active
processors. Additionally, Nresch

lb (F) depends also on the
choice of the DLS algorithm in use. TPAR increases when
processors start to fail. Hence, relationship (9b) becomes
TPAR = f21(F). The exact impact of F over TPAR
depends on the choice of DLS algorithm and its fault-
recovery mechanism.

S.4 To define the boundary values of π1 = F for each el-
ement in Φ, we consider F a discrete variable that measures
the number of “living” processors. We need to determine
all the pairs of F, such that for a given pair, the boundary
value is the one that falls in the robustness region. Assume
that F′ is a perturbation parameter value, such that the
machines that fail in the scenario represented by F′ include
the machines that fail in the scenario represented by F and
exactly one other machine. Then, the boundary relationships
are:

{
F|
(
Nresch(F) ≤ τ2N

)
∧
(
∃F′s.t. Nresch(F′) > τ2N

)}
(11){

F|
(
TP AR(F) ≤ τ3T orig

P AR

)
∧
(
∃F′s.t. TP AR(F′) > τ3T

orig
P AR

)}
(12)

where T origPAR is the estimated parallel time assuming that
the system is completely safe. We define the robustness
radii for this case using the `1-norm: rDLS(Nresch,F) =

min ‖F− Forig‖1 s.t. (Nresch(F) ≤ τ2N)

∧(∃F′s.t. Nresch(F′) > τ2N)(13)

rDLS(TP AR,F) = min ‖F− Forig‖1 s.t. (TP AR(F) ≤ τ3T orig
P AR

)

∧(∃F′s.t. TP AR(F′) > τ3T
orig
P AR

)(14)

ρDLS(Φ,F) is the robustness metric of the “DLS” al-
gorithm against processor failures, with respect to Nresch,
and TPAR: ρDLS(Φ,F) = min (rDLS(φj ,F)) ∀ φi ∈ Φ (15)

3. Implementation and usefulness

An analysis of the computational complexity for com-
puting such metrics based on the FePIA procedure is given
in [13] (and references therein). The choice of τ1, τ2 and τ3
impacts the robustness of DLS algorithms, and the proposed
metrics are useful if these factors reflect reality with high
accuracy. The metrics depend on certain application, system
or algorithm specific parameters, most of which can be
determined apriori. Hence, the metrics can be formulated
offline and injected in the master to guide the dynamic
scheduling process. If certain parameters become available
(or known) only at runtime, the metrics are formulated
using initial values (e.g., every element of vector F is
zero, meaning no failed processors), which are updated
in the master when newer values become available (e.g.,
certain processors failed, hence vector F contains non-
zero elements). These metrics have no effect when no
perturbations occur in the parameters against which they
quantify the robustness of a DLS algorithm. However, they

offer valuable information for making scheduling decisions
when perturbations do occur in those particular parameters,
leading to feasible, qualitative and efficient schedules.

4. Conclusions and future work

Scheduling today’s applications on the latest computing
platforms is challenging, and among other attributes, it must
be realistic, efficient and robust. The metrics proposed in
this work, in combination with the dynamic hierarchical
management approach, are essential to bringing the most
adaptive and efficient DLS algorithms to the state-of-the-
art level required by today’s computing platforms and
applications. Immediate and future work directions include:
devising similar robustness metrics for the adaptive DLS
methods (adaptive factoring and recent variants of AWF),
that use probabilistic analyses to model uncertainties; us-
ing multiple performance parameters and devise realistic
robustness metrics that give proper weight to their impact
over each performance features of interest; implementing
these metrics and using them as performance metrics for
evaluating the adaptive DLS methods in realistic large-
scale platforms, individually against or in combination to
traditional performance metrics, such as makespan, resource
utilization, etc.

References
[1] T. Kunz. The Influence of Different Workload Descriptions on a Heuristic

Load Balancing Scheme. IEEE Trans. on Soft. Eng., 725–730 (1991)

[2] Hummel, S. F., Schonberg, E., Flynn, L.E.:Factoring: A Method for Schedul-
ing Parallel Loops. Comm. of the ACM. 35:8, 90–101 (1992)

[3] Banicescu, I., Hummel, S. F.: Balancing processor loads and exploiting data
locality in n-body simulations. Procs. of Supercomputing 95 (1995)

[4] Hummel, S.F., Schmidt, J., Uma, R.N., Wein, J.: Load-Sharing in Heteroge-
neous Systems via Weighted Factoring. Procs. SPAA, 318–328 (1996)

[5] Hurson, A., Lim, J., Kavi, K., Lee, B.: Parallelization of DOALL and
DOACROSS Loops: A Survey. Advances in Computers, 45 (1997)

[6] Banicescu, I., Velusamy, V.: Load Balancing Highly Irregular Computations
with the Adaptive Factoring, Procs. IPDPS ’02, 195 (2002)

[7] Banicescu, I., Velusamy, V.: Performance of Scheduling Scientific Applica-
tions with Adaptive Weighted Factoring. Procs. IPDPS ’01, 84 (2001)

[8] Banicescu, I., Velusamy, V., Devaprasad, J.: On the Scalability of Dynamic
Scheduling Scientific Applications with Adaptive Weighted Factoring. Journal
of Cluster Computing, 6:3, 215–226 (2003)

[9] Cariño, R. L., Banicescu, I., Rauber, T., Ruenger, G.: Dynamic Loop Schedul-
ing with Processor Groups. Procs. Int’l Conf. P.&D. Comp. Systems (PDCS
2004), pp. 78-84 (2004)

[10] Cariño, R. L., Banicescu, I.: A Framework for Statistical Analysis of Datasets
on Heterogeneous Clusters. Int’l Conf. on Cluster Comp., 1–9 (2005)

[11] Cariño, R. L., Banicescu, I.: A Dynamic Load Balancing Tool for One and
Two Dimensional Parallel Loops. 5th Int’l Symp. on Parallel and Distributed
Computing (ISPDC ’06), 107–114 (2006)

[12] Riakiotakis, I., Ciorba, F. M., Andronikos, T., Papakonstantinou, G.: Self-
Adapting Scheduling for Tasks with Dependencies in Stochastic Environ-
ments. Procs. Cluster Computing/HeteroPar ’06 (2006)

[13] Ali, S., Siegel, H. J., Maciejewski, A. A.: Perspectives on Robust Resource
Allocation for Heterogeneous Parallel and Distributed Systems. Chapter 4 of
Handbook of Parallel Computing Models, Algorithms and Applications. MK
Publishing (2008)

	MSU.CAVS.CMD.2009-R0008_front
	CAVS REPORT
	TABLE OF CONTENTS

	MSU.CAVS.CMD.2009.R0008
	banicescu_ispdc09_cam_ready

