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Vortex Visualization for Practical Engineering Applications
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Abstract—In order to understand complex vortical flows in large data sets, we must be able to detect and visualize vortices in an
automated fashion. In this paper, we present a feature-based vortex detection and visualization technique that is appropriate for
large computational fluid dynamics data sets computed on unstructured meshes. In particular, we focus on the application of this
technique to visualization of the flow over a serrated wing and the flow field around a spinning missile with dithering canards. We have
developed a core line extraction technique based on the observation that vortex cores coincide with local extrema in certain scalar
fields. We also have developed a novel technique to handle complex vortex topology that is based on k-means clustering. These
techniques facilitate visualization of vortices in simulation data that may not be optimally resolved or sampled. Results are included
that highlight the strengths and weaknesses of our approach. We conclude by describing how our approach can be improved to
enhance robustness and expand its range of applicability.

Index Terms—Vortex detection, vortex visualization, feature mining.
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1 INTRODUCTION

As computing power continues to increase, large scale computational
fluid dynamics (CFD) simulations of complex vortical flows about re-
alistic configurations are becoming routine. In this paper, we consider
two such examples. The first case considered is the flow around the
serrated wing [9] configuration shown in Figure 1. Wing planforms
such as these have been suggested as candidates for highly maneuver-
able configurations. The second case is the flow field around a spin-
ning missile with dithering canards [4] shown in Figure 2. The vorti-
cal flows associated with these two configurations are very complex in
comparison to those often used in the visualization literature. Further,
the data sets derived from these simulations are large and may pre-
clude the use of many commonly used visualization techniques. For
example, the spinning missile data set contains more than nine million
nodes [4] and requires 360 time steps to describe a single rotation of
the missile.

Feature-based techniques provide viable methods to visualize large
scale simulations of this type [22, 28, 31]. These methods extract
features (in this case vortices) and define them in terms of feature-
based descriptors. However, many existing techniques, when applied
to large scale data sets with complex physics, like those described
above, produce unsatisfactory results. Simulations of geometrically
complex configurations are often performed on unstructured meshes.
This impacts the complexity of extraction algorithms and potentially
may impact solution accuracy. Further, artifacts due to the discrete
nature of the solution may taint the accuracy of gradient based compu-
tations. Finally, in unsteady cases, the flow field may contain features
that continuously change attributes (e.g., sense of rotation), appear and
disappear, merge and split.
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Fig. 1. Serrated wing geometry: The serrations create vortical flow that
enhances vehicle maneuverability.

Fig. 2. Missile geometry: Canted tail fins (upper left) cause missile
to spin about its longitudinal axis. Canards (lower right) rotate syn-
chronously about axis passing through the missile body to provide pitch
and yaw control.

In this paper, we describe a process for developing efficient
feature-based visualizations of vortex dominated flow fields. Our ap-
proach can be thought of as a generalization of the work of Banks
and Singer [1] and is closely related to the approach described by
Stegmaier et al. [29] who realized an efficient browsing tool that sepa-
rates vortices detected using a scalar field [14]. Stegmaier et al. extract
core lines with a predictor/corrector algorithm that utilizes four point
Lagrangian interpolation and the “direct search” method of Hooke and
Jeeves [11]. Our approach, while enhancing existing methods, intro-
duces two new components. A predictor/corrector algorithm that uses
a novel function fitting procedure to locate the extreme values of a
scalar field is employed in the core line extraction component. This



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

allows us to extract vortices from simulation data that may not be op-
timally resolved or sampled. A k-means clustering algorithm [19] is
utilized to handle complex vortex topologies such as those produced
by vortex merging. More specifically, our feature extraction algorithm
is composed of the following steps: (1) a feature detection step to
identify candidate cells, (2) an aggregation step to combine candidate
cells into contiguous structures, (3) a k-means clustering algorithm to
handle complex vortex topologies, (4) a robust vortex core line extrac-
tion algorithm, and (5) a tangential velocity determination of vortex
extent. Once found, vortex core lines, extent, and other characteristics
are compactly stored and can be visualized as shown in Figure 3. To
reiterate, we consider our major contribution to be the development of
robust and efficient vortex visualization techniques that can work on
realistic engineering data sets.

Fig. 3. Vortex dominated flow for spinning missile with dithering canards.
The surfaces are employed to illustrate the extent of the vortices. Each
surface is shaded according to the local value of the tangential velocity
in the plane that contains the swirling motion.

1.1 Related Work

Comprehensive overviews of existing vortex detection algorithms are
given in [18, 26], along with useful taxonomies to help guide the se-
lection of algorithms appropriate for various situations. One catego-
rization is based upon the representation of the vortex. A line-based
algorithm extracts a vortex core line while a region-based algorithm
extracts a region in which a vortex is located. In general, line-based
algorithms can more precisely locate vortex cores, whereas region-
based algorithms can be computationally less expensive.

Banks and Singer [1] developed a line-based algorithm that em-
ploys a predictor/corrector sequence based on the assumptions that the
vortex core is a vorticity line and that pressure attains a minimum in
the core. Sujudi and Haimes [30] described a line-based method that
extracts the vortex core by locating points that satisfy the following
two conditions: (1) the velocity gradient tensor has a pair of complex
eigenvalues and (2) the velocity in the plane perpendicular to the real
eigenvector is zero. Roth and Peikert [24, 27] proposed a different
approach for detecting core lines using the parallel vectors operator.
Their algorithm detects parallel alignment between the velocity vec-
tor and the jerk vector, where jerk is the time derivative of the vector
acceleration.

Region-based algorithms are also prevalent in the vortex detection
literature. Levy et al. [21] developed a method based on the assump-
tion that a vortex core is located in a region where the normalized
helicity approaches ±1. Berdahl and Thompson [3] assume that two
of the eigenvalues of the velocity gradient tensor are a complex con-
jugate pair in regions of swirling flow. A swirl parameter is defined
at each point in the domain using the magnitude of the imaginary part
of the conjugate pair and the velocity in the plane perpendicular to the
real eigenvector. Jeong and Hussain [14] defined a vortex based on
the symmetric deformation tensor S and the antisymmetric spin tensor
Ω. According to Jeong and Hussain, if λ2, the second largest eigen-
value of S2 +Ω2, is negative at a point, that point is contained within a
vortex. Jiang et al. [16] proposed a method for extracting vortex core
regions based on ideas from combinatorial topology. In this approach,
a combinatorial labeling scheme based on Sperner’s Lemma is applied
to the velocity vector field in order to identify centers of swirling flows.

Techniques for improving detection results have been presented for
both types of algorithms. Bauer and Peikert [2] proposed a preprocess-
ing step for the parallel vectors operator [26] to reduce the number of

artifacts that occur due to the computation of higher order derivatives.
Jiang et al. [17] proposed a postprocessing step for automatically ver-
ifying the results from the detection algorithm. However, many of the
existing methods are still not robust enough to deal with complex sim-
ulation data. The work presented by Stegmaier et al. [29] attempted to
address this problem. They combined the method of Jeong and Hus-
sain [14] with that of Banks and Singer [1]. The former provides the
seed points for growing a skeleton using the framework of the latter.
The initial location of the seed points is improved upon by a local
search.

Several approaches for computing the physical extent of a vortex
have been presented in the literature. In order to determine the extent
of the cross section of a vortex, Banks and Singer [1] proposed an
approach to sample pressure and vorticity along radial lines emanating
from the detected core line, until user defined thresholds are exceeded.
Roth [26] proposed a similar approach using a fraction of the value
at the core position for each cross section as the threshold. Recently,
Garth et al. [8] proposed an improvement to the above approach by
approximating the physical extent without the need for user defined
thresholds. In this case, the sample values are tangential velocities
on the perpendicular plane, and the termination criterion is defined
implicitly as the local maximum.

2 ISSUES ASSOCIATED WITH UNSTRUCTURED MESHES

In this section, we describe some of the challenges associated with
visualizing flow fields simulated on large scale unstructured meshes.
These challenges can be classified loosely into two categories: geom-
etry/mesh issues and simulation issues.

2.1 Geometry/Mesh Complexity

For high Reynolds number flows such as those considered here, very
large velocity gradients occur in the region near the body surface
where the no-slip condition is satisfied. This region, typically re-
ferred to as the boundary layer, requires resolution in the direction
normal to the wall that is several orders of magnitude smaller than
the resolution required along the wall. Therefore, it is much more
efficient to discretize the region containing the boundary layer using
highly anisotropic cells such as prisms instead of isotropic tetrahedral
cells. Away from the boundary layer, where there is no preferred di-
rection, isotropic tetrahedral cells provide a flexible mechanism for
discretizing the computational domain. Meshes containing prismatic
and tetrahedral cells are sometimes referred to as hybrid meshes. Hy-
brid meshes may also contain pyramids as transitional cells. Thus, a
vortex detection algorithm should be appropriate for any number of
cell types and not be restricted to tetrahedral cells or cells that can
readily be decomposed into tetrahedral cells.

Cells in an unstructured hybrid mesh may have any number of
neighbors in any position. Although we know the number of face
neighbors, e.g., four for a tetrahedral cell, we cannot know the valence
of a given node. We cannot obtain the neighbors of a cell merely by
adjusting the cell index, as we could with a structured grid. This is a
complicating factor for any vortex detection algorithm. Mesh cell con-
nectivity must be explicitly stored and any computation that involves
a cell and its neighbors must be able to deal with an arbitrary number
of neighbors in arbitrary positions.

The connectivity problem is further complicated for the spinning
missile with dithering canards because there is relative motion be-
tween components of the configuration. There are two basic ap-
proaches that can be employed for simulating relative motion: mesh
deformation, which maintains the mesh connectivity, or mesh recon-
nection. For the missile geometry, Blades and Marcum [4] employed
a local reconnection strategy, which results in the mesh connectivity
changing with every time step.

2.2 Volume Search

Volume search, finding the cell containing a given point, is a common
task employed in numerous components of our vortex detection algo-
rithm. It can be broken down into two subtasks: locating a starting
node near the point and searching from the starting node for the cell
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containing the given point. The first task is accomplished through the
use of optimizing data structures, such as an octree or k-d tree. Lang-
bein et al. [20] employ a k-d tree approach for very large unstructured
meshes in their work. We use a balanced octree to efficiently store
nodes. Once a starting node near the given point is found, the search
for the desired cell containing the given point can start. We use the A*
best first search algorithm [10] to search for the cell in the direction to
the given point. An unstructured mesh presents additional challenges
relative to a body-fitted structured grid because internal boundaries
appear as holes in the computational domain while the structured grid
typically has no interior holes when represented in its native paramet-
ric space. If a boundary, a concavity or hole, is encountered, the search
algorithm attempts to skirt around it. If necessary, the algorithm back-
tracks. The combination of optimizing data structure and A* best first
search makes for a very efficient volume search algorithm. Further-
more, the search can be confined to a local neighborhood by limit-
ing the number of cells traversed. This limitation prevents exhaustive
searching of all cells when the given point is outside the volume or in
a hole, and thus not in any cell.

2.3 Flow Field Resolution

One major challenge associated with detection of features in simu-
lation data is the quality of the simulation. Typically, the numerical
dissipation inherent in the discrete approximation increases as cell
size increases. This is especially problematic for the vortices trail-
ing from the canard tips on the spinning missile, which may traverse
long distances through relatively coarse regions of the mesh and may
experience significant numerical dissipation. We address this problem
by using a core line extraction algorithm that is designed to work for
a vortex that varies in strength along its axis. This is in contrast to
region-based approaches that typically require isosurfacing to visual-
ize the vortex [18]. A second issue is the discrete nature of the solution.
Unless a vortex core happens to fall on a cell center, its location may be
difficult to detect. We address this problem using techniques from sta-
tistical estimation and function fitting. We exploit an assumed varia-
tion of the field values near the vortex core to obtain subcell resolution
thereby enhancing the estimate of the location of the vortex core. Fi-
nally, in practical engineering applications, some features may not be
resolved adequately. For example, the solution on a given mesh may
not be adequate to accurately capture the physically complex process
of vortex merging. In these instances, the detection algorithm is chal-
lenged to maintain the identities of the distinct vortices. We address
this problem by using the k-means clustering algorithm to separate the
merging vortices [19]. These techniques are described in detail in the
section that follows.

3 VORTEX DETECTION AND VISUALIZATION

The algorithm that we employ for vortex core line extraction is an en-
hancement of the Banks and Singer [1] algorithm. Our algorithm ex-
ploits the fact that the local extrema of other scalar fields (and not just
pressure) can also be employed to locate vortices. Additionally, we
utilize a novel clustering algorithm (see Section 3.4) to handle com-
plex vortex topologies. Further, we use a statistical function fitting
approach in a predictor/corrector step to extract the core line as a se-
ries of local extreme values (minima or maxima as appropriate for the
field) as described in Section 3.5.4. We employ the vortical flow about
the serrated wing, shown in Figure 1, to illustrate the functions of the
various components of our algorithm. Additional results for the spin-
ning missile with dithering canards, shown in Figure 2, are included in
Section 4.

3.1 Identification of Vortex Regions

We first identify regions that may contain a vortex core using a region-
based technique. We compute the necessary scalar field only in re-
gions where the velocity gradient tensor has complex eigenvalues [25],
which is a necessary but not sufficient condition for swirling flow. The
computed scalar field should be one that has a line-type extremum in
the core of a vortex. The swirl parameter [3] satisfies the necessary
conditions because it is a scalar field that has a line-type maximum

Fig. 4. Compute a scalar field whose local extrema coincide with vortex
core lines. The swirl parameter (shown) is such a field. The computation
is performed only in cells where the velocity gradient tensor has complex
eigenvalues which indicate the presence of swirling flow.

near the core of a vortex. Figure 4 shows a slice of the swirl parameter
field. The two vortices that intersect the slicing plane appear as two
local maxima. Very low values of the swirl parameter (fifth percentile
or less) indicate lack of swirling flow. A fifth percentile threshold can
be used to remove false positives due to very low valued local max-
ima. Other scalar fields such as vorticity magnitude [6] (maximum)
or λ2 [14] (minimum) may be used instead of the swirl parameter.
Compared to the swirl parameter, vorticity magnitude is less computa-
tionally expensive and has the advantage of Galilean invariance, but is
more prone to false positives in shear regions [6]. The Galilean invari-
ant λ2 field, which is negative in regions of swirling flow, was devel-
oped to detect vortices in incompressible flows [14]. Therefore, it is
not appropriate for detecting vortices in the compressible, supersonic
flow field associated with the spinning missile with dithering canards.
We use the swirl parameter in the results shown in Section 4.

3.2 Vortex Detection with Local Extrema Method (LEM)

The essential step of our detection algorithm is based on the obser-
vation that a vortex core is coincident with local extrema in pertinent
scalar fields in the plane normal to the vortex core line. Thus, a vortex
core line can be extracted from an appropriate scalar field by locating
local extrema in a properly oriented plane and connecting the location
of the extreme values with line segments to form a curve.

Fig. 5. Stencil employed for the local extrema method (maximum). The
stencil plane is perpendicular to the swirl vector v. Note: The maxima of
the scalar field f coincide with vortex cores. f(circle) and f(square) are
scalar values. The circle point lies in the cell under consideration. The
square points lie in a local neighborhood outside the cell.

The local extrema method (LEM) determines the locations of local
extrema of a scalar field f . Figure 5 depicts the stencil employed to
determine where local extrema of a scalar field f occur. The central
point of the stencil lies in the cell currently under consideration, while
the other four points lie outside the cell along perpendicular rays in
a planar local neighborhood. The vector v is tangent to the curve and
normal to the local neighborhood. Either vorticity or the real eigenvec-
tor of the velocity gradient tensor can be used as the vector v because
they are both an approximate tangent to the vortex core line and the
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local extremum curve coincident with it. We used the real eigenvector,
which is computationally more expensive, but can be a better approx-
imation near boundaries. Determining a stencil by ray tracing through
an unstructured mesh is nontrivial. When f is greatest at the central
stencil point, the current cell lies on a local maximum curve. The local
minima of a scalar field f can be similarly found. The cells containing
local extrema are marked by the LEM as vortex core candidate cells.

We emphasize that the LEM alone should not be considered as yet
another vortex detection technique. Rather, the LEM post processes
scalar field data obtained from region-based vortex detection algo-
rithms and locates the highly anisotropic regions around vortex core
lines. Thus, the LEM can be thought of as the underlying algorithm
for the original Banks and Singer algorithm [1].

Fig. 6. Candidate cells are found using the local extrema method (LEM)
whose input is the scalar field from Figure 4.

The results from the LEM shown in Figure 6 clearly suggest the
nature of the vortical flow. The drawback of the LEM is its inability to
determine whether the underlying cause of a local extremum is a vor-
tex or some other feature, such as a strong shear region. This limitation
is common to many vortex detection methods and can be addressed by
feature level verification. The advantages of the LEM are generality,
ease of use, and the use of functional comparisons rather than numer-
ical gradients, which may be inaccurate due to discretization errors.
For the functional comparisons, a stencil with a radius of three or four
cells can be used to find extreme values in noisy, non-smooth data.
The stencil radius is a topological measure (number of cells), not a
spatial one (distance).

3.3 Aggregation of Candidate Cells

Although a visualization of LEM output appears as long slender re-
gions, the output is only a list of individual candidate cells. Since we
desire to work at the feature level rather than the cell level, we group
candidate cells into contiguous aggregates. We can remove false pos-
itives occupying small regions by unmarking cells in aggregates that
contain less than a certain number of cells.

Aggregation groups contiguous candidate cells. Naturally, cell con-
nectivity is needed for aggregation and efficient storage of connectivity
becomes an issue. When dealing with an unstructured mesh, the ques-
tion of which cells are considered contiguous for the purpose of ag-
gregation is nontrivial. Typically, aggregates formed using face, edge,
and node neighbors are rougher than those formed without using node
neighbors, therefore we do not consider node neighbors contiguous
while aggregating.

The aggregates formed for the serrated wing are shown in Figure 7.
Note that the purple aggregate includes two initially distinct vortices
that merged. The clustering algorithm described in the next section is
employed to identify the topology of the merged vortices.

3.4 Clustering for Vortex Topology Identification

One of the problems with existing vortex detection algorithms is that
they have difficulty distinguishing vortices that are in the process of
merging. We would like to be able to distinguish the individual vor-
tices that are in the process of merging from the resulting merged vor-
tex. The serrated wing data set exhibits this phenomenon, which is
shown in Figure 7. There are two separate vortices arising from the

Fig. 7. Contiguous candidate cells are aggregated. Aggregates with
less than a specified minimum number of cells are removed.

first and second serration, as numbered from the left. They start to
merge together slightly to the right of the third serration, forming a
Y-shaped aggregate, which is colored purple. This topology presents
challenges for the core line extraction algorithm because only one vor-
tex core line is found per aggregate. Branching aggregates need to be
subdivided into component non-branching aggregates before core line
extraction can be applied.

In order to correctly identify the vortex topology, we developed
a clustering algorithm to identify if and where two vortices merge –
in other words, where the branching of the aggregate occurs. This
clustering algorithm is a variation of the k-means clustering algo-
rithm [19, 23], designed specifically for unstructured meshes. The
idea is to decompose the entire aggregate into small segments (clus-
ters) and identify if and where a branching segment occurs. To create
the initial set of clusters, we apply the standard region-growing algo-
rithm for unstructured meshes, but we only grow each cluster to a fixed
neighborhood size. Each neighborhood iteration consists of adding the
connected neighbors that are within the aggregate to the cluster. For
the serrated wing data set, we used a neighborhood size of four.

Fig. 8. Zoomed in view of the merging vortices. The top image shows
the clusters from the modified k-means algorithm. The bottom image
shows the merged clusters.

Once the entire aggregate is decomposed, we winnow out the tiny
clusters by redistributing the cells within the tiny clusters to the closest
connected cluster. For the serrated wing data set, we used a minimum
cluster size of 16. Next, we compute the centroids of all the remaining
clusters. At this point, we apply the standard k-means clustering algo-
rithm [19, 23], with the only difference being that we do not use any
prescribed value for k. The algorithm terminates once the same set of
cells has been identified to be the centroids. Figure 8 shows the indi-
vidual clusters resulting from our algorithm for the merging vortices.
After the clusters have been computed, we proceed to identify if and
where a branching cluster occurs. In this case, a simple cluster should
have at most two neighboring clusters and only one if it is at the end.
A non-simple, or branching, cluster will have more than two neigh-
boring clusters. We identify branching clusters and merge the clusters
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Fig. 9. Aggregates after clustering. Notice that the single purple aggre-
gate shown in Figure 7 has been divided into three constituent aggre-
gates.

in the branching regions separately. Figure 9 shows the result from
the clustering and merging step of our algorithm. Notice that we have
correctly distinguished the merging vortices from the merged vortex.

3.5 Predictor/Corrector Core Line Extraction

The LEM identifies highly anisotropic regions that contain curve
shaped extrema of the selected scalar field. These were split into non-
branching aggregates through k-means clustering. However, these are
still aggregates of candidate vortex core cells, rather than lines. To
extract the line in each aggregate, we pick an initial seed point, then
trace forward and backward from the seed point.

3.5.1 Selection of Seed Points

There are several seeding strategies that can be employed. Most com-
monly, we select the center of the “best” cell intersected by the aggre-
gate’s bisecting plane. The “best” cell can be the one with the largest
absolute value of normalized helicity or most extreme value of the
scalar field that was used as input to the LEM. The normalized he-
licity should not be used in cases where the vorticity is not a good
approximation of the swirl vector. The bisecting plane approach is
not suitable for aggregates whose cell sizes vary widely because it can
place the seed point in a coarse region of the mesh where the solution
is less accurate. In that case, we can select the cell with the small-
est size or the one with the most extreme scalar field value of all the
cells in the aggregate. In the results presented here, we have used bi-
secting plane with normalized helicity seed cell selection. It is highly
unlikely that the core line passes exactly through the seed cell center,
so we perform the correction step, described in Section 3.5.4, to find
the seed point.

3.5.2 Predictor/Corrector Core Line Extraction

Starting from the seed point, we grow the core line. For each cell
along the way, we predict which cell we will visit next, and correct
the location of the next point along the line. If only the prediction
step is used, the curve extraction algorithm is strongly dependent on
the choice of the initial seed point. Correction improves the quality of
the extracted core line by ensuring that the extracted core line passes
through a locally extreme value in each cell.

3.5.3 Local Direction of Core Line Growth

Given a current point on the core line, we wish to find the next point
along the core line. We predict where the next point will lie using
the swirl vector, which is an approximate tangent to the vortex core
line. Either the vorticity vector or the real eigenvector of the velocity
gradient tensor can be used as the swirl vector. We have used the
real eigenvector. When using the real eigenvector, care must be taken
because it can point either forward or backward along the curve. The
vorticity vector typically points in the same direction along the curve.
An exception to this is when, for external reasons, the vortex reverses
direction of rotation along its length. A ray is shot from the current
point in the direction of the swirl vector. The intersection of that ray

and a cell face is found and is taken to be a predicted point on the
curve.

3.5.4 Correction using Function Fitting

Now the correction step is performed. We accomplish the correction
via a novel function fitting approach applied to the scalar field in the
swirl plane. Our objective is to find the location of the extreme value in
the local swirl plane. It is highly unlikely that the extreme value falls
exactly on a cell center. This extreme value cannot be found with linear
interpolation of the values at the cell centers. If we use a higher-order
polynomial interpolation, unrealistic oscillations may occur. What we
do know about the field is that it attains a local maximum (or mini-
mum) at the vortex core line in the swirl plane perpendicular to the
vortex core line. Therefore, in the local neighborhood of the vortex
core line, we can search for the location of the local maximum (or
minimum) by fitting a conical function to the data in the swirl plane.
We chose a conical function because, like the field in the local neigh-
borhood of the core line, it has a single extreme value.

Function fitting consists of several steps. First, we select the data
to be fitted. The data points are the center of the cell in which the
core line currently resides, as well as the centers of the neighboring
cells (face, edge and node neighbors). We have found that, for CFD
solutions, using all the neighbors produces better fits than using only
the face neighbors. Next, we take the cell centers and project their
locations onto the swirl plane. We have tried two projection methods:
using the values at the original cell centers and interpolating the values
at the points projected onto the swirl plane. We found that using the
values at the original centers works better. Interpolation smears and
degrades the data. We can justify using the values at the cell centers as
follows. In the small local neighborhood near a vortex core line, the
isosurfaces of the scalar field appear as tubes around the vortex core.
Thus, the original cell center and its projection onto the swirl plane lie
on the same ”isotube” and have the same value of the scalar field.

Now that we have two-dimensional data in the swirl plane, we can
fit a conical function to it. Fitting involves moving the center of the
cone, the location of the function’s extreme value, to different posi-
tions in the local neighborhood, computing the standard deviation of
the fitting error, and selecting the location with the smallest standard
deviation of the fitting error. Our local neighborhood is the size of
a two-dimensional bounding box that contains all the projected data
points in the swirl plane. We apply a local rectilinear grid to this
neighborhood and place the cone’s center at each of the grid points
in turn. After experimentation, we chose a 20× 20 grid size because
we wanted to use the smallest grid we could to save computation time,
while keeping the grid fine enough that the corrected point found with
function fitting was an improvement over the uncorrected point.

The local max fitting function we use is given below. Let f (r) be a
conical function of the radius r measured from the center of the cone.

f (r) = f (0)+m∗ r

The cone’s central value f (0) and the slope m are

f (0) = fmax

m = −( fmax − fmin)/d

where d is the length of the rectilinear grid diagonal, while fmin and
fmax are

fmax = s∗max

fmin = min

where min and max are the extreme values of the projected data and s
is a scaling factor. We scale up max because we expect the maximum
whose location we seek to be greater than max. We use s = 1.5 for
max > 0. For max < 0, we would use s = 2/3, but this does not occur
in the scalar fields we employ. The local min version of the fitting
function differs in three ways. (1) The cone’s central value f (0) is
fmin. (2) The slope m is positive. (3) The scaling factor s is applied
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Fig. 10. Locating the maximum through function fitting. Circles repre-
sent points where a known function was sampled. The star is the loca-
tion of the known maximum. A conical fitting function with a maximum
at its center is fit to the data. The color indicates the standard deviation
of the error (red is high, blue is low). Using this approach, we are able
to obtain subcell resolution in the vortex core position computation.

to min rather than max when computing fmin and fmax. For min < 0,
s = 1.5. For min > 0, s = 2/3.

Several correction iterations may be necessary. The corrected point
may fall outside the cell containing the predicted point, in which case
another correction taking into account the neighbors of this new cell
is needed. We correct iteratively until we converge on a cell or com-
plete 10 correction iterations. If there is no convergence, we reject
the correction and revert to the predicted point, but this happens only
about 1% of the time. In 50% to 70% of cases, convergence on a cell
is achieved after just one iteration.

The result of function fitting is illustrated in Figure 10. In this ex-
ample, we sampled an analytical function for which the location of the
maximum value was known. The circles (o) represent points where the
function was sampled. The star (*) is the actual maximum location, al-
though there is no data point there. We then applied the conical fitting
function. The conical function was centered on each local rectilinear
grid point in turn, the standard deviation of the fitting error was com-
puted, then the grid position with the lowest standard deviation was
selected as the location of the extreme value. The image in Figure 10
is colored by standard deviation: red is high, blue is low. The square
shows where the standard deviation was lowest. While this does not
exactly coincide with the actual location of the maximum, it is a bet-
ter estimate than one of the existing data points would have been and
demonstrates that subcell resolution can be achieved.

3.5.5 Core Line Termination

The core line extraction algorithm terminates when it hits an aggregate
other than the one in which it started, when it hits a domain boundary,
or when it has traversed more than a certain number of contiguous
unmarked cells. Core line ends that lie in unmarked cells are removed.

3.5.6 Core Line Smoothing

The core line can be made smoother by using the points found thus far
as the control points of a low-order b-spline. While this may seem like
an unnecessary sacrifice of some of the accuracy obtained by function
fitting, it is useful. The correction step in the function fitting algorithm
was used to keep the core line from deviating from the line-type local
extremum of the scalar field and to achieve subcell resolution. How-
ever, when we start with a noisy and/or non-smooth solution, the core

Fig. 11. Vortex core lines are extracted, one line per aggregate.

line produced is also noisy. The b-spline eliminates some of this noise
by smoothing. While we want to smooth out high frequency noise, we
do not wish to eliminate the curvature of the core line itself. Thus we
use a low-order b-sline rather than a high-order b-spline. The b-spline
curve becomes the smoothed core line. The tangent of this smoothed
core line can then be used as an approximation of the swirl vector in
the remaining steps of the method (extent and other characteristics).
The tangent is preferable to the vorticity or the real eigenvector whose
vector fields may be noisy.

The core lines extracted are shown in Figure 11. Note that the core
lines are continuous and that the topology of the merging vortices is
maintained. For this relatively well resolved case, the core line extrac-
tion technique works well.

3.6 Vortex Extent: Maximum Tangential Velocity

There are several definitions of vortex extent. We chose the maximum
tangential velocity (MTV) definition for simplicity and to avoid ambi-
guity [8]. We are motivated in this selection by the physical character-
istics of an isolated vortex. Figure 12 shows the tangential velocity vs.
radius for a wing tip vortex as reported by Dacles-Mariani et al. [5].
Although the influence of the vortex extends beyond this radius, the
unambiguous MTV boundary encloses a region that is easily recog-
nizable as a vortex core.

Fig. 12. The vortex core region lies within the radius of maximum tan-
gential velocity: tangential velocity vs. radius for the NACA0012 wingtip
vortex, experimental data from Dacles-Mariani et al. [5].

Following Banks and Singer [1], the two dimensional extent curve
is found by marching radially outward, independently in each of sev-
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eral directions in the swirl plane, until a maximum of tangential veloc-
ity is found. In some cases, such as a vortex near a no-slip boundary,
a plateau in the maximum tangential velocity may exist in some di-
rections rather than an extreme value. Detection of these plateaus is
described by Jiang et al. [15] and is based on identifying small rates of
change in the tangential velocity. Note that vortex extent is affected by
vortex-vortex interaction and physical boundaries, thus extent cross
sections may not be circular or even elliptical. Vortex-vortex inter-
action regions pose a challenge to the extent computation algorithm
because they may not exhibit the tangential velocity profile shown in
Figure 12. It should be emphasized that the MTV surface is not an
isosurface of the tangential velocity.

The vortex extent surface is created by repeatedly finding two di-
mensional extent curves and lofting between them. The extent sur-
faces are shown in Figure 13. The axial variation in the strength of
each vortex is evident by the change in shading on its extent surface.

Fig. 13. Vortex extent is found based on the local change in the max-
imum tangential velocity (MTV). Each extent surface is colored by the
local value of the tangential velocity on the extent surface.

3.7 Vortex Visualization

We now have feature level characteristic descriptions of the vortices in
the computational domain. The visualizations presented here display
geometrical characteristics of vortices such as core line position and
vortex extent and kinematical characteristics such as rotation direction
and tangential velocity [13]. Since characteristic data files are orders
of magnitude smaller than CFD solutions and meshes, these visualiza-
tions permit real time interaction.

4 APPLICATION TO SPINNING MISSILE WITH DITHERING CA-
NARDS

In this section, we present results for the spinning missile with dither-
ing canards. The rolling of the missile coupled with the canard deflec-
tions produce lift forces on the canards. In response to the resulting
pressure differential, a counter rotating vortex pair is generated that
trails from the inboard and outboard tips of each canard. As the mis-
sile rotates and the canards dither, the angle of attack seen by a canard
varies and the strengths of its trailing vortices change over time. Ad-
ditionally, the sense of rotation of each vortex also changes. Under
certain conditions, one or more of these vortices may impinge on a tail
fin.

The specific case we considered employed the “0% command level”
canard schedule as described in [4]. The mesh, described in Table 1
was generated using SolidMesh [7]. The flow solution was computed
using the U2NCLE flow simulation code [12] for a Mach number of
1.6, an angle of attack of 3.0 degrees, and a Reynolds number of
41.3× 106 based on body length. The time step chosen for the so-
lution resulted in a rotation of the missile of one degree per time step.

Figure 14 shows a sequence of images that covers 6 degrees of ro-
tation for the missile. The column of images on the left shows the
extracted core lines. The core lines are colored by the sign of the he-
licity, (+) purple and (-) green to indicate the direction of rotation of
the vortex relative to the streamwise velocity. The images in Figure 14
were selected because they show that the vortices trailing from the
canard tips change rotation direction. The disturbance in the vortical

nodes 9,262,283
triangular faces 909,090

tetrahedrons 24,619,310
pyramids 32,753

prisms 9,882,451

Table 1. Description of unstructured hybrid mesh employed for CFD
simulation.

flow due to this reversal of rotation then propagates down the body
and eventually interacts with the tail fins. Although not completely
connected, and thus unsuitable for characterization by vortex core line
length, the quality of the core line is acceptable given the complexity
of the flow field. From the image on the top right, we note that the
strength of the primary vortex is maintained along the length of the
body as indicated by the reasonably constant green shade. We note
from the temporal variation that the strength of the vortex near the
canard tips is decreasing, initially, and then increasing as the canard
deflects further, as indicated by the red shading near the canard tip in
the bottom image. An animation showing the canards completing two
dither cycles (an approximate roll angle of 40◦) is included in the pa-
per directory. The change in the sense of rotation of each of the canard
vortices is clearly shown in the animation. Also evident are remnants
of poorly resolved vortices that are shed from the canard posts and
traverse the length of the body.

The detection and characterization process for the spinning missile
requires approximately 33 minutes per time step while running in se-
rial mode on a Sun Enterprise V880 with eight processors (750MHz
UltraSPARC III) with 2 GB RAM per processor (16 GB RAM total).
Run time and memory requirements are difficult to predict for they de-
pend not only on mesh size, but also on the percentage of cells with
complex eigenvalues of the velocity gradient tensor and the number
of vortices. We have characterized a data set with more nodes (20
million) than the spinning missile, yet it required only 11 minutes.

5 CONCLUSION

In this paper, we described a technique to visualize vortices in complex
flow fields found in practical CFD solutions computed on unstructured
meshes. The novel core line extraction technique with function fit-
ting allows us to resolve vortex core lines in solutions on unstructured
meshes. The k-means clustering of candidate cell aggregates allows
us to identify individual vortices in complicated vortex topology. Our
visualizations bring to light interesting and complex feature level vor-
tex behavior, such as the merging of two co-rotating vortices along
the serrated wing and the change in vortex rotation direction due to
the moving geometry of the spinning missile. Our two contributions
make such visualizations possible. In the future, we intend to produce
improved core lines by reducing the noise in the swirl vector field,
improve core line connectivity, adapt Jiang’s feature level vortex veri-
fication [15] to unstructured meshes, and improve extent computation
in regions where vortices merge.
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