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Abstract— Rotylenchulus reniformis nematodes present in the soil 
are one of the major nematode parasite species significantly 
affecting the growth and development of cotton plants. Recent 
studies have shown that the nematode numbers in the plant’s 
rhizosphere has direct impact on the reflectance of the plants.  In 
this paper, authors utilize this correlation in developing a field 
worthy methodology for predicting nematode population number 
extant in the plant’s rhizosphere from variable plant’s 
reflectance. To accomplish this task, a supervised Self-organized 
map (SOM) was trained using the hyperspectral data signatures 
of cotton plants affected by different known nematode numbers. 
The hyperspectral signatures used for training were collected 
from the cotton plants grown in controlled environment. Twelve 
field samples (uncontrolled environment) with known nematode 
numbers obtained from lab analysis of the soil were presented to 
the supervised trained Self-Organized Map. The location of the 
sample on the labeled supervised-SOM was used to determine the 
estimated nematode population of the field sample. In addition to 
the map grid, the locations of the samples were also visualized 
using U-matrix, to determine whether the samples were not 
corrupt or located in the junk part of the map. In addition to the 
primary goal, hyperspectral signatures of both training and 
testing data were divided into three sub-regions: Visible region, 
NIR region and Mid-IR region to observe whether any particular 
region was the most effective in predicting nematode population.  
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I.  INTRODUCTION  
The reniform nematode (Rotylenchulus reniformis) has 

become one of the most prevalent species affecting cotton 
crops throughout the sub-tropical and tropical regions of the 
world. Females of R. reniformis penetrate the root cells of the 
cotton plants and establish a feeding site, altering the flow of 
the nutrients from the plants. This reduction of nutrients causes 
severe damage to the development of the cotton plants, causing 
yield loss up to 60%. It is theorized that the higher the 
nematode numbers present in the soil, the more the damage it 
causes to the cotton plants. Hence early detection of nematode 
numbers is absolutely vital in preventing further damage to the 
cotton plants [1-2]. In 1975, Gausman found that there was 
significant change in the reflectance of the cotton plants 
affected by R. reniformis numbers as compared to the spectral 
reflectance of non-nematode affected cotton plants [3]. Kelley 
suggested that there exists a correlation between the spectral 

reflectance of the cotton plants with nematode numbers present 
in the soil [1-4]. Current practice is to count nematode numbers 
directly from the soil. This requires cotton producers to collect 
numerous soil samples from various parts of the field and send 
them to a diagnostic lab for detection and enumeration of the 
nematode numbers. This labor-intensive procedure is not only 
inefficient but also time-consuming and costly. Additionally, 
nematode numbers are not uniformly distributed throughout the 
field. In this paper, the authors make use of the change in 
spectral reflectance and supervised-SOM in prediction of 
estimated nematode population numbers extant in plant’s 
rhizosphere. The authors also investigate whether any 
particular region in EM spectrum was more effective for 
prediction of estimated nematode numbers.   

Section II discusses the data collection procedure. Section 
III briefly introduces SOM and its supervised version.  Section 
IV explains the methodology of using supervised-SOM in 
prediction of nematode numbers. Section V summarizes the 
results and appropriate conclusions. Finally, Section VI briefly 
discusses the future work for the given method.  

II. DATA COLLECTION 

A. Traning Data: 
For the year 2001, cotton plants were grown in microplots, 

small fiberglass cylinders, located in the R.R. Foil North Plant 
Science Research North Farm located at Mississippi State 
University. There were 25 microplots filled with similar type of 
soil. During cottonseed planting, each microplot is artificially 
infested with five initial population levels. These initial 
population levels are: 0, 500, 1000, 1500, and 2000 nematodes 
per 100cc of soil. Hence, there will be 5 microplots with each 
population levels. Each microplot was sprayed with similar 
insecticides and was provided with similar nutrients. The 
hyperspectral data (signatures) were collected from the cotton 
leaves (single leaf) of each microplot using hand-held 
Analytical Spectroradiometer (ASD). During each spectral 
reading, corresponding soil samples from the microplot were 
also taken for the lab analysis. During the lab analysis, the soil 
samples were analyzed to count the actual nematode numbers. 
Based on the nematode numbers present in the soil sample, 
actual nematode population numbers extant in the plant’s 
rhizosphere was estimated. Microplots were inspected 
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throughout the growing season. Hyperspectral signatures along 
with their soil samples were collected at regular intervals. 
These dates include 19th June (33 Days after plantation (DAP)), 
25th June (39 DAP), 10th July (54 DAP), 6th August (81 DAP), 
and 20th August (95 DAP) [2].  

B. Testing Data: 
For testing purposes, spectral data along with the soil 

samples were collected for different dates for the year 2004 and 
2005. Data for the year 2004 was collected from the field 
located at Natchez, Mississippi, while the data for the year 
2005 was taken from the field located at Belzoni, Mississippi. 
The dates for the year 2004 include: 14th July (36 DAP) and 
17th August (80 DAP), while the dates for the year 2005 
include 22nd June (55 DAP), and 16th August (110 DAP). 

 The key difference between the microplots and field data 
was that in microplots the nematodes were artificially infested, 
while nematodes in the field were naturally present. Both 
microplots and the field plants were subjected to grow in 
natural environment.  

III. SELF-ORGANIZED MAPS (SOM) 
In 1990, Kohonen proposed an “unsupervised, competitive 

and self-learning” neural network called Self-Organized maps 
(SOM), which adapts itself based on presentation of input data 
[5]. The foremost benefit of SOM is that it identifies the 
similarities among the high-dimensional input data, classifies 
them based on their similarities and finally represents them into 
a self-ordering, organized meaningful manner on a low-
dimensional grid [5-9]. Thus, SOM performs all the three 
functions of pattern recognition, compression and visualization.  

Rectangular or Hexagonal two-dimensional grids are 
usually used to present the output of the SOM. For each d-
dimensional input vector, there exists a d-dimensional 
prototype vector ]....,,[ 321 idiiii mmmmm = , where i is the 
neurons in the map [5]. During the training process, Euclidean 
distances are calculated between the randomly selected single 
input data vector x and the corresponding prototype vectors of 
the map. The minimum distance between the input vector and 
its corresponding prototype vector becomes the winning 
neuron. The winning neuron is widely known as best matching 
unit (BMU) and is calculated using the formulae given below 
[5]: 

 ||}{||min iii mxBMU −=                           (1) 

The location of the winning neuron for the given input data 
vector dictates the location of the input vector in the map [5]. 
The neighboring neurons surrounding the BMU are then 
moved closer towards or furthered away from it. The process is 
repeated for entire data set and each input vector is then 
mapped based on the location of its winning neurons [5, 8-10]. 
This process of quantizing d-dimensional input vector into a d-
dimensional output prototype vector is called as vector 
quantization and mapping of the d-dimensional output vector 
onto a low-dimensional grid is called vector projection [5, 9-
11].  

For this work, supervised-SOM with batch training 
algorithm is used. In supervised-SOM classification method, an 
additional binary class vector is tagged with the d-dimensional 
input training vector (feature). The size of the class vector 
depends on the number of classes. The value of class vector is 
either ‘1’ or ‘0’. The class vector has only one value with ‘1’, 
while rest of the value of class vector is ‘0’. The location of 
value ‘1’ in the class vector indicates the class of the particular 
input feature vector [9, 12-14]. During the training, both the 
feature vector and class vector are considered. In other words, 
the class vector “influences the representation/ordering of the 
map” but not during the calculation of the best matching unit 
[15]. This ordering causes the formation of “class-clustering” 
in the map [8]. According to SOM Toolbox, “The class of each 
map unit is determined by taking maximum over these added 
components, and is labeled accordingly” [12]. 

Once the ordered map using class information is trained 
and created, the class vector is removed. The supervised class-
clustered map is then provided only with the d-dimensional 
feature vector of test samples for class estimation/prediction. 
Based on the similarities of features between the training and 
testing samples, the test sample is placed on a particular map 
unit. The location of the d-dimensional test sample on the 
labeled (class) map unit indicates the predicted class of the test 
sample [8-9, 12].  

IV. METHODOLOGY 
The microplot data collected on various dates are grouped 

together into three classes based solely on nematode numbers. 
Factors such as growth stage and biomass are not taken into 
consideration during class grouping. Various classes along with 
their labels used for the analysis are as shown below in Table I. 
Bands 350-450 nm are removed from the analysis to take into 
account the large amount of scattering found at these 
wavelengths and to compensate for sensor and atmospheric 
effects. A map is created using supervised-SOM classification 
method with hyperspectral reflectances of various classes as 
input (feature). Number of map units assigned to each class 
depends on the number of input samples (signatures) present in 
each class. Once the class clustered supervised map is created, 
twelve field samples (signatures) with known nematode 
population (from lab) were presented to the SOM. Based on the 
similarity of the sample signature with unknown class and the 
training signature of the known class with which the map is 
created, SOM will place the sample on to the corresponding 
labeled map unit. The class labels indicate the range of 
nematode numbers assigned to the hyperspectral signatures 
during training. The location of the sample with unknown 
range on the labeled map unit determines the range of 
nematode population in the soil. The idea is that since the map 
was created based on some sort of change in the hyperspectral 
reflectances of the three classes, if the same change is seen in 
the reflectances of the testing samples, it will place the 
corresponding sample in map unit which showed same change. 
The twelve samples with their original nematode population 
range obtained from lab analysis are shown in Table II. These 
testing samples are selected from various dates (years) and 
different days of planting. Six samples are selected from the 
year 2004 and six samples are selected from the year 2005 with 
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 Table I Division of Classes based on nematode population 
Class Population range Labels 

Class 1 0-1500 RAN1 
Class 2 1501-4000 RAN2 
Class 3 Above 4000 RAN3 

 

different DAP. There are two disadvantages of using this 
method:  

1. There is the possibility that some samples in the 
training data might be corrupt and are labeled 
incorrectly. If some of the test samples are also 
corrupt, the test sample will be located on the map 
unit created by corrupt trained samples. Hence the 
false range is predicted for corrupt signatures.  

2. The testing sample might only be corrupt or may not 
represent any similarity with the trained data set. The 
method will still place the sample on the map unit that 
‘most closely matches’ the test sample. 

In order to solve the first problem a Unified Distance 
matrix (also known as U-matrix) is also created based on the 
distances between the neighboring neurons in the map. The 
main advantage of a U-matrix is that it color-codes the 
distances between the neighboring neuron with darker color 
indication large distances and lighter color indicating small 
distances [12, 16].  This helps in depicting whether or not the 
training data have corrupt signatures as the location of these 
samples will have very high distances compared to the other 
map unit. If the test sample is located in the map created by 
corrupt training signatures, then one can easily interpret it as 
corrupt test sample instead of falsely predicting the range. In 
order to solve the second problem of the possibility of corrupt 
testing samples but no corrupt training samples, one more class 
named “junk” class is added to the remaining classes as 
mentioned in Table I. By adding this extra class of corrupt 
signatures, any corrupt test sample present in the testing 
(predicting) analysis will be located in the junk part of the map. 
In order to verify the solutions, two corrupt test samples were 
added to the above-mentioned 12 test samples. In order to test 
the first solution, some corrupt samples (4 in all) were added to 
class 1. A junk class of corrupt signatures (6 in all) was added 
in training to check the second solution. 

In addition to the above-mentioned goal, hyperspectral 
signatures for both training data and test samples were divided 
into three sub-regions: Visible (451-650 nm), NIR region (651-
1300 nm), and Mid-IR region (1301- 2500 nm) [17] to 
investigate the region most effective in predicting correct 
nematode numbers.  The entire methodology was performed on 
an expanded version of Null’s SOMASDGUI and a Graphical 
User Interface built on a MATLAB based SOM toolbox 
(available at www.cis.hut.fi) to process and analyze ASD 
hyperspectral signatures [8, 18]. For our study, map grid of 13 
X 13 was used. Default parameters of SOM toolbox was used 
for both training and prediction purposes.  

V.    RESULTS AND CONCLUSION 
Table III on the next page summarizes various predicted 

range in each sub-regions along with the entire spectrum. 
Column 1 of table III indicates the sample number while the  

           Table II Testing samples with original class and their labels 

Sample  Original Class Labels 
Sample 1 RAN1 SM01 
Sample 2 RAN1 SM02 
Sample 3 RAN1 SM03 
Sample 4 RAN1 SM04 
Sample 5 RAN1 SM05 
Sample 6 RAN3 SM06 
Sample 7 RAN3 SM07 
Sample 8 RAN2 SM08 
Sample 9 RAN2 SM09 

Sample 10  RAN2 SM10 
Sample 11 RAN2 SM11 
Sample 12 RAN2 SM12 

 

column 2 shows the original/actual range estimated from the 
lab analysis of the soil. Column 3 indicates the range predicted 
using supervised-SOM. Fig. 1 shows the supervised-SOM map 
and U-matrix for predicting various nematode ranges for the 
testing samples. It was seen that more samples were correctly 
predicted when the supervised map was created using entire 
spectrum. It was also seen that prediction in the Visible region 
was least followed by NIR region and Mid-IR region 
respectively. For our analysis, it was seen that sample 14 was 
predicted as range 1 when the map was trained using whole 
spectrum, however, when visualized U-matrix, as shown in fig. 
1, it was easily interpreted that the map unit where sample 14 
was placed had very high neighborhood distances. This 
indicates that both the training and testing samples were 
corrupt or irrelevant to our problem in prediction purposes. It 
was also seen that sample 13 was located in the junk class 
indicating that the sample 13 was corrupt and was predicted 
accordingly.   

VI. FUTURE WORK 
Although the prediction results obtained from using 

hyperspectral data with supervised SOM gave promising result, 
it is necessary to validate the results with larger data set. If the 
results are still promising, it is possible to train the SOM using 
nematode numbers as classes themselves instead of using 
population ranges as classes. It was also seen that the use of 
supervised-SOM in predicting nematode numbers by using 
hyperspectral reflectance’s as features provide unique and 
completely different perspective in calculating nematode 
numbers.  
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Table III Prediction chart of various testing samples in various regions of EM spectrum with green-color indicating correctly  
predicted and red-color indicating falsely predicted 

Predicted Range in different regions Sample Labels Original Class 
Visible region NIR region Mid-IR region Whole region 

Sample 1 SM01 RAN1 RAN2 RAN1 RAN3 RAN1 
Sample 2 SM02 RAN1 RAN1 RAN3 RAN1 RAN1 
Sample 3 SM03 RAN1 RAN2 RAN2 RAN3 RAN1 
Sample 4 SM04 RAN1 RAN1 RAN1 RAN1 RAN1 
Sample 5 SM05 RAN1 RAN1 RAN2 RAN1 RAN2 
Sample 6 SM06 RAN3 RAN3 RAN2 RAN2 RAN2 
Sample 7 SM07 RAN3 RAN1 RAN3 RAN3 RAN3 
Sample 8 SM08 RAN2 RAN3 RAN2 RAN2 RAN1 
Sample 9 SM09 RAN2 RAN1 RAN2 RAN3 RAN2 
Sample 10 SM10 RAN2 RAN3 RAN3 RAN3 RAN1 
Sample 11 SM11 RAN2 RAN3 RAN2 RAN1 RAN2 
Sample 12 SM12 RAN2 RAN1 RAN2 RAN2 RAN2 
Sample 13 SM13 Junk Junk Junk Junk Junk 
Sample 14 SM14 Junk (RAN1) RAN1 RAN3 RAN3 RAN1 

 

 
Figure 1 Illustration of the predictor concept (in entire spectrum) 
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