
Modeling Rough Surfaces

Yootai Kim1, Raghu Machiraju1, and David Thompson2

1 Department of Computer and Information Science, The Ohio State University
2015 Neil Avenue, Columbus, OH 43210
{yootai, raghu }@cis.ohio-state.edu

2 Computational Simulation and Design Center, Mississippi State University
Box 9627, Mississippi State, MS 39762
dst@erc.msstate.edu

1 Introduction

Many surfaces in nature are rough. A rough surface can be defined as a surface
that has a fractal dimension. In fact, one measure of roughness is the fractal
dimension [1, 14]. Rough surfaces are observed at all scales independent of
their origin; for example, a microscopic view of metal substrate, a cauliflower,
ice, and mountains are all rough at some level. Additionally, rough surfaces
are frequently generated by various technical processes, such as molecular
beam epitaxy (MBE).

Rough surfaces are also common in synthetic environments. Techniques
for realistic image synthesis have improved dramatically. However, there is no
easy solution to the problem of generating rough surfaces. The recent movie
Ice Age produced by Blue Sky Studios is a good example. Although the
synthetic ice world in the feature film was visually appealing, the computer
generated ice models were not realistic enough to match the visual richness
of natural ice. Furthermore, the production process still requires much labor
and somewhat ad hoc methods.

In materials science, numerous models have been developed to study sur-
face growth phenomenon [1]. In general, it is difficult to develop a viable
continuum model of surface growth phenomenon and then solve the resulting
differential equations. Therefore, discrete models play an important role in
the prediction of surface growth phenomena. A discrete model is defined as a
system with discrete variables and update rules. Since many rough surfaces
in nature are formed by deposition and diffusion processes, discrete models
simulating these processes can reasonably reproduce natural rough surfaces.
Typical results from these simulations consist of point clusters with nontrivial
topologies.

For instance, consider the results of the two-dimensional simulation using
the diffusion limited aggregation (DLA) cluster growth model shown in Fig
1. The distribution of the islands and dendrites is unusual and cannot be
generated by traditional means. Also, in addition to fractal like microstruc-
tures, prominent large-scale structures are produced. Therefore, a sophisti-

2 Kim, Machiraju, and Thompson

cated methodology is needed to capture and represent these complex surfaces.
Explicit methods of representation using triangulation are unable to capture
the intricacies of these surfaces in their entirety. Implicit methods do pos-
sess the capability to represent surfaces with complex topologies. However, it
is necessary to consider methods that provide variable amounts of smooth-
ness. Level set methods, through appropriate choice of initial conditions and
front velocities, can extract surfaces of differing smoothness while preserving
the underlying topology and are routinely used for reconstruction of smooth
surfaces. We consider their use for reconstruction of rough surfaces.

Fig. 1. A fractal surface growth simulation: DLA

In this paper, we propose a method for generating rough surfaces using
discrete surface growth models. Our goal is to develop easily controllable
methods for generating rough surfaces for computer graphics applications.
We employ a two-pass method. A point set is generated using a discrete
model based on surface growth and evolution. Then, the resulting surface is
extracted by a level set method. This two-pass process provides more flexibil-
ity to users by separating the surface extraction step from the data generation
step. The simple rule-based discrete simulations we employ here have several
advantages. First, the results are convincing since they are derived from phys-
ical processes. Second, implementation is easy and the computations using
the methods are not expensive. Lastly, users can exercise control by simply
changing the discrete update rules. After generating an initial data set from
the application of a discrete model, a level set method is used to obtain an
implicit surface representation. This approach allows us to easily handle com-
plex topologies and compute intrinsic geometric properties of the surface. In
addition, it is easy to deform the shape for animation and to combine several
objects to generate an elaborate model.

Modeling Rough Surfaces 3

Our paper is organized as follows. In Section 2, we review related efforts
for rough surface generation. We then provide an overview of our techniques
in Section 3. Later, in Section 4 and 5, we describe the details of several
surface growth models and our level-set-based surface extraction method. In
Section 6, we provide results that demonstrate the potential of our approach
and in the final section we draw conclusions and present a discussion of future
work.

2 Related Work

The morphology of rough surfaces can be described by fractal models and
concepts. To date, fractal models have been the primary method to model
natural surfaces. They can be classified as one of the following five approaches:
Poisson faulting [14,25], Fourier filtering [14,15,25], midpoint displacement [7,
11, 16, 20], successive random additions [25], and noise synthesis [8, 16]. The
Poisson faulting process is a sum of randomly placed step functions with
random heights, which generates a Brownian surface. Musgrave [17] compares
these methods in a comprehensive way. However, all produce surfaces defined
in terms of height fields and cannot generate arbitrary surfaces. In particular,
these techniques cannot generate surfaces of arbitrary genus as required by
rough and amorphous materials. These methods generate random fractals
which are scale invariant in a statistical sense. Gross and large structures are
hard to obtain through the deployment of these techniques.

Procedural textures [4] can also be used to simulate a rough surface.
Lewis [12] suggested a solid noise synthesis algorithm for surface texturing
and stochastic modeling. Worley [27] obtained good results using a cellular
texture basis function for organic skin and tiled stone. Fleischer [6] proposed
a cellular development simulation to model organic surface details such as
scales, feathers, or thorns. The results are very promising; however, it is hard
to devise a cellular automata simulation and conversion functions to obtain
desired results.

Computer graphics researchers in the past have used deposition concepts
for different purposes. Musgrave performed random deposition followed by
surface relaxation to emulate thermal weathering processes [17]. Fearing’s
accumulation model [5] also employed similar ideas for modeling fallen snow.
Finally, Dorsey used fractal growth models such as random and ballistic de-
positions to model weathering of metallic surfaces [3].

Implicit surface methods have been used to represent rough surfaces. Rel-
evant efforts include Hart’s implicit representation of rough surfaces [10] and
Greene’s voxel space automata [9]. Hart derived implicit formulae for fractal
representations. He generated wooden surfaces and blended them to demon-
strate the power of implicit representation. Greene simulated the growth of
plants using simple relationship rules in discrete volumes.

4 Kim, Machiraju, and Thompson

The efforts we report here are different in several ways. The surfaces
we produced are not just height fields. Additionally, our techniques produce
both microscopic and macroscopic structural variations. For example, DLA
models allow the development of larger gross structures. Further, we employ
level set formulations to extract the final surfaces. It should be noted that,
while researchers in the physical sciences have used growth models for some
time, their results are mostly based on two-dimensional models. Thus, the
extraction of a three-dimensional growth surface is certainly novel as reported
here.

3 Overview of Rough Surface Generation

Our rough surface generation process consists of two modules: the surface
growth simulator and the surface reconstructor. The surface growth simulator
generates a point set based on user-specified initial conditions. The initial
conditions depend on the surface growth model and include parameters for
update rules and the initial configuration of the seed points. In this paper,
we use two surface growth models: random deposition with surface relaxation
(RDSR) and diffusion limited aggregation (DLA). While RDSR is a simple
local growth model, DLA is a non-local growth model. It was previously
demonstrated that RDSR and DLA surfaces are fractal in nature [1]. These
fractals belong to the class of self-affine fractals which are invariant under
anisotropic transformation. The surface reconstructor captures surfaces from
the results of the growth simulator and generates a surface representation
such as a polygonal model (See figure 2).

Thus, our two-pass approach divides the problem into two well-separated
sub-problems. Each sub-problem has been studied extensively and many ma-
ture technologies can be brought to bear on its solution. In addition to surface
growth models derived from materials science, any rule-based method can be
used.

A level set method is used to obtain an implicit surface representation.
It is a computational technique for tracking evolving interfaces and is used
in a wide range of areas such as physics, materials science, and computer
vision [23]. Our surface reconstruction method is based on a level set method
proposed by Zhao [30]. In [30], an initial surface is continuously deformed
toward a final surface in a potential flow direction. The final surface can be
extracted as a polygonal model using the marching cubes method [13] and
then rendered with standard graphics software.

4 Surface Growth Simulation

We now describe two fractal surface growth models: random deposition with
surface relaxation (RDSR) and diffusion limited aggregation (DLA). While

Modeling Rough Surfaces 5

Surface Growth

Simulator

Visulalizer

Initial condition (seed point set) Point set

Surface

Reconstructor

3D geometry files

(OpenInventor, VRML)
Image

User Interface

Fig. 2. Rough surface generator pipeline

RDSR is a local growth model, DLA is a nonlocal growth model. DLA gen-
erates more diverse surfaces than RDSR. More detailed descriptions of these
and other methods can be found in [1].

4.1 Random Deposition with Surface Relaxation (RDSR)

We first explain the random deposition model (RD) because it easily leads
to RDSR. RD is the simplest local growth model. From a randomly chosen
site over the surface, a particle drops vertically until it reaches the top of
the column under it, whereupon it is deposited (see Fig. 3(a)). In RDSR, the
deposited particle diffuses along the surface up to a finite distance, stopping
when it finds the position with the lowest height (see Fig. 3(b)). Due to the
relaxation process, the final surface will be smoother than one generated by
RD [1].

The most important difference between RD and RDSR is that an RDSR-
generated surface is correlated through the relaxation process. The interface
width, another measure of surface roughness, is defined by the root mean
square fluctuation in the surface height. The interface width grows indefi-
nitely for RD surfaces, but saturates for RDSR surfaces. RD surfaces look

6 Kim, Machiraju, and Thompson

very rough and protrusive while RDSR surfaces appear smoother and more
natural.

�

� �

� �

�

(a) (b)

Fig. 3. (a) RD model, (b) RDSR model

4.2 Diffusion Limited Aggregation (DLA)

DLA is the most widely-known nonlocal cluster growth model. The working
of the model is illustrated in Figure 4. A seed particle is fixed at a site in
the bottom plane. A second particle is then released from a random position
distant from the seed. It moves following a Brownian trajectory or a random
walk until it reaches one of the four neighbor sites of the stationary seed
whereupon it sticks with some probability forming a two-particle cluster.
Then, a new particle is released which can stick to any of the five perimeter
sites of the two-particle cluster. This process is then repeated. The diffusive
effect is achieved through the use of Brownian motion of particles and the
release of particles from clusters.

The nonlocality of DLA is due to the shadowing effect generated by the
branches of the cluster. There is a much higher probability that a new re-
leased particle will be captured by the outlying portions of the cluster than
in the interior regions. In other words, the interior region is shadowed by
the branches on the perimeter (see Fig. 1). Hence, the growth rate depends
not only on the local morphology, but also on the global geometry of the
cluster. DLA can generate various surfaces from dendritic structures to a
moss-like structure depending on the sticking probability and the nonlocal
growth effect [21].

5 Surface Reconstruction

We now explain our level-set-based surface reconstruction algorithm. We fol-
low the level set formulation in [30]. Since the method of [30] is targeted to
the reconstruction of smooth surfaces, we employ a different potential flow
for the reconstruction of rough surfaces in the level set formulation.

Modeling Rough Surfaces 7

1

2

Fig. 4. Growth model for DLA

5.1 Level Set Formulation

In general, the surface growth simulators produce surfaces that do not have
simple topologies. This makes explicit surface representation almost impos-
sible to implement. The level set method is a powerful numerical technique
for the deformation of implicit surfaces. The level set formulation works in
any number of dimensions. The data structure is very simple and topological
changes are handled easily.

The level set method was originally introduced by Osher and Sethian
in [19] to capture evolving surfaces by curvature flow and has been success-
fully used to track interfaces for wide variety of problems. See [18, 23] for a
comprehensive review. The two key steps of the level set method are described
below.

Embed the surface A co-dimension one surface Γ is defined as the zero
isosurface of a scalar (level set) function φ(x), i.e., Γ = {x : φ(x) = 0}.
φ(x) is negative inside Γ and positive outside Γ . In practice, the signed
distance function is preferred as a level set function. Geometric properties
of the surface Γ , such as the normal and mean curvature can be easily
computed from φ(x) using:

outward unit normal: n =
∇φ

|∇φ| (1)

mean curvature: κ = ∇ · ∇φ

|∇φ| . (2)

Embed the motion The time evolution PDE for the level set function is
obtained by differentiating φ(Γ (t), t) to obtain

φt +
dΓ (t)

dt
· ∇φ = 0 ⇐⇒ φt + vn|∇φ| = 0. (3)

Here, vn is the normal velocity of Γ (t) which may depend on external
physics or global and local geometric quantities.

8 Kim, Machiraju, and Thompson

To develop the level set PDE, one needs to extend the velocity, vn in Eq. (3),
which is given by the motion of the original surface. Let S denote a point set.
Define d(x) = distance function(x, S) to be the closest distance between the
point x and S. We use the convection model of a surface Γ in a velocity field
v(x) described by the PDE

dΓ (t)

dt
= v(Γ (t)). (4)

Then, we can naturally extend the convection to all level sets of φ(x, t) to
obtain

dφ

dt
= −v(x) · ∇φ. (5)

While Zhao used v(x) = −∇d(x) in [30], we use v(x) = −d(x) because
the computation of ∇d(x) on a highly rough surface is very unstable. Thus,
the level set formulation of our convection model is

dφ

dt
= d(x)|∇φ|. (6)

5.2 Numerical Implementation

There are three key numerical elements in our surface reconstruction. First,
a fast algorithm is required to compute the distance function to an arbitrary
data set on a rectangular grid. Second, we are required to find a good initial
surface for our level set PDE to reduce the computational cost of solving
the PDE. Third, we need a fast and stable solver for the PDE. As shown in
Fig. (5), we obtain an initial surface, Γi by deforming the bounding surface
Γ0 following an approximate normal flow of Γ0. Then, we deform the offset
surface Γi to get the final surface Γf by solving Eq. (6).

Computing the Distance Function The distance function d(x) to an
arbitrary data set S is computed by solving the following Eikonal equation:

|∇d(x)| = 1, d(x) = 0, x ∈ S. (7)

We use the algorithm in [30] that combines upwind differencing with Gauss
Seidel iterations of alternating sweeping orders to solve the differential equa-
tion (7). In two dimension, the following upwind differencing is used to dis-
cretize Eq. (7),

[(di,j − xmin)+]2 + [(di,j − ymin)+]2 = h2 (8)

where h is the grid size, n is the total number of grid points, i = 1, . . . , n, j =
1, . . . , n,

(x)+ =

{

x x > 0
0 x ≤ 0,

Modeling Rough Surfaces 9

Γ0

Γi

Γf

Deformation direction by tagging algorithm

Deformation direction by convection flow

Fig. 5. Deformation methods (Γ0: an exterior bounding surface, Γi: an initial
surface for a level set solver, Γf : a final surface obtained by a level set solver)

and
xmin = min(di−1,j , di+1,j) ymin = min(di,j−1, di,j+1).

The solution for Eq. (8) satisfies

min(xmin, ymin) < di,j ≤ min(xmin, ymin) + h.

Hence, the exact solution for the nonlinear Eq. (8) is given by:

di,j =







min(xmin, ymin) + h if |δ| ≥ h

xmin + ymin +
√

2h2 − δ2

2
if |δ| < h

(9)

with δ = xmin − ymin. Then, the distance function is obtained by solving
Eq. (8) on every grid cell in the following four sweeping orderings:

(1)i = 1 : n, j = 1 : n (2)i = 1 : n, j = n : 1
(3)i = n : 1, j = n : 1 (4)i = n : 1, j = 1 : n.

Usually, the solution converges within five or six sweeps in two dimension,
and nine sweeps in three dimension. See [28] for details and proofs.

Finding an Initial Surface In our approach, we continuously deform an
initial surface to the final surface by following the convection flow direction.
If we start with an initial surface that is too far from the real shape, it will
take a long time to evolve the PDE. A good guess for the initial surface helps
to speed convergence to the final surface. To find an initial surface such that

10 Kim, Machiraju, and Thompson

{x : d(x) = ε} where ε is an offset distance specified by the user, we employ a
simple tagging algorithm based on a region growing method in discrete space.

We start from any initial exterior region such as a bounding box. Every
grid cell is initially tagged as interior, boundary, or exterior. We denote the
interior, boundary, and exterior region as Ω, ∂Ω, and Ω respectively. Let
dij = d(xij) be the unsigned distance of xij to the data set S. We say
xij > xkl or xij is farther than xkl or xij is larger than xkl if dij > dkl. We
deform the initial tagged boundary ∂Ω to the final tagged boundary using
the tagging algorithm in Algorithm 1.

Require: S ∈ Ω

1: ε: offset distance, ∂Ω: a tagged boundary
2: while maximum distance of ∂Ω ≥ ε do

3: Pick the most distant point x<ij ∈ ∂Ω

4: if All interior neighbors of xij are closer to S then

5: Add xij into Ω and Put its interior neighbors into ∂Ω.
6: end if

7: end while

8: The final ∂Ω is the offset surface.

Algorithm 1: Tagging algorithm to find an initial offset surface, d(x) = ε

We maintain a priority queue for ∂Ω so that the most distant point can
be identified quickly. After tagging, we recompute the distance function for
the tagged boundary. We obtain the signed distance function by negating the
distance function at all interior cells.

Solving the Level Set PDE We can continuously deform the initial signed
distance function, φ(x), by solving the level set PDE given in Eq. (3). If we
solve the PDE in a brute force way, the computational cost is O(N3) at each
time step for the grid size N . The computational cost reduces to O(N2/3)
using the fast local level set method [22]. Instead of computing on every grid
cell, the computation is restricted to a narrow tube around the zero level set
(see Fig. 6). Since the solution of Eq. (3) often becomes very flat or steep
at the front Γ (t), a redistancing algorithm is needed to keep φ(x, t) a signed
distance function and smooth in a neighborhood of the front. An upwind
scheme is used for space discretization of Eq. (3), and an essentially non-
oscillatory Runge-Kutta scheme is used for time approximation. Details for
the discretization scheme can be found in [19,29].

We outline the main algorithm.

1. Update tubes, T and N , where

T = {x : |φ(x)| < γ}
N = {(xi, yi) : min−1≤ν,µ≤1 |φi+ν,j+µ|| ≤ γ}.

Modeling Rough Surfaces 11

Fig. 6. Computation is only performed on the gray region (Tube: T) around the
zero level set Γ

The level set is advanced in time in tube T while the redistancing step is
performed in tube N .

2. Advance: Update φ in tube T for one time step to obtain φ̃ by an ODE
time stepping method. Instead of using vn in Eq. (3), c(φ)vn is used to
prevent numerical oscillations at the tube boundary, where the cut-off
function, c(φ), is defined by:

c(φ) =















1 if |φ| ≤ β

(|φ| − γ)2(2|φ| + γ − 3β)

(γ − β)3
if β < |φ| ≤ γ

0 if |φ| > γ

(10)

3. Redistance: Apply the redistancing step to φ̃ on the tube N . Evolve the
following Hamilton-Jacobi equation until d(x, τ) reaches a steady state
solution ds(x):

dτ + S(d)(|∇d| − 1) = 0,

d(x, 0) = d0(x) = φ̃(x, t),

S =
d

√

d2 + |∇d|2h2
.

(11)

If d0 is already close to a distance function, the redistancing operation
usually takes only one or two iterations within the tube N .

4. Update the new φ by:

φ(x) =







−γ if ds(x) < −γ

ds(x) if |ds(x)| ≤ γ

γ if ds(x) > γ

(12)

12 Kim, Machiraju, and Thompson

6 Results

We use the vispack library [26] to implement parts of the surface reconstruc-
tor. The zero level set or the required implicit surface is extracted using suit-
able vispack routines that invoke the marching cubes method [13]. The result
is available as VRML output. Since VRML is a common three-dimensional
format supported by many free and commercial renderers, it provides a flex-
ible choice to users depending on their needs. The computations were con-
ducted on a SGI workstation with a 225MHZ MIPS R10000 processor and
1 GByte of memory. For a 1003 computational grid, it takes 3–4 minutes
to compute a distance function and an initial surface respectively. It takes
about 20 seconds for the first order solver, and a minute with the second
order solver for one time stepping. We use the second order solver to obtain
the presented results.

Fig. 7 shows the deformation of the bunny model by the convection flow
given by Eq. (6). The initial surface, Fig. 7(b) is the approximate offset surface
from the true surface, i.e. {x : d(x) = hε}, which is obtained by the tagging
algorithm. The initial surface displays aliasing artifacts since the tagging
algorithm is a procedural rather than a numerical method. It should be noted
that our convection flow is good enough for rough surface characterization,
though the result is not as smooth as the one using the weighted minimal
surface model in [30]. In the weighed minimal surface model, an additional
curvature term regularizes the surface, which is not desired for rough surfaces.

In Fig. 8, we show a rough surface generated by a RDSR simulation on a
sphere. An initial surface with an offset of ε = 3 is used for all rough surface
examples. The final surface in Fig. 8(b) is naturally rough.

Fig. 9 shows a rough terrain. It is generated from a DLA simulation which
is performed on a 643 grid and the computational grid size is 115× 115× 49.
This example illustrates how well the level set method captures complex
geometries and topologies including arches. The arches are clearly seen in
Fig. 10. Fig. 11 is another example of the DLA simulation with different initial
conditions. It demonstrates that our method can produce visually appealing
natural scenery.

7 Conclusions and Future Work

We presented a new rough surface modeling technique using a fractal sur-
face growth model and a level-set-based method for surface extraction. Our
method is flexible because of its modular design. A fractal surface growth
model guarantees the surface is natural and rough. It also provides the user
some control over the shape of the resulting surface. The implicit representa-
tion obtained using a level set method handles the resulting complex topolo-
gies naturally. It is simple and easy to implement as well. We generated very
promising results using these two methods in combination.

Modeling Rough Surfaces 13

An immediate problem is the control of the roughness of the surface,
perhaps using the interface width, fractal dimension, or some other measure.
One approach is to vary the input conditions. For example, by simulating
DLA on a complex object surface, we can generate more interesting results
than a typical displacement mapping method. We may use an image as the
distribution of the initial seeds for DLA. Another alternative would be to
employ environmental fields. Two issues of concern associated with the level
set method are the computational cost and the stability of the PDE solver. It
may be possible to employ fast and robust methods that are potentially less
accurate for computer graphics applications. We are planning to investigate
the adaptive, semi-Lagrangian method presented in [24]. Finally, it would
be interesting to add roughness directly to the level set function grid by
applying a physics-based velocity function such as the dendritic growth in a
Stefan problem [2].

References

1. A. L. Barabási and H. E. Stanley. Fractal Concepts In Surface Growth. Cam-
bridge University Press, Cambridge, 1995.

2. S. Chen, B. Merriman, S. Osher, and P. Smereka. A simple level set method
for solving stefan problems. J. Comput. Phys., 135:8–29, 1997.

3. J. Dorsey and P. Hanrahan. Modeling and rendering of metallic patinas. In
Holly Rushmeier, editor, Proceedings of ACM SIGGRAPH 1996, Computer
Graphics Proceedings, Annual Conference Series, pages 387–396, August 1996.

4. D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing and
Modeling: A Procedural Approach. Academic Press, New York, 1994.

5. P. Fearing. Computer modelling of fallen snow. In Kurt Akeley, editor, Pro-
ceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual
Conference Series, pages 37–46, New York, July 2000. ACM, ACM Press /
ACM SIGGRAPH.

6. K. W. Fleischer, D. H. Laidlaw, B. L. Currin, and A. H. Barr. Cellular texture
generation. In Robert Cook, editor, Proceedings of ACM SIGGRAPH 1995,
Computer Graphics Proceedings, Annual Conference Series, pages 239–248,
August 1995.

7. A. Fournier, D. Fussell, and L. Carpenter. Computer rendering of stochastic
models. Communications of the ACM, 25(6):371–384, June 1982.

8. G. Y. Gardner. Functional modeling of natural scenes. SIGGRAPH Course
Notes: 28 Functional Based Modeling, 28:41–49, 1988.

9. N. Greene. Voxel space automata: Modeling with stochastic growth processes
in voxel space. Computer Graphics(Proceedings of ACM SIGGRAPH 89),
23(3):175–184, July 1989.

10. J. Hart. Implicit representation of rough surfaces. Implicit Surfaces’95, pages
33–44, April 1995.

11. J. P. Lewis. Generalized stochastic subdivision. ACM Transactions on Graph-
ics, 6(3):167–190, July 1987.

12. J. P. Lewis. Algorithms for solid noise synthesis. Computer Graphics(Proceed-
ings of ACM SIGGRAPH 89), 23(3):263–270, July 1989.

14 Kim, Machiraju, and Thompson

13. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. Computer Graphics(Proceedings of ACM SIGGRAPH
87), 21(4):163–169, July 1987.

14. B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Co.,
San Francisco, 1982.

15. G. A. Mastin, P. A. Watterberg, and J. F. Mareda. Fourier synthesis of ocean
scenes. IEEE Computer Graphics and Applications, 7(3):16–23, March 1987.

16. G. S. P. Miller. The definition and rendering of terrain maps. Computer
Graphics(Proceedings of ACM SIGGRAPH 86), 20(4):39–48, August 1986.

17. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis and rendering of
eroded fractal terrains. Computer Graphics(Proceedings of ACM SIGGRAPH
89), 23(3):41–50, July 1989.

18. S. Osher and R. Fedkiw. Level set methods: an overview and some recent
results. Journal of Computational Physics, 169:463–502, 2001.

19. S. Osher and J. Sethian. Fronts propagating with curvature dependent speed:
Algorithms based in hamilton-jacobi formulations. Journal of Computational
Physics, 79:12–49, 1988.

20. H. O. Peitgen and S. Dietmar, editors. The Science of Fractal Images. Springer-
Verlag, New York, 1988.

21. H. O. Peitgen, H. Jürgens, and S. Dietmar, editors. Chaos and Fractals.
Springer-Verlag, New York, 1992.

22. D. Peng, B. Merriman, H. Zhao, S. Osher, and M. Kang. A pde based fast
local level set method. Journal of Computational Physics, 155:410–438, 1999.

23. J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Univer-
sity Press, 1999.

24. J. Strain. A fast modular semi-lagrangian method for moving interfaces. Jour-
nal of Computational Physics, 161:512–528, 2000.

25. R. F. Voss. Random fractal forgeries. In R. A. Earnshaw, editor, Fundamental
Algorithms for Computer Graphics. Springer-Verlag, Berlin, 1988.

26. R. T. Whitaker. Vispack:a c++ object oriented library for processing volumes,
images, and level-set surface models. 2002.

27. S. Worley. A cellular texture basis function. In H. Rushmeier, editor, Pro-
ceedings of ACM SIGGRAPH 1996, Computer Graphics Proceedings, Annual
Conference Series, pages 291–294, August 1996.

28. H. Zhao. Fast sweeping method for eikonal equations. preprint, 2002.
29. H. Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach

to multiphase motion. Journal of Computational Physics, 127:179–195, 1996.
30. H. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level

set method. In Proceedings of IEEE Workshop on Variational and Level Set
Methods in Computer Vision (VLSM 2001), pages 194 –201, Jul 2001.

Modeling Rough Surfaces 15

(a) (b)

(c) (d)

Fig. 7. Bunny deformed by the convection flow, 135 × 134 × 112 grid: (a) point
set, (b) initial surface with ε = 17, (c) 100 iterations, (d) 200 iterations

(a) (b)

Fig. 8. RDSR simulation, 112×115×114 grid: (a) initial surface with ε = 3, (b) 30
iterations

16 Kim, Machiraju, and Thompson

(a) (b)

Fig. 9. DLA simulation 1, 115×115×49 grid: (a) initial surface with ε = 3, (b) 30
iterations

(a) (b)

Fig. 10. Arches from DLA simulations 1: (a) arch structure in the boxed region,
(b) zoom-in view of the region

(a) (b)

Fig. 11. DLA simulation 2, 115 × 115 × 75: (a) initial surface with ε = 3, (b) 30
iterations

