Simulation Optimization
Decision Support System for
Ship Panel Line Operations

Winter Simulation Conference
Washington, DC

Case Study Track
December 2004

Charles LaRue
Ingalls Operations, Northrop Grumman Ship Systems

Donny Dorsey
Avondale Operations, Northrop Grumman Ship Systems

Allen Greenwood
Department of Industrial Engineering, Mississippi State University

Travis Hill
Center for Advanced Vehicular Systems, Mississippi State University

Jeffrey Miller
Center for Advanced Vehicular Systems, Mississippi State University

Clay Walden
Center for Advanced Vehicular Systems, Mississippi State University
Broad objective: Maximize shipyard throughput, subject to customer due date

Problem*: U.S. shipyards take twice as long to build comparable ships; 1/3 as productive as the Japanese, 1/2 as productive as the Europeans

- Build ships faster and cheaper
- Increase throughput of the yard and sector; increase profit
- Reduce lead time
- Improve the use of key resources
- Employ best practices
- Effectively deal with variability

Focus on the shipyard bottleneck: Panel Shop
Every panel is unique → extreme variability in work content
Project overview

• **Objective:** provide a means to understand and assess the impact on shop performance of changes in:
 – resources,
 – operations practices,
 – panel characteristics,
 – sequence, etc.

• **Components:**
 – Discrete-event simulation model of panel shop
 – Optimizer to determine best sequence for producing panels
 – DSS so the simulation model and optimizer could be used by planners and shop floor supervisors
Overview of Simulation-Optimization Decision Support System
ProModel simulation model captures shop behavior

Model considers:
• Panel size and conveyor capacity
• Work content
• Resource availability
• Work assignments
• Operational rules
• Downtime
• Task variability
• Shift schedule
• Relevant measures of performance

Model runtime: approximately 5 seconds to process 154 panels (~13 weeks in real time)
Model accurately captures shop behavior

Hours to complete is based on observation; the number of panels that had exited at a specified time; e.g., at time 697, 52 panels had been competed.

Model Complete is the time a panel left the system in the model; e.g. Panel 52 was completed at time 681.
Workstation processing times based on work standards and panel characteristics

| Standards | Panel DDG 356
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>min/seam</td>
<td>min/ft</td>
</tr>
<tr>
<td>Sweep</td>
<td>3</td>
</tr>
<tr>
<td>Flux</td>
<td>5</td>
</tr>
<tr>
<td>Wire</td>
<td>12</td>
</tr>
<tr>
<td>Align</td>
<td>30</td>
</tr>
<tr>
<td>Console</td>
<td>13</td>
</tr>
<tr>
<td>Weld</td>
<td>0.83</td>
</tr>
<tr>
<td>Traverse return</td>
<td></td>
</tr>
<tr>
<td>Console</td>
<td>6</td>
</tr>
<tr>
<td>Traverse</td>
<td>0.054</td>
</tr>
<tr>
<td>Remove ram</td>
<td>2</td>
</tr>
<tr>
<td>Remove plate</td>
<td>6</td>
</tr>
<tr>
<td>Slag chips</td>
<td>2</td>
</tr>
<tr>
<td>Defect repair</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Time

- 15
- 25
- 60
- 150
- 65
- 119
- 24
- 8
- 10
- 30
- 10
- 619

![Diagram of NGSS PANEL LINE SIMULATION](image)
Simulation model incorporates dynamic resource assignments

Panel Weld Time (min.)

<table>
<thead>
<tr>
<th>Hull</th>
<th>Unit</th>
<th>SA</th>
<th>SSAW</th>
<th>Topside SAW</th>
<th>Backside SAW</th>
<th>Layout</th>
<th>FCAW 2</th>
<th>FCAW 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5250</td>
<td>315</td>
<td>01-03</td>
<td>288</td>
<td>719</td>
<td>230</td>
<td>244</td>
<td>290</td>
<td>311</td>
</tr>
<tr>
<td>5250</td>
<td>323</td>
<td>01-01</td>
<td>276</td>
<td>152</td>
<td>314</td>
<td>235</td>
<td>341</td>
<td>291</td>
</tr>
<tr>
<td>5250</td>
<td>323</td>
<td>01-02</td>
<td>309</td>
<td>700</td>
<td>260</td>
<td>139</td>
<td>228</td>
<td>37</td>
</tr>
<tr>
<td>5250</td>
<td>323</td>
<td>01-03</td>
<td>291</td>
<td>295</td>
<td>63</td>
<td>220</td>
<td>145</td>
<td>414</td>
</tr>
<tr>
<td>5250</td>
<td>332</td>
<td>01-01</td>
<td>487</td>
<td>428</td>
<td>370</td>
<td>170</td>
<td>343</td>
<td>526</td>
</tr>
<tr>
<td>5250</td>
<td>324</td>
<td>01-01</td>
<td>264</td>
<td>426</td>
<td>577</td>
<td>223</td>
<td>397</td>
<td>47</td>
</tr>
<tr>
<td>5250</td>
<td>343</td>
<td>01-03</td>
<td>282</td>
<td>208</td>
<td>320</td>
<td>136</td>
<td>228</td>
<td>141</td>
</tr>
<tr>
<td>5250</td>
<td>343</td>
<td>01-01</td>
<td>652</td>
<td>117</td>
<td>119</td>
<td>158</td>
<td>73</td>
<td>1198</td>
</tr>
<tr>
<td>5250</td>
<td>353</td>
<td>01-01</td>
<td>527</td>
<td>721</td>
<td>753</td>
<td>360</td>
<td>859</td>
<td>154</td>
</tr>
</tbody>
</table>
Optimal sequence based on genetic algorithm

- Modified evolutionary strategy
- Fitness function
 - based on total weld feet, make span, days late for each job
 - value is evaluated for each combination using the simulation model
- DSS manages optimization process, including evaluation of each solution by the discrete-event simulation model
- Sample run for a set of 50 panels
Example analyses

Percent change in makespan (time to complete panel set)

Machine Utilization

<table>
<thead>
<tr>
<th>Personnel Utilization</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
</tr>
<tr>
<td>100</td>
<td>6.0%</td>
<td>5.8%</td>
<td>5.7%</td>
<td>5.2%</td>
<td>4.4%</td>
</tr>
<tr>
<td>95</td>
<td>3.9%</td>
<td>3.9%</td>
<td>3.8%</td>
<td>3.2%</td>
<td>2.7%</td>
</tr>
<tr>
<td>85</td>
<td>0.0%</td>
<td>-0.6%</td>
<td>-0.6%</td>
<td>-1.6%</td>
<td>-1.1%</td>
</tr>
<tr>
<td>70</td>
<td>-7.7%</td>
<td>-7.4%</td>
<td>-8.3%</td>
<td>-8.5%</td>
<td>-9.0%</td>
</tr>
</tbody>
</table>

Base Case: Personnel Utilization = 85%, Machine Utilization = 100%

Process Variability

<table>
<thead>
<tr>
<th>Personnel Utilization</th>
<th>none</th>
<th>-5/+10</th>
<th>-10/+20</th>
<th>-25/+50</th>
<th>-25/+100</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6.5%</td>
<td>6.0%</td>
<td>5.4%</td>
<td>3.0%</td>
<td>-4.8%</td>
</tr>
<tr>
<td>85</td>
<td>-0.1%</td>
<td>0.0%</td>
<td>-1.2%</td>
<td>-3.4%</td>
<td>-11.7%</td>
</tr>
<tr>
<td>70</td>
<td>-7.1%</td>
<td>-7.7%</td>
<td>-8.4%</td>
<td>-11.6%</td>
<td>-20.0%</td>
</tr>
</tbody>
</table>

Base Case: Personnel Utilization = 85%, Process Variability = -5% / +10%
Basic DSS architecture

• Support planner-level and shop-floor-level decisions
 – Easy-to-use interfaces
 – Intuitive and relevant output
 – Model operations transparent to users
• Driven by NGSS data; responsive to changes in data
• Sequence:
 – based on shop-floor behavior, capabilities, and constraints
 – performance assessed using simulation model
 – generated by genetic algorithm
• Provides work assignments required to meet optimal sequence
DSS interface

Model* Selection

*run in ProModel or QUEST

Operations parameters

Panel selection

Optimal sequence
DSS output
Future directions: application across a sector

Decision Makers

Decision Support System

Models

Suppliers → Fabrication → Panel Line → 225 → CSA, Outfitting, etc. → Customers

Real System

Modeling