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Abstract:

Simulation is enhancing and, in many instances, replacipgr@mentation as a means
to gain insight into complex physical phenomena. Recenaacks in computer hard-
ware and numerical methods have made it possible to simpltgtsical phenomena at
very fine temporal and spatial resolutions. Unfortunaiglyen the enormous sizes of
the datasets involved, analyzing datasets produced bg gigrilations is extremely
challenging. In order to more fully exploit simulation, tl@alysis of these large
datasets must advance beyond current techniques that sed ba interactive visu-
alization.

We outline our vision for one such approach and describerpssgon a unified

framework that promises to provide a novel method to explange simulation data
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sets. We illustrate its application to two disparate saethivers — temporally varying
solid and fluid systems. In both applications, there are dndderarchies ofeatures
as well as many abstract multidimensional featcinaracterizationge.g. shapes).
Through this framework, we offer a systematic approach teadecharacterize, and
track meta-stable features as well as formulate hypotresast their evolution — an
important step in extracting vital information from suchhgalex systems.

Keywords: Feature mining, Spatio-temporal patterns, Shape-based
Mining, Physics-based mining, Categorization, Compatsti simulations

3.1 Introduction

The physical and engineering sciences increasingly staidye] complex ensembles
seeking to understand the underlying phenomena. Thesestatjuire analysis of
the data generated by either experiments or computationalaions. In this chapter,
we focus on the latter and provide motivation using apgbeet from two disparate
fields — numerical simulations of fluid flow and molecular dyries. Computational
fluid dynamics (CFD) seeks to understand flow patterns tores#hdor instance, drug
delivery schemes for pulmonary treatments for asthma.|&ityimolecular dynamics
(MD) seeks to understand the evolution of material deféwsadffect the properties or
performance of industrial materials. In these data, padtef interest arise and evolve
over time as a result of the unsteady nature of the phenomemier consideration.

Scientific discoveries are often best understood visuaftpm Galle seeing Nep-
tune in 1846 to Binnig and Rohrer seeing atoms on a surfadesitwentieth century.
Both discoveries were not surprises in the sense that prewpalysis had convinced
most of their reality. However, each discovery stimulatetlife work more dramati-
cally than any analysis might have done.

Unfortunately, the size of simulation datasets signifisachallenges our abilities
to explore and comprehend effectively the generated datalyAis via interactive visu-
alization sessions is tantamount to searching for the pbisie'needle in a haystack.”
Currently, a well-trained individual may need several daysven weeks to analyze the
data generated by an MD simulation and create a list of vidélect structures. Sim-
ilarly, in the extremely large datasets generated by sititula of complex fluid flows,
locating and tracking relevant features are daunting task&oth cases, phenomena
occur on multiple length and time scales. Some featuresspexsfficiently to have
gross macroscopic effects. Other short-lived transiemtpeecursor events central to
the unsteady (in the temporal domain) behavior of the systanadditional complica-
tion is that currently available hardware does not have the/gss yet to provide even
near real-time visualizations.

Therefore, we believe it is crucial that some degree of aatwn be incorporated
into the exploration process for large datasets. One suctessful approach is de-
scribed in [Machirajlet al.2001] and is based on a representational scheme that facil-
itates ranked access to macroscopic features in the daké@etver, other than iden-
tifying, denoising, and ranking the features, no attemphasle to extract information
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about the features or track and catalog them.

An alternative approach would be to apply traditional dataing algorithms to
these scientific datasets. However, it is our contentiohdkisting data mining tech-
niques, applied in isolation, are simply too general. Endliegildomain expertise (i.e.,
via understanding the science) in the data mining processtisal to its success es-
pecially for the datasets characteristic of large-scatmikitions. Moreover the appli-
cation of existing data mining techniques may not be the raffigtient of solutions,
particularly for analyzing complex simulation data.

Thus, there is a paucity of general approaches that faeiliteeaningful analysis
of large and complex data describing physical phenomeraalifional There is a need
to explore a larger space of solutions that are based on therlying physics and are
enabled by computer science techniques from visualizatata analysis, and data
mining. By incorporating application-specific physicsoiithe mining effort, we can
develop characterizations of physically-relevant feadurn this chapter, we describe
one such approach that we call feature mining.

The remainder of this chapter is organized as follows. Irti8e®.2 we describe
the two important applications that motivate this work. krgon 3.3 we describe the
system and identify the key components. Section 3.4 doctstteapreliminary results
we have for the two application domains, while Section 3.8cdbes previous work
conducted by other groups. Finally we provide conclusiams fature directions in
Section 3.6.

3.2 Example Applications

We now provide some background information on the two s@edrivers we have
chosen — respiratory flow in multi-generational bronchieés and defect evolution in
materials. While our two science drivers would seem sigauifity different, we con-
tend that a common framework can facilitate effective esqtion for both problems.

3.2.1 Computational Simulation of Biomedical Fluid Flows

Respiration — specifically, airflow through the network afduairways — produces sur-
prisingly complex flow fields. Even though the flow is laminraugh much of the
bronchial tree, secondary currents can be dominant, ptatlg transverse vortex pairs
that form due to axial curvature of the tubes and wall she&esg& vortices migrate
downstream and interact with new ones generated by repbedadhing. These sec-
ondary flows are critical to the efficient filtering of inhaleit: aerosols, entrained in
their trajectories, impact mucus-lined walls from whickyltan be expelled from the
lungs through the action of cilia or coughing.

The analysis of these secondary flows is complex, both beaafutheir not-yet-
understood persistence and their branching into multipféces. Much of the compu-
tational modeling of flow through small airway bifurcatideshat due to Gatlin, Ham-
mersley,et. al[Hammersleyet al.1993, Gatlinet al.1995, Gatlinet al.1997b, Gatliret
al.1997a]. When dealing with datasets generated by simuktibcomplex temporally
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varying fluid flows, it is challenging to locate and track kelet features. Existing tech-
niques for vortex detection are typically based on localyffield parameters such as
the velocity gradient tensor. The generation of new feataral destruction of existing
features present challenges for feature correspondegagthms.

Potential Impact: New data mining techniques relevant to computed respiratio
flow data not only can enhance the understanding of known fleavacteristics, but
also may discover previously undetected features, justsamhzation techniques re-
vealed the long unknown secondary structures in the flow. a@tiqular interest are
the longevity of vortex pairs generated by bifurcation ane mechanisms of inter-
action between vortices. Additionally, the detection dafioas of flow separation are
important for understanding the impaction of entrainediplas and the interruption of
laminar flow. Improved understanding of these flows has twpartant applications:
(1) the health hazard posed by the inhalation of carcinagelisease-bearing, or lung-
damaging aerosols and (2) the clinical delivery of both llecal systemic aerosolized
drugs through the lungs. While the depth of penetration théotubular network of
the lungs depends on the nature and concentration of etitie aerodynamics of
respiration plays a critical role.

3.2.2 Molecular Dynamics Simulations of Defect Evolution

The key complexity of real materials used in commercial epgibns is not that they
are defected in the trivial sense of being imperfect or irgpinut rather that their
material properties depend critically on their nonidgakts an example, the enhanced
diffusion of dopants in the presence of extend@d1} defects in silicon is a limiting
factor in the fabrication of shallow junction devices [Cowet al.1999]. The growth
of such extended defects involves the diffusion, captudedssociation of silicon point
defects [Arai, Takeda, & Kohyama1997,Kahal 1999, Kimet al2000]. This example
can be repeated with variations in every material essewt@irrent high technology.

Molecular dynamics simulations can track the nucleatiahgnowth of defects but
realistic time scales exceed computing technology. Emgrgcceleration techniques
[Montalenti, Sgrensen, & Voter2001,Sgrensen & Voter200@r1997,Voter1998] can
achieve realistic simulation times. Wavelet techniqueashie, Kim, & Wilkins2001]
can dramatically reduce the molecular dynamics data aratteersistent defect struc-
tures. The challenge is to identify and classify these siirnes and track their evolution
and interactions.

Potential Impact: New data mining techniques can not only uncover fundamen-
tal defect nucleation and growth processes but also prasdential parameters for
modeling macroscopic properties of materials. This needél recognized in the
the semiconductor industry in its “silicon roadmap” thagritifies the short- and long-
range problems necessary to continually pack more tramsien a chip. In structural
materials used, for example, in turbine engines, there r®a&igg need to connect the
microscopic and macroscopic scales. Indeed the phrasdiSoale methods” recog-
nizes the wide spread importance of connecting complexasdapic processes to the
design and optimization of materials properties.
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3.3 Generalized Framework

Essentially, there is a need to deduce the presence of ésadund derive their shape
characteristics from a large data repository that dessrdoene time-varying, evolu-
tionary phenomenon. In this context, shape refers to thierdatharacteristics of a
feature including kinematical and dynamical charactiesstlong with a geometrical
description. This abstract notion of shape allows us toyapmre general data min-
ing algorithms to the extracted features and their charatts. It is our claim that
a “shape-based” data-mining paradigm will prove fruitfulthe analysis of complex
unsteady phenomena. Kamath also makes similar remarks teoutility of feature-
based approaches [Kamath2001].
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Figure 3.1: Generalized Feature Mining Framework

Figure 3.1illustrates our generalized framework appligarbcessing of physically-
based simulation data. We contend that a common framewar&aapactly store and
analyze data of evolutionary phenomena. We assume thaircétally computable
quantities can detect precursor events. Our approach & imoits flexibility and ap-
plicability across disciplines. The shape-based anabmiserts the task of data man-
agement and analysis into one of choosing robust shapeiptessrand being able to
index features from a catalog. The descriptors will be d@gtifrom the application.

In addition to feature detection algorithms, aggregatioeegmentation, tracking
and characterization algorithms must be utilized in coaijiom with traditional data
mining algorithms to facilitate cataloging detected stomues and expediting searches
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to gain scientific insights. Our framework synergisticdiiyngs to bear these tech-
niques to address the problems associated with analyzigg tiatasets generated by
simulations of physical phenomena. We now describe the leagents of our frame-
work.

Spatial Partitioning to Exploit Locality

Fine spatial resolutions are often used to resolve featm@smputational simulations.
Tracking features over the entire spatial domain is notleiaibd meaningful. Hence,
through a process of partitioning, smaller sub-domainscareidered for shape and
feature evolution. This process is tantamount to dividimg lhale of hay into smaller
bales to search for the proverbial needle. Thus regularragglilar sized sub-domains
derived from either just the domain or function values cacdigsidered.

Multiscale Event and Feature Detection

A feature at a given temporal scale can be stable, metaestablransient. The birth,
evolution and death of a feature is often triggered by pismuevents. It is there-
fore crucial to identify when such events occur. We have ehas “trigger-based”
multi-resolution analysis (MRA) using wavelets for everteattion. Thus, a single
derived quantity or a trigger is monitored for events at ipléttime scales. For in-
stance this quantity iswirl in a CFD simulation. In an MD simulation this quan-
tity is potentialor energyor dislocationsof atoms. Multiscale trigger monitoring is
needed given the range of feature lifetimes. Wavelet teghes are effective here and
are already successfully working in molecular dynamicsusitions [Richie, Kim, &
Wilkins2001, Richiest al2002].

Feature Mining

A systematic approach to feature mining [Thompsoml2002], i.e., the process of
detecting, characterizing and tracking relevant featueebeing developed. Our in-
tent is to exploit the physics of the problem at hand to dgvéighly discriminat-
ing, application-dependent feature detection algoritanmdsthen use data mining algo-
rithms to classify, cluster, and categorize the identifestdires. Our work parallels that
of Yip and Zhao [Yip & Zhao1996] in some ways. It should be mbtieat our work
relies on more physics-based understanding of featureegpidits the underlying
physics to a greater extent.

The most basic aspect of feature miningaature detection The output of any
detection algorithm is a collection of many regions-oeimist (ROIs). The underlying
physics is exploited to locate features using local opesabo sensors to detect and
non-local or global operators to verify. Verification is dea some cases to confirm
that a given ROI indeed represents a feature. We considectdedit quenched states
and finite temperatures for MD simulations and shocks antices for CFD.

A second component of feature miningsisape-based feature characterization
and categorizationin which the “shape” of a feature is described by charadtesis
such as shape and structure, and kinematical and dynamagznies in an abstract
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multidimensional shape spac&he descriptors for a MD simulation can include the
number of atoms involved, their orientations, the connégtbetween atoms, the tra-
jectory, and history of its evolution. In a CFD simulatiomytices, the type of feature
of importance for respiratory flows, can be characterizedheyr strength and sense
of rotation as well as obvious geometrical parameters sgcpoaition, shape, and
extent. These features can be categorized by notions ofasityi Shape categories
enable synergistic understanding of events and featurth® iMD and CFD domains.
To compute the similarity between shapes or structures Weorespatial geometric
hashing [Wolfson & Rigotsos1997] and clustering algorifhjdain & Dubes1988]. To
categorize the structures we rely on classification algorit [Quinlan1996] using the
generalized shape descriptors as input to the classifier<FD data we employ a gen-
eralized shape descriptor for swirling regions and projmaerchical shape matching
algorithms.

A third component of feature mining orresponding and tracking of features
over time. The generation of new features and destruction of exiggatures pose
major challenges to effective, feature-tracking alganigh The essential problem is to
determine how the position of a particular feature changeisd a given time interval.
In our datasets, this is non-trivial since fissures and fusiof features are extremely
common. Furthermore, the structural descriptors of theesf@ature may change over
time. Tracking and correspondence complete the construcfithe multi-dimensional
shape space for a given application. Relevant related wofkadture tracking was
reported in [Samtanegt al. 1994, Silver & Wang1997]. Shapes were not considered
therein and the method is, in general, expensive. Similarly{Reinders, Post, &
Spoelder1999, Reinders, Jacobson, & Post2000] the skedetin approximate medial
axis was computed for vortices. However, this represenmtasiverycrisp and does not
allow tangible matching and tracking. In [Thampy2003], adictive algorithm was
developed that utilized the evolution of selected kineozdiind dynamical properties
to enhance confidence in the correspondence algorithm.

Mining for Spatial and Spatio-Temporal Patterns

Over any time interval in a simulation, we need techniquasc¢hn identify important
spatial patterns efficiently. Some patterns can be compidxnhat necessarily sequen-
tial. The aim is to derive predictive rules: combinationgastures resulting in certain
events, (e.g., fusion or fissure). To derive such rules regudentifying frequently
occurring spatial patterns. Clustering, association @get al.1996], and sequen-
tial pattern analysis [Parthasaratalyal.1999], and spatio-temporal analysis [Vla-
chos, Kaollios, & Gunopulos2002] will be used to determine thmportant patterns.
Our eventual goal is to correlate information from a shapegmization together with
transition detection mechanisms to help discover novelragirelating to the evolution
of shapes over time. An example of such an axiom could be “e-#yfeature evolves
into a type-B feature through some particular mechanisnu¢hSules can be found
using event-based sequential and association patterpsamatqually important is to
identify those axioms that dominate the particular simafatype. These data mining
algorithms will operate on the shape space constructed eadier step and produce
explanations of feature behavior and evolution.
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Generality

The large-data exploration methodology we describe is@ppate for any data that
can be transformed to a multiscale representation andsterdfi features that can be
extracted through local operators and aggregated in $pst#de, and temporal dimen-
sions. Thus, one can consider domains in addition to CFD abd M

3.4 Current Efforts

In the previous sections we described our vision for the gdized framework and
described our motivating applications. In this section weatibe current and ongoing
work toward realizing our vision. The methods describedWwelill partially construct
the shape space for a given application. Work on trackingcamncespondence is on-
going and is not described. We also do not describe our apprtoaconducting data
mining tasks in the shape space as it is a work in progress.

3.4.1 Feature Mining

In this section, we focus on one component of feature minimtydescribe two distinct
feature detection paradigms [Thompstral2002]. The common thread is that both
are bottom-up feature constructions with underlying ptaiéy-based criteria. The two
perform essentially the same steps, but in different ordessvill become evident, it is
unlikely that non-physics-based techniques would prothéedidelity needed to locate
complex flow field (CFD) or defect (MD) structures.

In general, a feature is a pattern occurring in a datasetgtaftinterest and that
manifests correlation relationships among various coreptmof the data. For in-
stance, a shock in a supersonic fluid flow would be considersdraficant feature:
when such a shock occurs, the pressure increases abrufily direction of the flow,
and the fluid velocity decreases in a prescribed manner. rifgignt feature also has
spatial and temporal scale coherence.

For many applications, generic data mining techniques asatiustering, associ-
ation, and sequencing can reveal statistical correlati@tseen various components
of the data. Returning to the shock example, we could usiststat mining to fer-
ret out associations, but it might be difficult to attach [Becspatial associations for
the rules discovered. A fluid dynamicist, however, woule Itk locate features with
a rather high degree of certainty. Such qualitative assestalone will not suffice.
This is where our approach to feature mining comes in: we éak@ntage of the fact
that, for simulations of physical phenomena, the field \@eis satisfy certain physical
laws. We can exploit these kinematic and dynamic consiaerato locate features of
interest.

The fidelity improvements garnered by tailoring these higliscriminating feature
detection algorithms to the particular application farveeigh any loss of generality.
The state of the art in feature detection and mining in sitiariadata is similar to what
existed for image processing when edge detection methodstive main techniques.
Much more is now understood, and mining for image data isnafiene in terms of
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the features, namely edges. This suggests that a blend @f aladl feature-mining
methods might have the potential to reduce the burdensoore dfi finding features
in large datasets.

Point classification techniques

The first feature detection paradigm, which we call poinssification, requires several
operations in sequence:

e Detection by application of a local operator at each poirthaadomain

Binary classification of each point based on some criteria

Aggregation of contiguous regions of similarly classifiedrs

Denoising to eliminate aggregates that are of insufficigterd, strength, etc.

Ranking based on feature saliency

e Tracking identified features

This approach identifies individual points as belonging teaure and then aggre-
gates them to identify regions that are features. The pait®btained from a tour of
the discrete domain and can be in many cases the grid poiatploysical grid (CFD)
or a lattice (MD). The operator used in the detection stepthadriteria used in the
classification step embody physically based point-wiseaittaristics of the feature of
interest. In this context, classification accords membprsha discrete point in the
dataset to a feature.

Aggregate classification techniques

We can best incorporate the global information needed to@efivortex into our sec-
ond feature detection paradigm, the aggregate classificafiproach. Aggregate clas-
sification follows a somewhat different sequence of openti

e Detection by application of a local operator at each poirthexdomain

Aggregation of contiguous regions of probable candidatetpo

Binary classification (or verification) of each aggregatsdsbon some criteria

Denoising to eliminate aggregates that are of insufficigterd, strength, etc.

Ranking based on feature saliency

e Tracking identified features

This approach identifies individual points as being probajaindidate points in a
feature and then aggregates them. The classification #igoi$ applied to the aggre-
gate using physically based regional criteria to determihether the candidate points
constitute a feature. Thus, the operator deployed towaniis glassification can be ef-
ficient but less accurate. False positives generated aathierestages can be eliminated
later in the verification stage. Classification in this caht®nfirms that an aggregated
subset of a domain indeed forms a relevant feature.
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Figure 3.2: The results of our point classification algarithpplied to a delta wing
dataset. The front and top views respectively are shown.y€Hew regions indicate
regions of swirling flow. There exist several regions which falsely classified.

3.4.2 Fluid Dynamics

We now present two examples of feature detection algoritmapplied to CFD datasets.
Although algorithms have been developed for other feafwedocus on those for vor-
tices because of the critical role they play in the bronchiglow. Additionally, the
vortex provides a direct way to contrast the two differemtfiee detection paradigms.

CFD Example 1 : Vortex Detection using Point ClassificationThe first tech-
nique we consider uses the eigenvalues of the local velgcitgient tensor. In regions
of swirling flow, the eigenvalues of the velocity gradientder are complex. Berdahl
and Thompson [Berdahl & Thompson1993] defined a swirl patanthat estimates
the tendency for the fluid to swirl about a given point. Therktvas a nonzero value
in regions containing vortices and attains a local maximarhée core region. In this
point classification algorithm, the detection step cossigtcomputing the eigenval-
ues of the velocity gradient tensor at each field point. Thssification step consists
of checking for complex eigenvalues and assigning a switev# they exist. The
aggregation step then agglomerates contiguous grid peaimse the swirl parameter
exceeds a threshold value into vortical regions. This m@thprimary shortcoming
is that it—and all eigenvalue-based vortex detection tieglas—can generate false pos-
itives. An example of this method is shown in Figure 3.2. dtsal nature makes it
unable to discriminate between locally curved streamlaresclosed streamlines char-
acteristic of a vortex. Other features, such as shocks, are amenable to the point
classification framework.

CFD Example 2 : Vortex Detection using Aggregate Classificain We recently
developed an aggregate classification-type vortex detet¢ichnique. We based its
detection step on an idea derived from a lemma in combirstopology. Specifically,
velocity vectors around core regions exhibit certain flowtgras unique to vortices,
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Figure 3.3: The results of our aggregate classificationriegie applied to the delta
wing dataset. (left) All candidate core regions are showre Verified cores are shown
in yellow while the spurious ones are shown in green. (mid8keeamline tracing
around verified cores. (right) The top image shows the vatifia algorithm at work
through seeding and tracing, while the bottom image shdustihtes the use of pro-
jections and angles to verify vortices.

and it is precisely these flow patterns that we search forarctimputational grid. Not
surprisingly, our approach is related to critical pointahe However, critical points

alone are not sufficient to detect a vortex. For each gridtpour algorithm examines
its immediate neighbors to see whether the neighboringitgleectors point in three

or more direction ranges. The novelty of this method is iatiee insensitivity to core

direction. Therefore, very approximate core directiony fina used in the detection
step.

Our technique segments candidate core regions by aggrggatints identified
from the detection phase. We then classify (or verify) thessedidate core regions
based on the existence of swirling streamlines surrounttiam. (For features that
lack a formal definition, such as the vortex, we must choosevérification criteria
so that it concurs with the intuitive understanding of thatfee. In this case, verify-
ing whether a candidate core region is a vortex core regiquires checking for any
swirling streamlines surrounding it.) Checking for swidiflow in three dimensions
is a nontrivial problem since vortices can bend and twist fthnique we developed
essentially checks to see if the local tangent to the stieagwhen projected onto the
plane normal to the local core tangent, spams Phe aggregate nature of this classi-
fication step is apparent. Checking for swirling streandiigea global (or aggregate)
approach to feature classification (or verification) beeasirling is measured with
respect to the core region, not just individual points wittiie core region. Figure 3.3
describes all steps of this paradigm.
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3.4.3 Molecular Dynamics Simulations of Defect Evolution

The challenge of detecting features during an ongoing MDukition was met with
the application of multiresolution analysis (MRA) techmigg. Wavelet analysis is ex-
ploited in the time domain to analyze dynamics. For each attsnsequence of po-
sitions are projected on a wavelet basis, with the expariefficients generated in-
crementally using components supplied by th@B8MRT Scientific Wavelet Package
[Richie, Kim, & Wilkins2001]. These components treat stnitag data more efficiently
than more conventional “fast” wavelet transform (fwt) taifues.

The same feature mining procedures that worked well for C&fa dvork for MD
too. In any persistent structure, “defect” atoms must béndjaished from "bulk”
atoms. While this task might seem more challenging at fimitegerature due to the
thermal noise, ainglerule works for all structures: thermal and quenched. Forlla bu
atom, precisely four atoms have bonds (with the bulk atorsg tan 2.67 and the
angles between any two bonds lie within 90-130 degrees. Amgra@atom is a defect.
Similar definitions can be formulated for other systems. Mdmear the surface of a
periodically repeated cell don’t "see” the other atoms tftouThis problem is solved
by padding the cell with a layer of periodic material.

Here, we illustrate how point classification procedures lsaremployed toward
the defects in the quenched (cooled state) and finite theemgderatures respectively.
Each atom site is visited and the atom is tested for memhensta defect ensemble.
The classification operator for this application is as feo We define two conditions
C1 (bond angle as above) aifd (number of bonds as above) to accurately classify
bulk atoms. Theconjunctionof the above two conditions as well as tHisjunction
are evaluated for all atom sites. The atom sites which gatief conjunction are the
ones which definitely belong to the bulk. Those that satisfy disjunction will with
some likelihood belong to the bulk. The remaining atom saresdefinitely part of the
defect. Such atoms are referred tadagect atomsThe defect atoms are then spatially
clustered to aggregate these into possible defect stesctWe empirically verified that
this method works well even on noisy data. Figure 3.4a shoparsistent structure
at 1000 K. The black atoms are those identified as defect atéiigsire 3.4b shows
the same structure quenched with a first-principles appr.ahae quenching removes
thermal noise at a heavy computational cost. The same atoensiarked in both
structures which demonstrates this method works on noneajesl structures.

In a large scale simulation the challenge is to isolate sapatefect clusters. A
line is drawn connecting all defect atoms that lie withif4f each other. Thus, a
cluster is comprised of connected defect atoms, a computdly fast process. Figure
3.5 shows two defects embedded in a 512 atom lattice.

The deployment of aggregate classification techniques fbr ddta is far from
clear. This is still an active area of research. The largebarof resulting identified
structures (from the detection phase) must be sorted intwadley set of distinct types.
Quenching solves this problem but is computationally espen In addition, some
structures are stable only at high temperatures. Throughaing, these structures
are lost. ldentifying time averaged structures is a greallehge. Occasionally with
noisy data too many or too few atoms are marked. Figure 3.@®dstrates this prob-
lem. These two structures have different numbers of detechsmarked, yet when
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Figure 3.4: Black atoms are defect atoms. Top is a structieatified at 1000K.
Bottom is the same structure quenched using first princife®n though the atoms
in the top structure are displaced due to thermal noise,ahmesatoms are marked as
defect in both structures.
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Figure 3.6: These two structures have a different numbereééad atoms marked.
When quenched however they are the same structure.

quenched are the same. Additionally, we are still exploritgust and viable shape
descriptors and matching algorithms for MD data.

3.5 Related Work

The framework described here is related to the work beinglgcted by Marusic and
his associates [Marusit al2001]. Event time-series tracking is employed to detect
turbulent bursts which are then analyzed and tracked. Hexvéwey do not consider
the detection and cataloging of features at multiple temmjgwrales.

Knowledge discovery and data mining (KDD) refers to the allgarocess of dis-
covering new patterns or building models from a given dataBe@ndamental KDD
research in the last decade has primarily focused on: i) eetaniques to preprocess,
mine and evaluate the data, ii) efficient algorithms thatlengent these techniques,
and iii) applications of above techniques on business agiins.

More recently researchers have started tackling the pmoblemining scientific
datasets. In particular approaches for mining astrondrfilial et al.1998], phys-
ical (fluid flow) [Han, Karypis, & Kumar2001], biological [Wey et al1997, Li &
Parthasarathy2001, Parthasarathy & Coatney2002] andicalidehaspe, Toivonen,
& King1998] datasets have been recently proposed by varessarchers. Few of
the above methods actually account for the structural disdpaoperties of the data.
A straight-forward application of well-known data-minitgchniques does not always
yield the most efficient algorithms.

Computational fluid datasets have received more scrutimy fvisualization and
data-mining researchers than other computational dom&igmificant progress has
been made in the area of identifying regions of swirling floWgorithms described
in [Berdahl & Thompson1993,Banks & Singer1995,Jeong & lirsk995,Portelal997,
Sujudi & Haimes1995,Jiang, Machiraju, & Thompson2002adj Machiraju, & Thomp-
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son2002b] demonstrate the ability to identify regions afmg flow in complex three-
dimensional flow fields.

Consideration of time-varying data introduces additiaz@hplexity through the
need for tracking of features. According to [Samtaeéwl.1994], five distinct evo-
lutionary events can occur to features in scientific simoitet continuation, creation,
dissipation, bifurcation, and amalgamation. Each of tipeeeesses must be accounted
for in the tracking algorithm. The work in [Silver & Wang199dg applicable for gen-
eral three-dimensional tracking of features. Other sohgito this problem exploit
hierarchical data structures [Carr, Snoeyink, & Axen2@&&n, Chiang, & Ma1999].

3.6 Summary

The steady increase in computing power available for seiemzl engineering prob-
lems challenges our ability to learn new science from thesiwasdata. We have
proposed and are developing a generalized framework théitdees the analysis of
large-scale simulation data for time-varying, evolutignehenomena. The key com-
ponent of our approach is an abstract shape-based descriftihe relevant features.
This abstract notion of shape allows us to apply more gemkatal mining algorithms
to the extracted features and their characteristics.

Our flexible approach is motivated by two disparate appbcat— respiratory flow
and material defect simulation. Both drivers ratemtral issues that the components
of the framework will necessarily address:

e Multiscale event detection

e Feature mining

e Shape-based feature characterization and categorization
e Correspondence and tracking of features over time

e Mining for spatial and spatio-temporal patterns

It should be noted that both science drivers have commastiat are exploited by
the techniques listed above.

Preliminary results have been very encouraging. Howeverememains to be
done to realize the complete unified framework. A systensgtfiroach to feature min-
ing was conceived to locate both local and global featureste®tly, tracking features
in a time-varying dataset is being investigated. Similankg are conceiving a com-
prehensive framework that will allow one to derive appraf@iassociations between
the occurrence of transitionary events and the change torledemographics. This
framework will also include environmental parameters sastthe underlying geom-
etry. Also, of interest is the creation of tools which willrtool both the feature- and
data-mining exercises. It is our belief that our proposadfEwork is likely to garner
new insights from massive simulation datasets and allova foetter understanding of
the underlying physical phenomena.
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