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Abstract:
Simulation is enhancing and, in many instances, replacing experimentation as a means
to gain insight into complex physical phenomena. Recent advances in computer hard-
ware and numerical methods have made it possible to simulatephysical phenomena at
very fine temporal and spatial resolutions. Unfortunately,given the enormous sizes of
the datasets involved, analyzing datasets produced by these simulations is extremely
challenging. In order to more fully exploit simulation, theanalysis of these large
datasets must advance beyond current techniques that are based on interactive visu-
alization.

We outline our vision for one such approach and describe progress on a unified
framework that promises to provide a novel method to explorelarge simulation data
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sets. We illustrate its application to two disparate science drivers – temporally varying
solid and fluid systems. In both applications, there are hidden hierarchies offeatures
as well as many abstract multidimensional featurecharacterizations(e.g. shapes).
Through this framework, we offer a systematic approach to detect, characterize, and
track meta-stable features as well as formulate hypothesesabout their evolution – an
important step in extracting vital information from such complex systems.

Keywords: Feature mining, Spatio-temporal patterns, Shape-based
Mining, Physics-based mining, Categorization, Computational simulations

3.1 Introduction

The physical and engineering sciences increasingly study large, complex ensembles
seeking to understand the underlying phenomena. These studies require analysis of
the data generated by either experiments or computational simulations. In this chapter,
we focus on the latter and provide motivation using applications from two disparate
fields – numerical simulations of fluid flow and molecular dynamics. Computational
fluid dynamics (CFD) seeks to understand flow patterns to enhance, for instance, drug
delivery schemes for pulmonary treatments for asthma. Similarly, molecular dynamics
(MD) seeks to understand the evolution of material defects that affect the properties or
performance of industrial materials. In these data, patterns of interest arise and evolve
over time as a result of the unsteady nature of the phenomenonunder consideration.

Scientific discoveries are often best understood visually –from Galle seeing Nep-
tune in 1846 to Binnig and Rohrer seeing atoms on a surface in the twentieth century.
Both discoveries were not surprises in the sense that previous analysis had convinced
most of their reality. However, each discovery stimulated future work more dramati-
cally than any analysis might have done.

Unfortunately, the size of simulation datasets significantly challenges our abilities
to explore and comprehend effectively the generated data. Analysis via interactive visu-
alization sessions is tantamount to searching for the proverbial “needle in a haystack.”
Currently, a well-trained individual may need several daysor even weeks to analyze the
data generated by an MD simulation and create a list of viabledefect structures. Sim-
ilarly, in the extremely large datasets generated by simulations of complex fluid flows,
locating and tracking relevant features are daunting tasks. In both cases, phenomena
occur on multiple length and time scales. Some features persist sufficiently to have
gross macroscopic effects. Other short-lived transients are precursor events central to
the unsteady (in the temporal domain) behavior of the system. An additional complica-
tion is that currently available hardware does not have the prowess yet to provide even
near real-time visualizations.

Therefore, we believe it is crucial that some degree of automation be incorporated
into the exploration process for large datasets. One such successful approach is de-
scribed in [Machirajuet al.2001] and is based on a representational scheme that facil-
itates ranked access to macroscopic features in the dataset. However, other than iden-
tifying, denoising, and ranking the features, no attempt ismade to extract information
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about the features or track and catalog them.
An alternative approach would be to apply traditional data mining algorithms to

these scientific datasets. However, it is our contention that existing data mining tech-
niques, applied in isolation, are simply too general. Embedding domain expertise (i.e.,
via understanding the science) in the data mining process iscritical to its success es-
pecially for the datasets characteristic of large-scale simulations. Moreover the appli-
cation of existing data mining techniques may not be the mostefficient of solutions,
particularly for analyzing complex simulation data.

Thus, there is a paucity of general approaches that facilitate meaningful analysis
of large and complex data describing physical phenomena. Traditional There is a need
to explore a larger space of solutions that are based on the underlying physics and are
enabled by computer science techniques from visualization, data analysis, and data
mining. By incorporating application-specific physics into the mining effort, we can
develop characterizations of physically-relevant features. In this chapter, we describe
one such approach that we call feature mining.

The remainder of this chapter is organized as follows. In Section 3.2 we describe
the two important applications that motivate this work. In Section 3.3 we describe the
system and identify the key components. Section 3.4 documents the preliminary results
we have for the two application domains, while Section 3.5 describes previous work
conducted by other groups. Finally we provide conclusions and future directions in
Section 3.6.

3.2 Example Applications

We now provide some background information on the two science drivers we have
chosen – respiratory flow in multi-generational bronchial trees and defect evolution in
materials. While our two science drivers would seem significantly different, we con-
tend that a common framework can facilitate effective exploration for both problems.

3.2.1 Computational Simulation of Biomedical Fluid Flows

Respiration – specifically, airflow through the network of lung airways – produces sur-
prisingly complex flow fields. Even though the flow is laminar through much of the
bronchial tree, secondary currents can be dominant, particularly transverse vortex pairs
that form due to axial curvature of the tubes and wall shear. These vortices migrate
downstream and interact with new ones generated by repeatedbranching. These sec-
ondary flows are critical to the efficient filtering of inhaledair: aerosols, entrained in
their trajectories, impact mucus-lined walls from which they can be expelled from the
lungs through the action of cilia or coughing.

The analysis of these secondary flows is complex, both because of their not-yet-
understood persistence and their branching into multiple vortices. Much of the compu-
tational modeling of flow through small airway bifurcationsis that due to Gatlin, Ham-
mersley,et. al [Hammersleyet al.1993, Gatlinet al.1995, Gatlinet al.1997b, Gatlinet
al.1997a]. When dealing with datasets generated by simulations of complex temporally
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varying fluid flows, it is challenging to locate and track relevant features. Existing tech-
niques for vortex detection are typically based on local, flow-field parameters such as
the velocity gradient tensor. The generation of new features and destruction of existing
features present challenges for feature correspondence algorithms.

Potential Impact: New data mining techniques relevant to computed respiration
flow data not only can enhance the understanding of known flow characteristics, but
also may discover previously undetected features, just as visualization techniques re-
vealed the long unknown secondary structures in the flow. Of particular interest are
the longevity of vortex pairs generated by bifurcation and the mechanisms of inter-
action between vortices. Additionally, the detection of regions of flow separation are
important for understanding the impaction of entrained particles and the interruption of
laminar flow. Improved understanding of these flows has two important applications:
(1) the health hazard posed by the inhalation of carcinogenic, disease-bearing, or lung-
damaging aerosols and (2) the clinical delivery of both local and systemic aerosolized
drugs through the lungs. While the depth of penetration intothe tubular network of
the lungs depends on the nature and concentration of particles, the aerodynamics of
respiration plays a critical role.

3.2.2 Molecular Dynamics Simulations of Defect Evolution

The key complexity of real materials used in commercial applications is not that they
are defected in the trivial sense of being imperfect or impure, but rather that their
material properties depend critically on their nonideality. As an example, the enhanced
diffusion of dopants in the presence of extended�311� defects in silicon is a limiting
factor in the fabrication of shallow junction devices [Cowern et al.1999]. The growth
of such extended defects involves the diffusion, capture and dissociation of silicon point
defects [Arai, Takeda, & Kohyama1997,Kimet al.1999,Kimet al.2000]. This example
can be repeated with variations in every material essentialto current high technology.

Molecular dynamics simulations can track the nucleation and growth of defects but
realistic time scales exceed computing technology. Emerging acceleration techniques
[Montalenti, Sørensen, & Voter2001,Sørensen & Voter2000,Voter1997,Voter1998]can
achieve realistic simulation times. Wavelet techniques [Richie, Kim, & Wilkins2001]
can dramatically reduce the molecular dynamics data and detect persistent defect struc-
tures. The challenge is to identify and classify these structures and track their evolution
and interactions.

Potential Impact: New data mining techniques can not only uncover fundamen-
tal defect nucleation and growth processes but also provideessential parameters for
modeling macroscopic properties of materials. This need iswell recognized in the
the semiconductor industry in its “silicon roadmap” that identifies the short- and long-
range problems necessary to continually pack more transistors on a chip. In structural
materials used, for example, in turbine engines, there is a growing need to connect the
microscopic and macroscopic scales. Indeed the phrase “multiscale methods” recog-
nizes the wide spread importance of connecting complex microscopic processes to the
design and optimization of materials properties.
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3.3 Generalized Framework

Essentially, there is a need to deduce the presence of features and derive their shape
characteristics from a large data repository that describes some time-varying, evolu-
tionary phenomenon. In this context, shape refers to the salient characteristics of a
feature including kinematical and dynamical characteristics along with a geometrical
description. This abstract notion of shape allows us to apply more general data min-
ing algorithms to the extracted features and their characteristics. It is our claim that
a “shape-based” data-mining paradigm will prove fruitful in the analysis of complex
unsteady phenomena. Kamath also makes similar remarks about the utility of feature-
based approaches [Kamath2001].
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Figure 3.1: Generalized Feature Mining Framework

Figure 3.1 illustrates our generalized framework applied to processing of physically-
based simulation data. We contend that a common framework can compactly store and
analyze data of evolutionary phenomena. We assume that certain locally computable
quantities can detect precursor events. Our approach is novel in its flexibility and ap-
plicability across disciplines. The shape-based analysisconverts the task of data man-
agement and analysis into one of choosing robust shape descriptors and being able to
index features from a catalog. The descriptors will be derived from the application.

In addition to feature detection algorithms, aggregation or segmentation, tracking
and characterization algorithms must be utilized in conjunction with traditional data
mining algorithms to facilitate cataloging detected structures and expediting searches



196 CHAPTER THREE

to gain scientific insights. Our framework synergisticallybrings to bear these tech-
niques to address the problems associated with analyzing large datasets generated by
simulations of physical phenomena. We now describe the key elements of our frame-
work.

Spatial Partitioning to Exploit Locality

Fine spatial resolutions are often used to resolve featuresin computational simulations.
Tracking features over the entire spatial domain is not viable and meaningful. Hence,
through a process of partitioning, smaller sub-domains areconsidered for shape and
feature evolution. This process is tantamount to dividing the bale of hay into smaller
bales to search for the proverbial needle. Thus regular and irregular sized sub-domains
derived from either just the domain or function values can beconsidered.

Multiscale Event and Feature Detection

A feature at a given temporal scale can be stable, meta-stable, or transient. The birth,
evolution and death of a feature is often triggered by precursor events. It is there-
fore crucial to identify when such events occur. We have chosen a “trigger-based”
multi-resolution analysis (MRA) using wavelets for event detection. Thus, a single
derived quantity or a trigger is monitored for events at multiple time scales. For in-
stance this quantity isswirl in a CFD simulation. In an MD simulation this quan-
tity is potentialor energyor dislocationsof atoms. Multiscale trigger monitoring is
needed given the range of feature lifetimes. Wavelet techniques are effective here and
are already successfully working in molecular dynamics simulations [Richie, Kim, &
Wilkins2001,Richieet al.2002].

Feature Mining

A systematic approach to feature mining [Thompsonet al.2002], i.e., the process of
detecting, characterizing and tracking relevant features, is being developed. Our in-
tent is to exploit the physics of the problem at hand to develop highly discriminat-
ing, application-dependent feature detection algorithmsand then use data mining algo-
rithms to classify, cluster, and categorize the identified features. Our work parallels that
of Yip and Zhao [Yip & Zhao1996] in some ways. It should be noted that our work
relies on more physics-based understanding of features andexploits the underlying
physics to a greater extent.

The most basic aspect of feature mining isfeature detection. The output of any
detection algorithm is a collection of many regions-of-interest (ROIs). The underlying
physics is exploited to locate features using local operators or sensors to detect and
non-local or global operators to verify. Verification is need in some cases to confirm
that a given ROI indeed represents a feature. We consider defects at quenched states
and finite temperatures for MD simulations and shocks and vortices for CFD.

A second component of feature mining isshape-based feature characterization
and categorizationin which the “shape” of a feature is described by characteristics,
such as shape and structure, and kinematical and dynamical properties in an abstract
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multidimensional shape space. The descriptors for a MD simulation can include the
number of atoms involved, their orientations, the connectivity between atoms, the tra-
jectory, and history of its evolution. In a CFD simulation, vortices, the type of feature
of importance for respiratory flows, can be characterized bytheir strength and sense
of rotation as well as obvious geometrical parameters such as position, shape, and
extent. These features can be categorized by notions of similarity. Shape categories
enable synergistic understanding of events and features inthe MD and CFD domains.
To compute the similarity between shapes or structures we rely on spatial geometric
hashing [Wolfson & Rigotsos1997] and clustering algorithms [Jain & Dubes1988]. To
categorize the structures we rely on classification algorithms [Quinlan1996] using the
generalized shape descriptors as input to the classifiers. For CFD data we employ a gen-
eralized shape descriptor for swirling regions and proposehierarchical shape matching
algorithms.

A third component of feature mining iscorresponding and tracking of features
over time. The generation of new features and destruction of existingfeatures pose
major challenges to effective, feature-tracking algorithms. The essential problem is to
determine how the position of a particular feature changes during a given time interval.
In our datasets, this is non-trivial since fissures and fusions of features are extremely
common. Furthermore, the structural descriptors of the same feature may change over
time. Tracking and correspondence complete the construction of the multi-dimensional
shape space for a given application. Relevant related work in feature tracking was
reported in [Samtaneyet al.1994, Silver & Wang1997]. Shapes were not considered
therein and the method is, in general, expensive. Similarlyin [Reinders, Post, &
Spoelder1999,Reinders, Jacobson, & Post2000] the skeleton or an approximate medial
axis was computed for vortices. However, this representation is verycrispand does not
allow tangible matching and tracking. In [Thampy2003], a predictive algorithm was
developed that utilized the evolution of selected kinematical and dynamical properties
to enhance confidence in the correspondence algorithm.

Mining for Spatial and Spatio-Temporal Patterns

Over any time interval in a simulation, we need techniques that can identify important
spatial patterns efficiently. Some patterns can be complex and not necessarily sequen-
tial. The aim is to derive predictive rules: combinations offeatures resulting in certain
events, (e.g., fusion or fissure). To derive such rules requires identifying frequently
occurring spatial patterns. Clustering, association [Agrawalet al.1996], and sequen-
tial pattern analysis [Parthasarathyet al.1999], and spatio-temporal analysis [Vla-
chos, Kollios, & Gunopulos2002] will be used to determine the important patterns.
Our eventual goal is to correlate information from a shape categorization together with
transition detection mechanisms to help discover novel axioms relating to the evolution
of shapes over time. An example of such an axiom could be “a type-A feature evolves
into a type-B feature through some particular mechanism.” Such rules can be found
using event-based sequential and association pattern analysis. Equally important is to
identify those axioms that dominate the particular simulation type. These data mining
algorithms will operate on the shape space constructed in anearlier step and produce
explanations of feature behavior and evolution.
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Generality

The large-data exploration methodology we describe is appropriate for any data that
can be transformed to a multiscale representation and consists of features that can be
extracted through local operators and aggregated in spatial, scale, and temporal dimen-
sions. Thus, one can consider domains in addition to CFD and MD.

3.4 Current Efforts

In the previous sections we described our vision for the generalized framework and
described our motivating applications. In this section we describe current and ongoing
work toward realizing our vision. The methods described below will partially construct
the shape space for a given application. Work on tracking andcorrespondence is on-
going and is not described. We also do not describe our approach to conducting data
mining tasks in the shape space as it is a work in progress.

3.4.1 Feature Mining

In this section, we focus on one component of feature mining and describe two distinct
feature detection paradigms [Thompsonet al.2002]. The common thread is that both
are bottom-up feature constructions with underlying physically-based criteria. The two
perform essentially the same steps, but in different orders. As will become evident, it is
unlikely that non-physics-based techniques would providethe fidelity needed to locate
complex flow field (CFD) or defect (MD) structures.

In general, a feature is a pattern occurring in a dataset thatis of interest and that
manifests correlation relationships among various components of the data. For in-
stance, a shock in a supersonic fluid flow would be considered asignificant feature:
when such a shock occurs, the pressure increases abruptly inthe direction of the flow,
and the fluid velocity decreases in a prescribed manner. A significant feature also has
spatial and temporal scale coherence.

For many applications, generic data mining techniques suchas clustering, associ-
ation, and sequencing can reveal statistical correlationsbetween various components
of the data. Returning to the shock example, we could use statistical mining to fer-
ret out associations, but it might be difficult to attach precise spatial associations for
the rules discovered. A fluid dynamicist, however, would like to locate features with
a rather high degree of certainty. Such qualitative assertions alone will not suffice.
This is where our approach to feature mining comes in: we takeadvantage of the fact
that, for simulations of physical phenomena, the field variables satisfy certain physical
laws. We can exploit these kinematic and dynamic considerations to locate features of
interest.

The fidelity improvements garnered by tailoring these highly discriminating feature
detection algorithms to the particular application far outweigh any loss of generality.
The state of the art in feature detection and mining in simulation data is similar to what
existed for image processing when edge detection methods were the main techniques.
Much more is now understood, and mining for image data is often done in terms of
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the features, namely edges. This suggests that a blend of data- and feature-mining
methods might have the potential to reduce the burdensome chore of finding features
in large datasets.

Point classification techniques

The first feature detection paradigm, which we call point classification, requires several
operations in sequence:

� Detection by application of a local operator at each point inthe domain
� Binary classification of each point based on some criteria
� Aggregation of contiguous regions of similarly classified points
� Denoising to eliminate aggregates that are of insufficient extent, strength, etc.
� Ranking based on feature saliency
� Tracking identified features

This approach identifies individual points as belonging to afeature and then aggre-
gates them to identify regions that are features. The pointsare obtained from a tour of
the discrete domain and can be in many cases the grid points ofa physical grid (CFD)
or a lattice (MD). The operator used in the detection step andthe criteria used in the
classification step embody physically based point-wise characteristics of the feature of
interest. In this context, classification accords membership of a discrete point in the
dataset to a feature.

Aggregate classification techniques

We can best incorporate the global information needed to define a vortex into our sec-
ond feature detection paradigm, the aggregate classification approach. Aggregate clas-
sification follows a somewhat different sequence of operations:

� Detection by application of a local operator at each point inthe domain
� Aggregation of contiguous regions of probable candidate points
� Binary classification (or verification) of each aggregate based on some criteria
� Denoising to eliminate aggregates that are of insufficient extent, strength, etc.
� Ranking based on feature saliency
� Tracking identified features

This approach identifies individual points as being probable candidate points in a
feature and then aggregates them. The classification algorithm is applied to the aggre-
gate using physically based regional criteria to determinewhether the candidate points
constitute a feature. Thus, the operator deployed towards point classification can be ef-
ficient but less accurate. False positives generated at the earlier stages can be eliminated
later in the verification stage. Classification in this context confirms that an aggregated
subset of a domain indeed forms a relevant feature.
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Figure 3.2: The results of our point classification algorithm applied to a delta wing
dataset. The front and top views respectively are shown. Theyellow regions indicate
regions of swirling flow. There exist several regions which are falsely classified.

3.4.2 Fluid Dynamics

We now present two examples of feature detection algorithmsas applied to CFD datasets.
Although algorithms have been developed for other features, we focus on those for vor-
tices because of the critical role they play in the bronchialairflow. Additionally, the
vortex provides a direct way to contrast the two different feature detection paradigms.

CFD Example 1 : Vortex Detection using Point ClassificationThe first tech-
nique we consider uses the eigenvalues of the local velocitygradient tensor. In regions
of swirling flow, the eigenvalues of the velocity gradient tensor are complex. Berdahl
and Thompson [Berdahl & Thompson1993] defined a swirl parameter that estimates
the tendency for the fluid to swirl about a given point. The swirl has a nonzero value
in regions containing vortices and attains a local maximum in the core region. In this
point classification algorithm, the detection step consists of computing the eigenval-
ues of the velocity gradient tensor at each field point. The classification step consists
of checking for complex eigenvalues and assigning a swirl value if they exist. The
aggregation step then agglomerates contiguous grid pointswhere the swirl parameter
exceeds a threshold value into vortical regions. This method’s primary shortcoming
is that it–and all eigenvalue-based vortex detection techniques–can generate false pos-
itives. An example of this method is shown in Figure 3.2. Its local nature makes it
unable to discriminate between locally curved streamlinesand closed streamlines char-
acteristic of a vortex. Other features, such as shocks, are more amenable to the point
classification framework.

CFD Example 2 : Vortex Detection using Aggregate Classification We recently
developed an aggregate classification-type vortex detection technique. We based its
detection step on an idea derived from a lemma in combinatorial topology. Specifically,
velocity vectors around core regions exhibit certain flow patterns unique to vortices,
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Figure 3.3: The results of our aggregate classification technique applied to the delta
wing dataset. (left) All candidate core regions are shown. The verified cores are shown
in yellow while the spurious ones are shown in green. (middle) Streamline tracing
around verified cores. (right) The top image shows the verification algorithm at work
through seeding and tracing, while the bottom image shows illustrates the use of pro-
jections and angles to verify vortices.

and it is precisely these flow patterns that we search for in the computational grid. Not
surprisingly, our approach is related to critical point theory. However, critical points
alone are not sufficient to detect a vortex. For each grid point, our algorithm examines
its immediate neighbors to see whether the neighboring velocity vectors point in three
or more direction ranges. The novelty of this method is its relative insensitivity to core
direction. Therefore, very approximate core directions may be used in the detection
step.

Our technique segments candidate core regions by aggregating points identified
from the detection phase. We then classify (or verify) thesecandidate core regions
based on the existence of swirling streamlines surroundingthem. (For features that
lack a formal definition, such as the vortex, we must choose the verification criteria
so that it concurs with the intuitive understanding of the feature. In this case, verify-
ing whether a candidate core region is a vortex core region requires checking for any
swirling streamlines surrounding it.) Checking for swirling flow in three dimensions
is a nontrivial problem since vortices can bend and twist. The technique we developed
essentially checks to see if the local tangent to the streamline, when projected onto the
plane normal to the local core tangent, spans 2
 . The aggregate nature of this classi-
fication step is apparent. Checking for swirling streamlines is a global (or aggregate)
approach to feature classification (or verification) because swirling is measured with
respect to the core region, not just individual points within the core region. Figure 3.3
describes all steps of this paradigm.
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3.4.3 Molecular Dynamics Simulations of Defect Evolution

The challenge of detecting features during an ongoing MD simulation was met with
the application of multiresolution analysis (MRA) techniques. Wavelet analysis is ex-
ploited in the time domain to analyze dynamics. For each atom, its sequence of po-
sitions are projected on a wavelet basis, with the expansioncoefficients generated in-
crementally using components supplied by the STORMRT Scientific Wavelet Package
[Richie, Kim, & Wilkins2001]. These components treat streaming data more efficiently
than more conventional “fast” wavelet transform (fwt) techniques.

The same feature mining procedures that worked well for CFD data work for MD
too. In any persistent structure, “defect” atoms must be distinguished from ”bulk”
atoms. While this task might seem more challenging at finite temperature due to the
thermal noise, asinglerule works for all structures: thermal and quenched. For a bulk
atom, precisely four atoms have bonds (with the bulk atom) less than 2.6Å and the
angles between any two bonds lie within 90-130 degrees. Any other atom is a defect.
Similar definitions can be formulated for other systems. Atoms near the surface of a
periodically repeated cell don’t ”see” the other atoms though. This problem is solved
by padding the cell with a layer of periodic material.

Here, we illustrate how point classification procedures canbe employed toward
the defects in the quenched (cooled state) and finite thermaltemperatures respectively.
Each atom site is visited and the atom is tested for membership in a defect ensemble.
The classification operator for this application is as follows. We define two conditions��

(bond angle as above) and
��

(number of bonds as above) to accurately classify
bulk atoms. Theconjunctionof the above two conditions as well as thedisjunction
are evaluated for all atom sites. The atom sites which satisfy the conjunction are the
ones which definitely belong to the bulk. Those that satisfy the disjunction will with
some likelihood belong to the bulk. The remaining atom sitesare definitely part of the
defect. Such atoms are referred to asdefect atoms. The defect atoms are then spatially
clustered to aggregate these into possible defect structures. We empirically verified that
this method works well even on noisy data. Figure 3.4a shows apersistent structure
at 1000 K. The black atoms are those identified as defect atoms. Figure 3.4b shows
the same structure quenched with a first-principles approach; the quenching removes
thermal noise at a heavy computational cost. The same atoms are marked in both
structures which demonstrates this method works on non-quenched structures.

In a large scale simulation the challenge is to isolate separate defect clusters. A
line is drawn connecting all defect atoms that lie within 4Å of each other. Thus, a
cluster is comprised of connected defect atoms, a computationally fast process. Figure
3.5 shows two defects embedded in a 512 atom lattice.

The deployment of aggregate classification techniques for MD data is far from
clear. This is still an active area of research. The large number of resulting identified
structures (from the detection phase) must be sorted into a smaller set of distinct types.
Quenching solves this problem but is computationally expensive. In addition, some
structures are stable only at high temperatures. Through quenching, these structures
are lost. Identifying time averaged structures is a great challenge. Occasionally with
noisy data too many or too few atoms are marked. Figure 3.6 demonstrates this prob-
lem. These two structures have different numbers of defect atoms marked, yet when
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Figure 3.4: Black atoms are defect atoms. Top is a structure identified at 1000K.
Bottom is the same structure quenched using first principles. Even though the atoms
in the top structure are displaced due to thermal noise, the same atoms are marked as
defect in both structures.

Figure 3.5: Two separated defects: black atoms are one cluster, grey atoms are different
cluster.
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Figure 3.6: These two structures have a different number of defect atoms marked.
When quenched however they are the same structure.

quenched are the same. Additionally, we are still exploringrobust and viable shape
descriptors and matching algorithms for MD data.

3.5 Related Work

The framework described here is related to the work being conducted by Marusic and
his associates [Marusicet al.2001]. Event time-series tracking is employed to detect
turbulent bursts which are then analyzed and tracked. However, they do not consider
the detection and cataloging of features at multiple temporal scales.

Knowledge discovery and data mining (KDD) refers to the overall process of dis-
covering new patterns or building models from a given dataset. Fundamental KDD
research in the last decade has primarily focused on: i) new techniques to preprocess,
mine and evaluate the data, ii) efficient algorithms that implement these techniques,
and iii) applications of above techniques on business applications.

More recently researchers have started tackling the problem of mining scientific
datasets. In particular approaches for mining astronomical [Burl et al.1998], phys-
ical (fluid flow) [Han, Karypis, & Kumar2001], biological [Wang et al.1997, Li &
Parthasarathy2001, Parthasarathy & Coatney2002] and chemical [Dehaspe, Toivonen,
& King1998] datasets have been recently proposed by variousresearchers. Few of
the above methods actually account for the structural or spatial properties of the data.
A straight-forward application of well-known data-miningtechniques does not always
yield the most efficient algorithms.

Computational fluid datasets have received more scrutiny from visualization and
data-mining researchers than other computational domains. Significant progress has
been made in the area of identifying regions of swirling flow.Algorithms described
in [Berdahl & Thompson1993,Banks& Singer1995,Jeong & Hussain1995,Portela1997,
Sujudi & Haimes1995,Jiang, Machiraju, & Thompson2002a,Jiang,Machiraju, & Thomp-
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son2002b] demonstrate the ability to identify regions of swirling flow in complex three-
dimensional flow fields.

Consideration of time-varying data introduces additionalcomplexity through the
need for tracking of features. According to [Samtaneyet al.1994], five distinct evo-
lutionary events can occur to features in scientific simulations: continuation, creation,
dissipation, bifurcation, and amalgamation. Each of theseprocesses must be accounted
for in the tracking algorithm. The work in [Silver & Wang1997] is applicable for gen-
eral three-dimensional tracking of features. Other solutions to this problem exploit
hierarchical data structures [Carr, Snoeyink, & Axen2000,Shen, Chiang, & Ma1999].

3.6 Summary

The steady increase in computing power available for science and engineering prob-
lems challenges our ability to learn new science from the massive data. We have
proposed and are developing a generalized framework that facilitates the analysis of
large-scale simulation data for time-varying, evolutionary phenomena. The key com-
ponent of our approach is an abstract shape-based description of the relevant features.
This abstract notion of shape allows us to apply more generaldata mining algorithms
to the extracted features and their characteristics.

Our flexible approach is motivated by two disparate applications – respiratory flow
and material defect simulation. Both drivers raisecentral issues that the components
of the framework will necessarily address:

� Multiscale event detection

� Feature mining

� Shape-based feature characterization and categorization

� Correspondence and tracking of features over time

� Mining for spatial and spatio-temporal patterns

It should be noted that both science drivers have commonalities that are exploited by
the techniques listed above.

Preliminary results have been very encouraging. However, more remains to be
done to realize the complete unified framework. A systematicapproach to feature min-
ing was conceived to locate both local and global features. Currently, tracking features
in a time-varying dataset is being investigated. Similarly, we are conceiving a com-
prehensive framework that will allow one to derive appropriate associations between
the occurrence of transitionary events and the change in feature demographics. This
framework will also include environmental parameters suchas the underlying geom-
etry. Also, of interest is the creation of tools which will control both the feature- and
data-mining exercises. It is our belief that our proposed framework is likely to garner
new insights from massive simulation datasets and allow fora better understanding of
the underlying physical phenomena.



206 CHAPTER THREE



Bibliography

[Agrawalet al.1996] Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.; and
Verkamo, A. I. 1996. Fast discovery of association rules. Inet al., U. F., ed.,
Advances in Knowledge Discovery and Data Mining. MIT Press.

[Arai, Takeda, & Kohyama1997] Arai, N.; Takeda, S.; and Kohyama, M. 1997. Self-
interstitial clustering in crystalline silicon.Phys. Rev. Lett.78:4265.

[Banks & Singer1995] Banks, D. C., and Singer, B. A. 1995. A Predictor-Corrector
Technique for Visualizing Unsteady Flow.IEEE Transactions on Visualization and
Computer Graphics1(2):151–163.

[Berdahl & Thompson1993] Berdahl, C. H., and Thompson, D. S.1993. Eduction of
Swirling Structure using the Velocity Gradient Tensor.AIAA J.31(1):97–103.

[Burl et al.1998] Burl, M.; Asker, L.; Smyth, P.; Fayyad, U.; Perona, P.;Aubele, J.;
and Crumpler, L. 1998. Learning to recognize volcanos on venus. In Machine
Learning, 165–195.

[Carr, Snoeyink, & Axen2000] Carr, H.; Snoeyink, J.; and Axen, U. 2000. Comput-
ing contour trees in all dimensions. InProc. 11th ACM/SIAM Symp. on Discrete
Algorithms.

[Cowernet al.1999] Cowern, N. E. B.; Mannino, G.; Stolk, P. A.; Roozeboom,F.;
Huizing, H. G. A.; van Berkum, J. G. M.; Cristiano, F.; Claverie, A.; and Jaraiz, M.
1999. Energetics of self-interstitial clusters in si.Phys. Rev. Lett.82:4460.

[Dehaspe, Toivonen, & King1998] Dehaspe, L.; Toivonen, H.;and King, R. 1998.
Finding frequent substructures in chemical compounds. InInternational Conference
on Knowledge Discoverya and Data Mining.

[Gatlin et al.1995] Gatlin, B.; Cuicchi, C. E.; Hammersley, J. R.; Olsen, D. E.; Reddy,
R. N.; and Burnside, G. G. 1995. Computational simulation ofsteady and oscillating
flow in branching tubes. InThe 1995 ASME/JSME Fluids Engineering and Laser
Anemometry Conference and Exhibition: Bio-Medical FluidsEngineering, volume
FED-212, 1–8. American Society of Mechanical Engineers. Hilton Head, SC.

[Gatlin et al.1997a] Gatlin, B.; Cuicchi, C. E.; Hammersley, J. R.; Olsen,D. E.;
Reddy, R. N.; and Burnside, G. G. 1997a. Computation of converging and di-
verging flow through an asymmetric tubular bifurcation. InThe 1997 ASME Fluids

207



208 CHAPTER THREE

Engineering Division Summer Meeting, volume FEDSM97. American Society of
Mechanical Engineers. Vancouver,BC.

[Gatlin et al.1997b] Gatlin, B.; Cuicchi, C. E.; Hammersley, J. R.; Olsen,D. E.;
Reddy, R. N.; and Burnside, G. G. 1997b. Particle paths and deposition patterns
for laminar flow through a branching tube. InThe 1997 ASME Fluids Engineering
Division Summer Meeting, volume FEDSM97. American Society of Mechanical
Engineers. Vancouver,BC.

[Hammersleyet al.1993] Hammersley, J. R.; Olson, D. E.; Reddy, R. N.; Arabshahi,
A.; and Gatlin, B. 1993. Computational modeling of airflows in the smaller airways.
American Review of Respiratory Diseases145:A32.

[Han, Karypis, & Kumar2001] Han, E.; Karypis, G.; and Kumar,V. 2001. Data min-
ing for turbulent flows. InData mining for scientific and engineering applications,
239–256.

[Jain & Dubes1988] Jain, A. K., and Dubes, R. C. 1988. Algorithms for clustering
data, prentice-hall, englewood cliffs.NJ 88:1988.

[Jeong & Hussain1995] Jeong, J., and Hussain, F. 1995. On theidentification of a
vortex. J. Fluid Mech.285:69–94.

[Jiang, Machiraju, & Thompson2002a] Jiang, M.; Machiraju,R.; and Thompson, D.
2002a. A Novel Approach to Vortex Core Region Detection. InJoint Eurographics-
IEEE TCVG Symposium on Visualization, 217–225.

[Jiang, Machiraju, & Thompson2002b] Jiang, M.; Machiraju,R.; and Thompson, D.
2002b. Geometric Verification of Swirling Features in Flow Fields. InProc. IEEE
Visualization ’02, 307–314.

[Kamath2001] Kamath, C. 2001. On Mining Scientific Datasets. In et al., R. L. G., ed.,
Data Mining for Scientific and Engineering Applications, 1–21. Kluwer Academic
Publishers.

[Kim et al.1999] Kim, J.; Kirchhoff, F.; Aulbur, W.; Wilkins, J.; and Khan, F. 1999.
Thermally activated reorientation of di-interstitial defects in silicon.Phys. Rev. Lett.
83:1990.

[Kim et al.2000] Kim, J.; Kirchhoff, F.; Wilkins, J.; and Khan, F. 2000.Stability of
si-interstitial defects: From point to extended defects.Phys. Rev. Lett.84:503.

[Li & Parthasarathy2001] Li, H., and Parthasarathy, S. 2001. Automatically deriving
multi-level protein structures through data mining. InHiPC Workshop on Bioinfor-
matics and Computational Biology.

[Machirajuet al.2001] Machiraju, R.; Fowler, J.; Thompson, D.; Soni, B.; and
Schroeder, W. 2001. EVITA - Efficient Visualization and Interrogation of Teras-
cale Datasets. Inet al., R. L. G., ed.,Data Mining for Scientific and Engineering
Applications, 257–279. Kluwer Academic Publishers.



MACHIRAJU, ET AL . 209

[Marusicet al.2001] Marusic, I.; Chandler, G. . V.; Interrante, V.; Subbareddy, P. K.;
and Moss, A. 2001. Real Time Feature Extraction For the Analysis of Turbulent
Flows. Inet al., R. L. G., ed.,Data Mining for Scientific and Engineering Applica-
tions, 223–238. Kluwer Academic Publishers.

[Montalenti, Sørensen, & Voter2001] Montalenti, F.; Sørensen, M.; and Voter, A.
2001. Closing the gap between experiment and theory: Crystal growth by tem-
perature accelerated dynamics.Phys. Rev. Lett.87:126101.

[Parthasarathy & Coatney2002] Parthasarathy, S., and Coatney, M. 2002. Efficient
discovery of common substructures in macromolecules. InIEEE International Con-
ference on Data Mining.

[Parthasarathyet al.1999] Parthasarathy, S.; Zaki, M.; Ogihara, M.; and Dwarkadas,
S. 1999. Incremental and interactive sequence mining. ACM Confereince on Infor-
mation and Knowledge Management (CIKM).

[Portela1997] Portela, L. M. 1997.On the identification and classification of vortices.
Ph.D. Dissertation, Stanford University.

[Quinlan1996] Quinlan, J. R. 1996. Induction of decision trees. Machine Learning
5(1):71–100.

[Reinders, Jacobson, & Post2000] Reinders, F.; Jacobson, M. E. D.; and Post, F. H.
2000. Skeleton Graph Generation for Feature Shape Description. In Joint
Eurographics-IEEE TCVG Symposium on Visualization, 73–82.

[Reinders, Post, & Spoelder1999] Reinders, F.; Post, F. H.;and Spoelder, H. J. W.
1999. Attribute-Based Feature Tracking. InJoint Eurographics-IEEE TCVG Sym-
posium on Visualization, 63–72.

[Richieet al.2002] Richie, D.; Kim, J.; Hazzard, R.; Hazzard, K.; Barr, S.; and
Wilkins, J. 2002. Large-scale molecular dynamics simulations of interstitial de-
fect diffusion in silcon. volume 731, W9.10. Material Research Society.

[Richie, Kim, & Wilkins2001] Richie, D.; Kim, J.; and Wilkins, J. 2001. Applica-
tions of real-time multiresolution analysis for moleculardynamics simulations of
infrequent events. volume 677, AA5.1. Material Research Society.

[Samtaneyet al.1994] Samtaney, R.; Silver, D.; Zabusky, N.; and Cao, J. 1994. Visu-
alizing Features and Tracking Their Evolution.IEEE Computer27(7):20–27.

[Shen, Chiang, & Ma1999] Shen, H.-W.; Chiang, L.; and Ma, K.-L. 1999. Time-
Varying Volume Rendering Using a Time-Space Partitioning Tree. InProceedings
of Visualization ’99, 371–378.

[Silver & Wang1997] Silver, D., and Wang, X. 1997. Tracking and Visualizing Tur-
bulent 3D Features.IEEE Transactions on Visualization and Computer Graphics
3(2).



210 CHAPTER THREE

[Sørensen & Voter2000] Sørensen, M., and Voter, A. 2000. Temperature-accelerated
dynamics for simulation of infrequent events.J. of Chem. Phys.112:9599.

[Sujudi & Haimes1995] Sujudi, D., and Haimes, R. 1995. Identification of Swirling
Flow in 3D Vector Fields. InAIAA 12th Computational Fluid Dynamics Conference,
Paper 95-1715.

[Thampy2003] Thampy, S. 2003. Feature Tracking in Two-Dimensional, Time-
Varying Data Sets. Master’s thesis, Mississippi State University.

[Thompsonet al.2002] Thompson, D.; Machiraju, R.; Jiang, M.; Nair, J.; Craciun, G.;
and Venkata, S. 2002. Physics-Based Feature Mining for Large Data Exploration.
IEEE Computing in Science and Engineering4(4):22–30.

[Vlachos, Kollios, & Gunopulos2002] Vlachos, M.; Kollios,G.; and Gunopulos, D.
2002. Discovering similar multidimensional trajectories. In M. Vlachos, G. Kollios,
and D. Gunopulos. Discovering similar multidimensional trajectories. In ICDE, San
Jose, CA, 2002.

[Voter1997] Voter, A. 1997. Hyperdynamics: Accelerated molecular dynamics of
infrequent events.Phys. Rev. Lett.78:3908.

[Voter1998] Voter, A. 1998. Parallel replica method for dynamics of infrequent events.
Phys. Rev. B57:13985.

[Wanget al.1997] Wang, X.; Wang, J.; Shasha, D.; Shapiro, B.; Dikshitulu, S.;
Rigoutsos, I.; and Zhang, K. 1997. Automated discovery of active motifs in three
dimensional molecules. InKnowledge Discovery and Data Mining, 89–95.

[Wolfson & Rigotsos1997] Wolfson, H., and Rigotsos, I. 1997. Geometric hashing:
an overview.IEEE Computational Science & Engineering10–21.

[Yip & Zhao1996] Yip, K., and Zhao, F. 1996. Spatial Aggregation: Theory and
Applications.J. of Artificial Intelligence Research5:1–26.


