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1 Introduction

In general, a feature can be defined as a pattern occurring in a dataset that
is the manifestation of correlations among various components of the data.
For many features that occur in scientific data, these correlations can be
defined precisely. For other features, they are not well understood or do not
lend themselves to precise definitions. Surprisingly, the swirling feature in
flow fields, commonly refered to as a vortex, is an example of a feature for
which a precise definition does not exist.

By most accounts [1–3], a vortex is characterized by the swirling motion
of fluid around a central region. This characterization stems from our visual
perception of swirling phenomena that are pervasive throughout the natural
world. However, translating this intuitive description of a vortex into a
formal definition has been quite a challenge.

Lugt [1] proposed the following definition for a vortex: A vortex is the

rotating motion of a multitude of material particles around a common cen-

ter. The problem with this definition is that it is too vague. Although it is
consistent with visual observations, it does not lend itself readily to imple-
mentation in a detection algorithm. In light of this, Robinson [3] attempted
to provide a more concrete definition of a vortex by specifying the conditions
for detecting swirling flows in three dimensions:

A vortex exists when instantaneous streamlines mapped onto a

plane normal to the vortex core exhibit a roughly circular or spiral

pattern, when viewed from a reference frame moving with the

center of the vortex core.
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The primary shortcoming of this operational definition is that it is self-
referential: the existence of a vortex requires a priori knowledge of the
orientation and motion of its core.

Despite the lack of a formal definition, various detection algorithms have
been implemented that can adequately identify vortices in most computa-
tional datasets. In this paper, we present an overview of existing detection
methods; in particular, we focus on nine methods that are representative of
the state-of-the-art. Although this is not a complete listing of vortex detec-
tion algorithms, the range of relevant issues covered by these nine methods
is comprehensive in scope. The methods are:

• Helicity Method by Levy et al. [4]

• Swirl Parameter Method by Berdahl and Thompson [5]

• Lambda2 Method by Jeong and Hussain [6]

• Predictor-Corrector Method by Banks and Singer [7]

• Eigenvector Method by Sujudi and Haimes [8]

• Parallel Vectors Method by Roth and Peikert [9]

• Maximum Vorticity Method by Strawn et al. [10]

• Streamline Methods by Sadarjoen et al. [11]

• Combinatorial Method by Jiang et al. [12]

We first present three taxonomies for classifying these nine detection
methods in Section 2. We then describe each algorithm in Section 3, along
with pseudocode where appropriate. Next, we describe a recently developed
verification algorithm for swirling flows in Section 4. In Section 5, we discuss
the different visualization techniques for vortices. Finally, we conclude and
highlight future directions in this field.

2 Taxonomy

Almost every paper published on the subject of vortex detection has pre-
sented a classification of its predecessors in some fashion. One of the most
comprehensive classifications of vortex detection methods was proposed by
Roth in [13]. In this section, we present three taxonomies for classifying
existing detection methods. These taxonomies are based on how the vortex
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Method Region/Line Galilean Local/Global

Helicity Line Not Invariant Local

Swirl Parameter Region Not Invariant Local

Lambda2 Region Invariant Local

Predictor-Corrector Line Invariant Global

Eigenvector Line Not Invariant Local

Parallel Vectors Line Not Invariant Local

Maximum Vorticity Line Invariant Local

Streamline Region Not Invariant Global

Combinatorial Region Not Invariant Local

Table 1: Taxonomies of vortex detection algorithms.

is defined, whether or not the detection method is Galilean invariant, and
the local or global nature of the identification process.

The first taxonomy classifies detection methods based on the defintion
of a vortex. A vortex can be defined either as a region or as a line. A
region-based vortex definition specifies criteria for identifying contiguous
grid nodes (or cells) that belong to either the vortex or its core. A line-based
vortex definition, on the other hand, specifies criteria for locating vortex core
lines. A set of contiguous line segments constitutes the vortex core line.
In general, detection algorithms corresponding to region-based definitions
are easier to implement and computationally cheaper than their line-based
counterparts. Line-based algorithms must precisely locate points where the
vortex core line intersect the grid cells. However, line-based algorithms
provide more compact representations of vortices and can easily distinguish
between individual vortices in close proximity. The latter is problematic for
region-based approaches. Table 1(column 1) categorizes the nine detection
methods based on this criterion.

The second taxonomy classifies detection methods based on whether or
not they are Galilean (Lagrangian) invariant. Most detection methods work
under the assumption of either steady flow fields or vortices moving much
slower than the average fluid particle. In a time-varying flow field, a vor-
tex exhibits swirling motion only when viewed from a reference frame that
moves with the vortex [1, 3]. In order to detect vortices in unsteady (time-
dependent) flows, it is necessary for the method to satisfy Galilean invari-
ance. A detection method is Galilean invariant if it produces the same
results when a uniform velocity is added to the existing velocity field. Thus,
methods which do not depend directly on the velocity, such as pressure or
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vorticity, are Galilean invariant. This is an important property especially in
the context of tracking vortices in time-varying flow fields. Table 1(column
2) categorizes the nine detection methods based on this criterion.

The third taxonomy classifies detection methods based on the local or
global nature of the identification process. A detection method is considered
to be local if the identification process requires only operations within the
local neighborhood of a grid cell. Methods that rely on the velocity gradient
tensor are usually local methods. On the other hand, a global method
requires examining many grid cells in order to identify vortices. Methods
that involve tracing streamlines in velocity or vorticity fields are considered
to be global. From the definitions in the preceding section, it is apparent that
a vortex is a global feature. It may be preferable to detect global features
using global methods; however, on the basis of computation, global detection
methods tend to be more expensive than local methods. However, in order
verify the accuracy of the detected results, a global approach is necessary.
We describe this aspect in more detail in Section 4. Table 1(column 3)
categorizes the nine detection methods based on this criterion.

3 Vortex Detection Algorithms

3.1 Helicity Method

Levy et al. [4] introduced the use of normalized helicity Hn for extracting
vortex core lines, though they were not the first to identify the strong corre-
lation between helicity and coherent structures in turbulent flow fields. Hn

is a scalar quantity defined everywhere except at critical points:

Hn =
v · ω

|v||ω|
(1)

Hn is the cosine of the angle between velocity v and vorticity ω. The
underlying assumption is that near vortex core regions, the angle between
v and ω is small. In the limiting case, where v ‖ ω, Hn = ±1, and the
streamline that passes through that point has zero curvature (straight line).
The authors suggested an approach to extract vortex core lines by first
locating maximal points of Hn on cross sectional planes, which are also
points of minimal streamline curvature, and then growing the core line by
tracing a streamline from the maximal points.

The sign of Hn indicates the direction of swirl (clockwise or counterclock-
wise) of the vortex with respect to the streamwise velocity component. It
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switches whenever a transition occurs between primary and secondary vor-
tex. The authors successfully used this feature with corresponding colors to
distinguish between the primary and secondary vortices in the hemisphere-
cylinder and ogive-cylinder datasets. However, the extracted core line may
not always correspond to the actual vortex core line [13].

3.2 Swirl Parameter Method

Berdahl and Thompson [5] presented a vortex detection method based on the
connection between swirling motion and the existence of complex eigenvalues
in the velocity gradient tensor J. The authors introduced the intrinsic swirl
parameter τ , defined by the ratio of the convection time tconv (the time for
a fluid particle to convect through the region of complex eigenvalues RC)
to the orbit time torbit (the time for a fluid particle to return to the same
angular position). Thus,

tconv =
2π

|Im(λC)|
torbit =

L

|vconv|
(2)

where Im(λC) is the imaginary part of the complex conjugate pair of eigen-
values, L is the characteristic length associated with the size of RC , and
vconv is the convection velocity aligned along L. From Equation 2, τ can be
written as:

τ =
tconv

torbit

=
|Im(λC)|L

2π|vconv|
(3)

When τ → 0, the fluid particle convects too rapidly through RC to be
“captured” by the vortex. Thus τ is nonzero in regions containing vortices
and attains a local maximum in the vortex core. For three dimensions, the
length and orientation of L are unknown, because in general there is no
single plane of swirling flow. The authors suggest using the plane normal
to either the vorticity vector ω or the real eigenvector eR, which are local
approximations to the actual vortex core direction vector. The convective
velocity vconv is computed by projecting the local velocity vectors onto this
plane:

vconv = v − (v · n)n (4)

where n is the plane normal computed from either ω or eR.
Figure 1 (courtesy of Michael Remotigue, Mississippi State University)

illustrates the results when this method is applied to the propeller dataset.
In the left image, the intensity of τ is described by a colormap. In the right
image, isosurfaces are generated showing the path of the tip vortex as well
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as a ring vortex that was shed off the propeller base. However, selecting
the right threshold for τ in order to distinguish individual vortices is often
difficult.

Figure 1: Swirl parameter

3.3 Lambda2 Method

Jeong and Hussain [6] proposed a definition for a vortex that is commonly
referred to as the λ2-definition. They begin with the premise that a pressure
minimum is not sufficient as a detection criterion. The problems are due to
unsteady irrotational straining, which can create a pressure minimum in the
absence of a vortex, and viscous effects, which can eliminate the pressure
minimum within a vortex. To remove these effects, they decompose the
velocity gradient tensor J into its symmetric part, the rate of deformation
or strain-rate tensor S, and antisymmetric part, the spin tensor Ω, and
consider only the contribution from S2 + Ω2.

S =
J + JT

2
Ω =

J − JT

2
(5)

They define a vortex as a connected region where S2 + Ω2 has two negative
eigenvalues. Because S2 + Ω2 is real and symmetric, it has only real eigen-
values. Let λ1, λ2, and λ3 be the eigenvalues such that λ1 ≥ λ2 ≥ λ3. If λ2

is negative at a point, then that point belongs to a vortex core. Through
several analytical examples and direct numerical simulation datasets, the au-
thors demonstrated the effectiveness of the λ2-definition compared to others.
However, in situations where several vortices exist, it can be difficult for this
method to distinguish between individual vortices.
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3.4 Predictor-Corrector Method

The vorticity-predictor, pressure-corrector method for detecting vortex core
lines was proposed by Banks and Singer [7,14]. Their underlying assumption
is that vortical motion is sustained by pressure gradients and indicated by
vorticity ω. The algorithm extracts a skeleton approximation to the vortex
core by tracing vorticity lines and then correcting the prediction based on
local pressure minimum. In order to find the initial set of seed points for
tracing vorticity lines, they consider grid points with low pressure and high
vorticity magnitude. However, as the authors pointed out, it is possible for
a grid point to satisfy both conditions without being part of a vortex core.
An outline of the algorithm is provided in Algorithm 1.

1: locate seed points with low pressure and high |ω|
2: for all seed points do
3: repeat
4: compute ωi at current skeleton point
5: step in ωi direction to predict next point
6: compute ωi+1 at predicted point Pω

7: locate minimum pressure Pp on plane ⊥ ω

8: if dist(Pω,Pp) < threshold then
9: correct next point to Pp

10: else
11: terminate skeleton growth
12: end if
13: eliminate seed points within distancer

14: until skeleton exits domain or is too long
15: end for

Algorithm 1: Predictor-corrector method

For the predictor step, vorticity integration can be performed using
fourth-order Runge-Kutta. The authors, instead, suggested a simplification
whereby the step size corresponds to the smallest dimension of the local grid
cell. For the corrector step, steepest descent is used to find the local pressure
minimum, with the step size, again, being the smallest grid cell dimension.

Algorithm 1 terminates when the minimum pressure point is too far from
the predicted point; however, the method is not guaranteed to terminate in
every case, because the growing skeleton can form closed loops, which is not
ideal for real vortices. Furthermore, special care must to be taken in order
to minimize the number of skeletons approximating the same vortex core
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line, since the skeleton grown from each seed point may end up describing
the same vortex core.

3.5 Eigenvector Method

The eigenvector method for detecting vortex core lines was first proposed
by Sujudi and Haimes [8]. The method is based on critical-point theory,
which asserts that the eigenvalues and eigenvectors of the velocity gradient
tensor J, evaluated at a critical point, define the local flow pattern about
that point. As the authors pointed out, there are swirling flows which do
not contain critical points within its center. In order to handle these cases,
velocity vectors are projected onto the plane normal to the eigenvector of the
real eigenvalue, assuming the other two eigenvalues are complex conjugate
pairs, to see if they are zero. If they are, then the point must be part of
vortex core. An outline of the algorithm is given in Algorithm 2.

1: decompose grid cells into tetrahedral cells
2: for all tetrahedral cells do
3: linearly interpolate v to produce J
4: compute all three eigenvalues of J
5: if two eigenvalues are complex conjugates then
6: compute eigenvector eR for the real eigenvalue
7: project v onto eR → reduced velocity vr

8: compute the zero vr straight line γz

9: if γz intersects cell twice then
10: add line segment to vortex core
11: end if
12: end if
13: end for

Algorithm 2: Eigenvector method

Initially, all mesh elements are decomposed into tetrahedral cells. Linear
interpolation of v within the cell follows, which induces a constant J. The
reduced velocity vr is computed by subtracting the velocity component in
the direction of eR, and is equivalent to projecting v onto the plane normal
to eR. Finding the zero locations on the plane requires setting up a system
of three equations using the linearly interpolated components of vr, which
can be solved using any two of the three linearly independent equations.
The solution is a straight line of zero vr.
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This method was successfully applied to detecting vortex cores in nu-
merous CFD applications [15, 16]. Figure 2 (courtesy of Robert Haimes,
Massachusetts Institute of Technology) illustrates one such example taken
from [16]. The yellow line segments represent the vortex cores extracted from
a transient F/A-18 simulation dataset. However, as the authors pointed out,
producing contiguous vortex core lines is not always possible because the un-
derlying interpolant may not be linear or line segments may not meet up at
shared faces. Modifications to the original algorithm are proposed in [17] to
address this issue and improve its performance.

Figure 2: Eigenvector approach ( c©1998 IEEE)

3.6 Parallel Vectors Method

The parallel vectors operator was first introduced by Roth and Peikert [9]
as a higher-order method for locating vortex core lines. They recast the
first-order eigenvector method into a parallel alignment problem between v
and its first derivative Jv (i.e., reduced velocity is zero when v is parallel to
the real eigenvector of J). In order to better capture slowly rotating curved
vortices that are typical in turbomachinery flow fields, they use the second
derivative of v which is defined as:

w =
D2v

Dt2
=

D(Jv)

Dt
= JJv + Tvv (6)

where T is a 3×3×3 tensor. Essentially, a vortex core line is the locus where
v is parallel to w: {x : v(x) × w(x) = 0}. An outline of the algorithm is
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given in Algorithm 3.

1: for all grid points do
2: calculate J and compute v′ = Jv
3: calculate J′ and compute w = Jv′

4: end for
5: for all grid faces do
6: find zero of function v × w
7: use Newton iterations starting from face center
8: if zero lies on face then
9: connect with straight line to previous zero

10: end if
11: end for

Algorithm 3: Parallel vectors method

Due to discretization errors, excessive fluctuations may result from com-
puting the higher-order derivatives. To avoid this, the authors recommend
smoothing the vector field data as a preprocessing step. In [13, 18], other
approaches for finding parallel vectors are presented, along with post priori

criteria for removing line segments that might be of insufficient strength
(speed of local rotation) or quality (angle between velocity at core and core
line).

Figure 3 (courtesy of Martin Roth, Swiss Federal Institute of Technology
Zürich) illustrates the results for the Francis turbine runner dataset and the
stator of a reversible pump-turbine dataset. The black line segments indicate
the locations of detected vortex core lines. Note the existence of gaps in the
detected core lines, which are mainly due to the large number of raw solution
lines produced by the higher-order method [13].

3.7 Maximum Vorticity Method

Strawn et al. [10] define a vortex core as a local maximum of vorticity magni-
tude |ω| in the plane normal to ω. This technique is applicable for free-shear
flows, but not shear layers, which have high |ω| but no local |ω| maxima.
The motivation for this approach comes from situations where multiple vor-
tices with the same orientation and overlapping cores are in close proximity.
The resulting velocity field would only exhibit a single rotational center. To
address this issue, the authors introduced the maximum vorticity method
outlined in Algorithm 4.
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Figure 3: Parallel vector operator

For the preprocessing step, ω is transformed into computational space,
where the search for |ω| maxima is done on a uniform grid. The gradient
of |ω| is assumed to vary bilinearly over the grid face. Finding the solu-
tion points where ∇|ω| = 0 requires solving a pair of quadratic equations
derived from the bilinear interpolation function. The authors also suggest
using two thresholds to eliminate some of the weaker vortex centers. The
first threshold eliminates cell faces with low |ω|, and the second threshold
eliminates cell faces whose normal may be misaligned with ω. This method
was successfully applied to distinguish individual vortices in the delta wing
dataset (primary, secondary, and tertiary vortices) and the V-22 tiltrotor
blades dataset (tip and root vortices from each rotor blade).

3.8 Streamline Methods

Sadarjoen et al. [11] proposed an efficient algorithm for detecting vortices us-
ing the winding angle method. The winding angle concept was first proposed
by Portela [2] in a mathematically rigorous but computationally expensive
fashion. Essentially, given a two-dimensional streamline, the winding angle
measures the amount of rotation of the streamline with respect to a point.
Sadarjoen et al. [11,19,20] simplified the definition and proposed an efficient
algorithm for extracting two-dimensional vortices based on it. By their def-
inition, the winding angle αw of a streamline is a measure of the cumulative
change of direction of streamline segments.

αw =
N−2∑

i=1

∠(pi−1,pi,pi+1) (7)
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1: compute ω at all grid nodes
2: for all cell faces do
3: examine its 4×4 surrounding nodes
4: if ∃ maximum |ω| in central nodes then
5: mark grid face as candidate face
6: end if
7: end for
8: for all candidate faces do
9: compute ∇|ω| using central difference at nodes

10: compute solution points where ∇|ω| = 0
11: if points within face and are local maxima then
12: mark them as vortex core points
13: end if
14: end for

Algorithm 4: Maximum vorticity method

where pi are the N streampoints of the streamline, and ∠(pi−1,pi,pi+1)
measures the signed angle between the two line segments delimited by pi−1,
pi, and pi+1, with counterclockwise rotation being positive and clockwise
rotation being negative. Therefore, a vortex exists in a region where αw ≥ 2π
for at least one streamline. For slowly rotating vortices, the 2π winding
criterion can be relaxed appropriately. An outline of the method is given in
Algorithm 5.

Once the winding streamlines are marked, a clustering algorithm, based
on the distance between center point and cluster, is used to group the stream-
lines that belong to the same vortex. The location of each cluster is taken to
be the location of the vortex core. Various attributes of the vortex, such as
shape and orientation are used to quantitatively visualize the vortices. Fig-
ure 4 (courtesy of I. Ari Sadarjoen, Delft University of Technology) depicts
the results when the method is applied to a slice of the tapered cylinder
dataset. Elliptical icons are used to represent the shape of the extracted
vortices, and the two colors (green and red) are used to represent the two
different orientations.

Yet another streamline method is the curvature density center method
for locating vortex cores in two-dimensional flow fields [11, 19, 20]. Pagen-
darm et al. [21] extended the method for three-dimensional flow fields. The
underlying assumption behind this approach is that the center of curvature
for each point on a winding streamline should form a tight cluster, and
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1: select an initial set of seed points
2: for all seed points do
3: trace its streamline and compute αw

4: if |αw| ≥ 2π and initial point near end point then
5: mark streamline as winding
6: end if
7: end for
8: for all winding streamlines do
9: compute its center point c (geometric mean)

10: if c /∈ vortex clusters then
11: add c to vortex clusters
12: end if
13: end for

Algorithm 5: Winding angle method

the local maxima within this cluster is the vortex core. By computing the
curvature center at each sample point throughout the domain, a density
field is formed whose peaks are the locations of vortex cores. As pointed out
in [11,19,20], this approach lacks the robustness to work well for non-circular
flows, such as the elliptically shaped vortices illustrated in Figure 4.

3.9 Combinatorial Method

Jiang et al. [12] presented a method for extracting vortex core regions based
on ideas from combinatorial topology. In this approach, a combinatorial
labeling scheme based on Sperner’s Lemma is applied to the velocity vector
field in order to identify centers of swirling flows. The origin of Sperner’s
Lemma lies in the Fixed Point Theory of combinatorial topology. The
connection between vortices and fixed points (i.e., critical points) are well
known [22,23]. Whereas Sperner’s Lemma labels the vertices of a simplicial
complex and identifies the fixed points of the labeled subdivision, the pro-
posed method labels the velocity vectors at grid nodes and identifies grid
cells that are most likely to contain critical points.

Each velocity vector v is labeled according to the direction range in which
it points. It is sufficient to examine the surrounding nodes of a grid cell for
the existence of revoling velocity vectors. The number of direction ranges
corresponds to the number of surrounding nodes. (For a quadrilateral mesh,
there are four direction ranges, each spanning 90◦. For two-dimensional flow
fields, a grid cell belongs to a vortex core region if each of the four velocity
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Figure 4: Winding angle method

vectors from the surrounding nodes point in a unique direction range, or
satisfy the direction-spanning criterion. For three-dimensional flow fields, it
is necessary to approximate the local swirling plane at each grid cell, and
then project the surrounding velocity vectors onto this plane. An outline of
the three-dimensional algorithm is given in Algorithm 6.

1: for all grid cells do
2: compute swirl plane normal n at cell center
3: project v from surrounding nodes
4: for all vp in swirl plane do
5: compute its angle α from local x-axis
6: label direction range for α
7: end for
8: if all direction ranges are labeled then
9: mark grid cell as vortex core

10: end if
11: end for

Algorithm 6: Combinatorial method

The authors use a simple region growth algorithm along with Algorithm 6
in order to segment the individual vortex core regions. What makes this
method effective is its insensitivity to approximations to the local swirl plane
normal n. Figure 5 shows the results from this method on the the blunt fin
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dataset. The yellow regions are detected vortex core regions, visualized using
isosurfaces. The blue lines are the streamlines seeded near the detected
vortex cores, and they serve to demonstrate the success of this approach
by showing that the detected vortex cores actually lie in the center of the
swirling flow. However, this approach can produce false positives [24].

Figure 5: Combinatorial method ( c©2002 IEEE)

4 Swirling Flow Verification

The main deficiency common to all these detection algorithms is not the
false positives which they may produce, but rather their inability to au-
tomatically distinguish between the false positives and the actual vortices.
Imprecise vortex definitions or numerical artifacts are just two of the rea-
sons why these false positives occur. The fundamental problem is that most
detection algorithms employ local operators (e.g., velocity gradient tensor
J) for detecting global features. As pointed out by Thompson et al. [25],
these local operators are problematic because they do not incorporate the
necessary global information into the detection process.

The most direct approach for verifying if a candidate feature is indeed
a vortex is by visual inspection. The primary problem with this approach
is that it requires human intervention, a process that is contrary to the
automatic nature of the detection algorithms. The geometric verification
algorithm proposed by Jiang et al. [24] addresses this issue by automating
the verification process. By identifying the swirling streamlines surrounding
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a candidate vortex core, the verification algorithm can arbitrate the presence
or absence of a vortex most consistent with visual scrutiny.

As a post-processing step, the verification algorithm can work with any
detection algorithm. Given a candidate vortex core, the goal is to identify
the swirling streamlines surrounding it by using various differential geom-
etry properties of the streamlines. The algorithm was designed for three-
dimensional flow fields; in the two-dimensional case, using the winding angle
method discussed in Section 3.8 to verify planar swirling streamlines is suffi-
cient. Identifying three-dimensional swirling streamlines is non-trivial since
vortices can bend and twist in various ways. An outline of the verification
algorithm for a candidate vortex core is given in Algorithm 7.

1: uniformly distribute seed points at start position
2: for all seed points do
3: for i = 0 to N do
4: trace next streampoint
5: compute tangent vector t and probe vector
6: probe vortex core for swirl plane normal n
7: align n to z-axis and save transformation
8: apply transformation to t → ta

9: project ta on (x,y)-plane → tp

10: if ∠(t0
p, t

i
p) ≥ 2π then

11: accept candidate vortex core
12: end if
13: end for
14: end for

Algorithm 7: Geometric verification algorithm

The verification algorithm begins by locating the upstream extent (tip)
of the candidate vortex core. For candidate core lines, this is trivial; for
candidate core regions, the authors in [24] proposed a bounding box heuris-
tic. The initial position is the tip of the candidate vortex core. Seed points
are distributed uniformly on a circle in the swirl plane at the start position.
Once the projected tangent vectors makes a full revolution in the (x,y)-plane
(i.e., satisfy the 2π swirling criterion), the candidate vortex core is accepted
as an actual vortex core.

Figure 6 depicts the results for the delta wing dataset. In the left image,
the yellow regions are actual vortex cores and the green regions are false pos-
itives, artifacts from the combinatorial method. The middle image depicts
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Figure 6: Geometric verification ( c©2002 IEEE)

the swirling streamlines surrounding the verified vortex cores. The right
image shows the manner in which Algorithm 7 confirms that the identified
candidate is indeed a vortex core. The cyan arrows represent the tangent
vectors and the orange arrows represent the probe vectors. The bottom
image on the right illustrates the projected tangent vectors revolving in the
(x,y)-plane.

5 Visualization of Vortices

Methods used to visualize vortices are inextricably linked to the manner in
which the vortices are detected. For example, line-based algorithms produce
results that can best be visualized as line segments, as shown in Figures 2. In
contrast, results generated by region-type algorithms can best be visualized
using colormaps or isosurfaces, as shown in Figure 1. Additionally, iconic
representations, such as the elliptical icons shown in Figure 4, can also be
used to quantitatively visualize various attributes of vortices.

By seeding streamlines near vortex cores, the swirling patterns that are
generally associated with vortices can be visualized. This is one of the pri-
mary techniques to ascertain the accuracy of detected results, either man-
ually or automatically (see Section 4). Figure 7 illustrates how some of the
pioneers in this field leverage this technique to validate or invalidate results
from detection algorithms. The top left image (courtesy of I. Ari Sadar-
joen, Delft University of Technology) illustrates the Pacific Ocean dataset
where streamlines (cyan lines) are seeded throughout the domain to show
regions of winding streamlines. The intent [11] was to demonstrate the inef-
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Figure 7: Visualization of vortices ( c©1998 IEEE)

fectiveness of the curvature center density method. The density peaks (gray
isosurfaces) do not correspond well with the winding streamlines. The top
right image (courtesy of Martin Roth, Swiss Federal Institute of Technol-
ogy Zürich) depicts the vortical flow in the blunt fin dataset. Vortex core
lines (white lines) were extracted using the parallel vectors method. In this
case [9], the intent was to demonstrate the effectiveness of their method for
extracting vortex core lines that correspond exactly to the center of swirling
streamlines (black lines).

Besides seeding streamlines, the cutting plane technique is also preferred.
Each cutting plane takes a sample slice of the dataset along a certain direc-
tion, and the visualization method can be isocontours of a scalar quantity or
line-integral convolution (LIC) [26] of velocity vectors. The bottom image
of Figure 7 depicts the wing-tip dataset where vortex core lines (red line
segments) were extracted using the eigenvector method. Sample slices were
taken [16] along the detected vortex core to demonstrate the correspondence
between the isocontours and the extracted core line.
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6 Conclusion

Throughout the past decade, there has been a steady stream of publica-
tions on the subject of vortex detection. We presented an overview of nine
detection algorithms that are representative of the state-of-the-art. Each
detection algorithm is classified based on how it defines a vortex, whether
or not it is Galilean invariant, and the local or global nature of its identi-
fication process. Although many of the algorithms share similarities, each
has its own advantages and disadvantages. A recently developed verifica-
tion algorithm, that can be used in conjunction with any detection method,
was also overviewed, as well as various techniques for visualizing detected
vortices.

Although much progress has been made towards detecting vortices in
steady flow fields, there is still a paucity of methods that can do the same
in unsteady (time-varying) flow fields. None of the detection methods de-
scribed in this paper can adequately address all of the issues unique to
unsteady vortical flows. A major challange will be to develop efficient and
robust vortex detection and tracking algorithms for unsteady flow fields.
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