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Abstract

Void nucleation, growth, and coalescence in A356 aluminum notch specimens was determined from a combination

of experiments, finite element analysis, nondestructive analysis, and image analysis. Notch Bridgman tension experi-

ments were performed on specimens to failure and then other specimens were tested to 90%, 95%, and 98% of the failure

load. The specimens were evaluated with nondestructive X-ray tomography and optical image analysis. Finite element

simulations of the notch tests were performed with an elastic–plastic internal state variable material model that in-

corporated the pertinent microstructures (silicon particle volume fraction and size distribution and porosity volume

fraction and size distribution). Parametric finite element simulations were performed to give insight into various initial

conditions and responses of the notch tensile bars. The various methods all corroborated the same damage progres-

sion.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent years there has been a strong research

initiative by the automotive industry to improve

the performance of cast aluminum components.
Among other things, one critical aspect of opti-

mizing design is to better understand and quan-

tify damage evolution in cast aluminum under

monotonic loads. Developing the ability to predict

damage progression is imperative for the design of

components that will experience overloads during
service due to impacts and rough ground. The

progression of damage in nearly all ductile mate-

rials subjected to monotonic loading is due to

the nucleation, growth, and coalescence of voids

[1]. In metallic alloys, the nucleation and subse-

quent growth of voids occurs primarily at second

phase inclusions or precipitates [2–5]. Due to their
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heterogeneous microstructure, cast aluminum al-

loys are particularly vulnerable to void-crack nu-

cleation, growth and coalescence from Si, Mg, and

Fe particles. In addition, cast aluminum alloys

contain voids (porosity) due to local feeding ob-

struction through dendritic solidification fronts,
trapped gases, or temperature gradient driven so-

lidification shrinkage [6,7]. Notably, pores can

exist at different material length scales ranging

from the submicron size to several hundred mi-

crons, depending on the solidification process. The

size, shape and distribution of the pores will have

a strong influence on damage evolution, localiza-

tion, and mechanical properties of aluminum cast-
ings [7–9].

The microstructure of hypoeutectic cast A356

Al consists of the main (Al–1.6wt.%Si) and eu-

tectic (Al–12.6wt.%Si) phases. In the eutectic re-

gions, large silicon particles and clusters form a

dendritic substructure while the Si remains solu-

tionized in the main phase. The microstruc-

tural alterations have a strong influence on the
monotonic mechanical properties of Al castings

through changes in void nucleation, growth, and

coalescence characteristics. Under monotonic

loads, cast aluminum alloys with a smaller DAS or

spheroidized Si particles generally demonstrate

more macroscopic ductility and greater ultimate

tensile strengths [8,10–15].

With this background, it is clear that the
monotonic mechanical properties of cast alumi-

num alloys are controlled by the multiscale mech-

anisms of void nucleation, growth and coalescence

from Si particles and preexisting pores. Numerous

studies have been performed to understand dam-

age progression in different metallic alloys [16–39].

However, previous experimental studies have

not examined the progression of void nucleation,
growth, and coalescence with the combined com-

plementary analyses of continuum damage me-

chanics, X-ray tomography, and optical methods.

To fully exploit the current metallurgical findings

and precisely predict the deformation and dam-

age progression of cast aluminum, a link between

modeling predictions and experimental results

should be firmly established. This work aims to
establish such a link through the methods that will

be described next.

The present work includes a comparative study

of experimental data, numerical finite element sim-

ulations, optical microscopy and stereology, and

X-ray computed tomography (CT) of notch ten-

sile tests in a cast A356 aluminum alloy. Notch

Bridgman tensile specimens were monotonically
loaded to different strain levels up to and including

failure. The notch geometry was used to create

stress triaxiality gradients in the specimen to vali-

date the experimental and numerical methods.

After mechanical testing, the damage in the speci-

mens was determined using a CT method. CT is a

nondestructive testing technique that uses X-rays

to accurately determine the local density changes.
For the optical image analysis, the specimens were

sectioned and metallographically prepared. Opti-

cal microscopy coupled with digital image analysis

techniques was used to obtain high precision pic-

tures of the pertinent surface, which provided a

benchmark comparison tool for the CT technique.

The CT method determines three-dimensional po-

rosity distributions, while the sectioning method
only provides information for a representative

two-dimensional cross-section. However, the two-

dimensional cross-section technique represents the

most widespread method for determining the

evolution of many microstructural parameters

such as casting porosity [40]. The finite element

analysis included the use of the large deformation

temperature and rate dependent, internal state
variable (ISV) plasticity model [41,42] hereafter.

The plasticity model [41,42] has also been modified

for void nucleation, growth and coalescence

[37,43]. The constants for the plasticity and dam-

age model were calibrated to experimental stress–

strain results for tension, compression, torsion,

tension-followed-by-compression, and compres-

sion-followed-by-tension [43]. The material model
is implemented into the ABAQUS implicit finite

element code using a mesh that has identical di-

mensions as the Bridgman tensile specimens. This

numerical analysis allows the prediction of spatial

damage progression as a function of the applied

load.

Succeeding sections of this paper present the

cast material information, experimental techniques,
numerical modeling method, and a discussion of

the results, and conclusions.
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2. Cast material and mechanical testing

The composition of the A356 Al alloy is; 7% Si,

0.4% Mg, 0.01% Fe, 0.01% Cu, 0.01% Mn, 0.01%

Sr, 0.01% Ti, 0.01% Zn, and balance aluminum.
To produce A356 cast plates, an A356.2 ingot was

melted in an induction furnace. The melt was grain

refined with titanium–boron, was strontium mod-

ified, and degassed using a rotary degasser. The

castings were poured between 950 and 977 K, and

then fully cooled over a 16-h period. The A356

aluminum plates were cast in rectangular molds

with interior dimensions of 25� 14� 5 cm. Iron
chills were employed on the top, bottom, and end

of the casting mold to simulate a permanent mold

casting. A no-bake silica sand was used to create

the sides of the plate, the riser, and the down

sprue. A ceramic foam filter was used between the

down sprue and the riser. The plates were removed

from the mold and given a T6 anneal (solutionized

at 810 K for 16 h, quenched in hot water at 344 K,
and then aged for 4 h at 518 K). This produced an

average dendrite cell size of approximately 25 lm.

Mechanical test specimens were cut from a cast

plate orthogonal to the solidification direction in

order to assure that different initial porosity levels

with homogeneously distributed pores would re-

sult within the specimens. A variation in the initial

conditions of the test samples provided an addi-
tional dimension to evaluate the performance of

the damage characterization and prediction tech-

niques. The different levels of initial porosity in the

specimens were helpful in determining if the driv-

ing force for ductile damage depended more on

the material characteristics (pore size, volume

fraction, and distribution) or the applied boundary

conditions. For wrought alloys, the damage pro-
gresses mainly in the center of the specimen due

to the high stress triaxiality [41,44]. The specimen

notch radius was 2.97 mm, with a notch root di-

ameter of 9.23 mm and a shoulder diameter of 12.7

mm. The gage radius was 4.7625 mm. Hence, the

ratio of gage radius to notch size, which reflects

the stress triaxiality, is 1.6, a moderate triaxiality.

The displacements were measured using an ex-
tensometer with a 25.4 mm gage length placed

across the notch. Cross-sectional views of the

samples are provided on several of the visual

damage images. All specimens were loaded at an

approximate strain rate of 10�4 s�1 at room tem-

perature.

The load–displacement responses of the four

different cast A356 Al specimens are shown in Fig.
1. The Bridgman specimen numbers S1, S2, and S3

were unloaded prior to failure at 90%, 95%, and

98% of the failure load on the curves in Fig. 1. The

failure load was determined by specimen S4.

The percentage of failure load varies depending

on the initial porosity level. For example, S2 had a

higher initial porosity level than S4 as shown by

the optical images in Fig. 2. The initial total po-
rosity level for these two specimens were measured

in material extracted adjacent to the notch region

before testing. The initial porosity level for S2 was

0.02 and for S4 was 0.0009. When comparing these

two, the 95% load level is not precise because the

failure load for S2 was smaller than S4. However,

by monitoring the loads instead of displacements

to determine the prefailure point, we retrieved a
more reliable result. When trying to control with

displacements, premature failure of the specimen

would result because of the variability in the initial

porosity level and distribution. Because increased

porosity degrades the effective elastic modulus, S2

and S3 have larger initial porosity levels as evident

from microstructural data and the smaller effective

elastic stiffness observed in these curves.

Fig. 1. Load–displacement curves for notched cast A356 Al

specimens. The displacement was measured across the notch

using an extensometer with a 25.4 mm gage length. The area

between the maximum observed effective elastic stiffness, Smax,

and the curve is a relative measurement of total specimen

damage.
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The maximum effective elastic stiffness among

the four specimens, Smax, can be used in part to

estimate the relative difference in total damage
between the Bridgman specimens. The value of

Smax represents the ‘‘elastic’’ response of the Bridg-

man specimen with the lowest initial porosity level.

As shown in Fig. 1 by the dashed lines, the un-

loading of all specimens is assumed to occur along

Smax. With this construction, the area between the

actual load–displacement response and the ideal-

ized unloading curve is a relative measure of the
initial porosity superposed with the subsequent

damage (plasticity) in the specimens. For example,

in Fig. 1 specimen S1 is brought to a higher load

level than specimen S2. However, the total damage

in specimen S2 is larger (greater area between the

Smax line and the load–displacement curve) due to

its increased initial porosity. Using the area crite-

rion, the curves in Fig. 1 are arranged in order of

ascending total damage. The developed trend in

total specimen damage is consistent with nonde-

structive and metallographic damage measure-

ments that will be discussed later.

3. Computed tomography

CT produces two- and three-dimensional spa-

tial data convolved with a fourth dimension that

is the X-ray linear attenuation coefficient. The

linear attenuation coefficient (LAT) is a function

of material density, elemental composition, and
X-ray energy. For specimens that have homoge-

neous elemental composition, changes in the LAT

represent changes in material density. For inho-

mogeneous samples, changes in the LAT represent

either density changes or segregation of elemental

consituents, or both. Voids in the material result in

LAT values of zero or near zero depending on

spatial resolution.
Volumetric data is produced by first obtaining

two-dimensional X-ray transmission images (pro-

jections) for a systematic set of specimen rotations.

CT reconstruction software converts the two-

dimensional projections into a complete volumet-

ric representation of the object. This volumetric

data can be sectioned in any two-dimensional

planes to provide arbitrary cross-sectional planes
(tomograms) of the specimen. The tomograms,

coupled with volumetric image rendering tech-

niques, accurately depict internal structures, ge-

ometries, and density/elemental variations within

the specimen. Discontinuities such as gas holes and

shrinkage porosity are well defined in the CT im-

age, depending on the system resolution and dis-

continuity size. When individual pores in a local
region are smaller than the system resolution, that

region will appear to have a lower density than the

surrounding nonporous material.

Two system parameters of importance for image

interpretation are contrast sensitivity and spatial

resolution. Contrast sensitivity is the ability of the

CT system to detect variations in thickness and/or

density. Spatial resolution is the ability of the system
to resolve small features or details. The CT system

can detect density variations as small as 0.1%, and

Fig. 2. Optical images of two different specimens (a) S2 and (b)

S4 showing the variation of initial porosity from specimen to

specimen.
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provide this information as a function of spatial

location in the object. Spatial resolution depends

on system design, sampling plan, and image recon-

struction method. The detector element size and

projection magnification together with sampling

plan (i.e., number of projection angles) determine
both pixel size for two-dimensional slice images and

voxel (volume element) size for three-dimensional

images. For the experimental setup employed here,

the pixel (voxel) dimension was 28 lm. Structural

features smaller than approximately two pixel

(voxel) dimensions are not resolved, rather they lead

to a lower average density measurement. Decon-

volution of image blur using a measured point
spread function is accomplished before CT recon-

struction to produce sharper (higher contrast and

resolution) reconstructed images.

The CT data acquisition system used in the

present study is an area-array (two-dimensional)

third-generation (rotation only) system. It consists

of a 450 kV constant potential X-ray machine

source with a 1.0 mm focal spot, and a detector
system that uses a thermoelectrically cooled CCD

camera (14-bit, 1024� 1024 pixels) optically cou-

pled to a high-density glass scintillator plate (100�
100� 6 mm) by a photographic lens. The me-

chanical staging for the system consists of three

degrees of freedom: rotational, and x- and y-
translation. These are driven by a computer-con-

trolled system that provides movement in all three
axes. Data preprocessing, image reconstruction,

and analysis are typically done on a high level

workstation. The system was configured with a

projection magnification of nearly 1.0, and source-

to-detector distance of 3000 mm. All data were

acquired at 80 kV peak energy over a range of 180�
with 1� scanning increments. Prior to reconstruc-

tion the images were preprocessed to subtract the
camera dark current, correct for the source and

detector variations correct for point-spread func-

tion and convert the raw data to CT number (i.e.

linear attenuation coefficient). Ring removal and

beam hardening were also performed in prepro-

cessing.

For the four notch tensile specimens, the CT

data were preprocessed to create segmented vol-

umes (460� 460� 400). The voxels were desig-
nated in binary form with values of 1 and 0 for

dense and void material. Voids less than 100 voxels

(cubic pixels) are considered to be in the noise of

experimental scatter. The number of voids greater

than 100 voxels in size (0.002195 mm3) per volume

was calculated for each of the four samples. The

results are presented in Table 1. Sample 4a and 4b

designate both sides of the fractured sample S4.
Although the measurements in relation to a

voxel are a volume, we can approximate a size by

assuming that one side of the cubic voxel represents

the void diameter. With this approximation, we can

plot the void size versus frequency (binned ac-

cording to size) for the four samples as shown in

Fig. 3.

Here, the linear dimension of the voxel was 28
lm, and the voxel size is a volume (0:0283 � 100

mm3). Fig. 4 shows the same data as a probability

distribution function. This form of the data clearly

shows that the largest void increases with pro-

gressing deformation (from S1 to S4). Note though

that the largest size in sample S4 is less than the

largest size in S3. This occurs because S4 fractured

and the largest void would actually be the length
of the fracture surface, which was not included.

4. Optical metallography

For optical microscopy, the specimens were

sectioned along a central vertical plane in the

loading direction and were metallographically
prepared using standard techniques [40]. To

quantify variations in the volume fraction of voids

(void volume fraction is equal to the statistical

Table 1

Summary of results from X-ray tomography evaluations

Sample 1 Sample 2 Sample 3 Sample 4a Sample 4b

# void greater than 0.002195 mm3 143 483 434 83 138

Volume of total material (mm3) 1146.19 1140.5 1136.82 1333.56 1261.86

M.F. Horstemeyer et al. / Theoretical and Applied Fracture Mechanics 39 (2003) 23–45 27



expected value of area fraction in a metallographic

plane) as a function of radial and axial distance

in the notch specimen, many measurements are

made. Typically, only a few random individual

frames are examined to obtain mean values, be-

cause homogeneous microstructures are assumed

to be present. However, to capture a large region

such as desired for these notch specimens, mea-

surements must be performed on high-resolution

images captured at sufficiently high magnification.

The area of the observed microstructural field of
view is inversely proportional to the square of the

magnification, and therefore, at a high magnifica-

tion only a very small region of the metallographic

plane is observed in one field of view. To observe

a large area of the metallographic plane at high

resolution (high magnification) a digital image

processing based technique [40,45–47] was used to

create a large area image ‘‘montage’’ from con-
tiguous microstructural fields digitally grabbed at

high magnification. The procedure is equivalent to

‘‘cutting, matching, and pasting’’ a large number

of high magnification contiguous microstructural

frames; the borders of individual microstructural

fields are matched to within one pixel precision.

5. Numerical modeling

Finite element analyses were performed of

notch tensile specimens employing the modified

Fig. 4. Probability distribution function of four samples illus-

trating the varying void size as the deformation progressively

increases from S1 through S4.

Fig. 3. X-ray tomography results showing the size distributions for the four samples: (a) S1, (b) S2, (c) S3, and (d) S4.
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BCJ plasticity-damage model [43] in order to as-

sess random variation versus homogeneous dis-

tribution of porosity within material. These types

of analyses are useful to show which is more im-

portant: the mechanical response arising from the

boundary conditions or from the material micro-
structure morphology. Quarter ‘‘plate’’ axisym-

metric analyses using the finite element code

ABAQUS were performed to study the effects of

void nucleation, growth, and coalescence.

The equations used within the context of the

finite element method are the rate of change of the

observable and ISVs given by,

r
� ¼ _rr � W er � rW e

¼ kð1� DÞ trðDeÞI þ 2lð1� DÞDe �
_DD

1� D
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The rate equations are generally written as objec-

tive rates ðr� ; a�Þ with indifference to the continuum

frame of reference assuming a Jaumann rate in

which the continuum spin equals the elastic spin
ðW ¼ W eÞ. The ISV equations (4)–(11) are func-

tions of the observable variables (temperature,

stress state, and rate of deformation). In general,

the rate equations of generalized displacements,

or thermodynamics fluxes, describing the rate of

change may be written as independent equations

for each ISV or as derivatives of a suitably chosen

potential function arising from the hypothesis of
generalized normality [48]. An advantage of as-

suming generalized normality, although somewhat

restrictive, is unconditional satisfaction of the

Kelvin inequality of the second law of thermody-

namics (nonnegative intrinsic dissipation), i.e.

r : Din � b : a
� � j � _RR� / � _DDP 0: ð12Þ

The selection of the ISVs may, in principle, be

somewhat arbitrary, but the anisotropic hardening,

isotropic hardening, and damage rate equations
are physically motivated and strongly influence

the history of the material. The BCJ ISV model

accounts for deviatoric inelastic deformation re-

sulting from the presence of dislocations in crys-

tallographic materials, dilatational deformation,

and ensuing failure from damage progression.

Damage will reduce the material strength, enhance

the inelastic flow, and soften the elastic moduli.
In Eq. (1), the elastic Lame constants are de-

noted by k and l. The elastic rate of deformation

ðDeÞ results when the total deformation ðDÞ, which
is defined by the boundary conditions, is sub-

tracted from the flow rule as shown in Eq. (2).

These second rank tensors are not to be confused

with the scalar quantity of damage, D.
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The independent variables for the inelastic rate

of deformation are given in Eq. (3) as the stress,

temperature, and IVSs. The deviatoric inelastic

flow rule, Din, encompasses the regimes of creep

and plasticity and is a function of the temperature,

the anisotropic hardening ISV ðaÞ, the isotropic
hardening ISV ðRÞ, the volume fraction of dam-

aged material ðDÞ, and the functions f ðT Þ, V ðT Þ,
and Y ðT Þ, which are related to yielding with Ar-

rhenius-type temperature dependence. The func-

tion Y ðT Þ is the rate-independent yield stress. The

function f ðT Þ determines when the rate-depen-

dence affects initial yielding. The function V ðT Þ
determines the magnitude of rate dependence on
yielding. These functions are determined from

simple isothermal compression, tension, and tor-

sion tests with different strain rates and tempera-

tures,

V ðT Þ ¼ C1 expð�C2=T Þ;
Y ðT Þ ¼ C3 expðC4=T Þ;
f ðT Þ ¼ C5 expð�C6=T Þ:

ð13Þ

The anisotropic hardening ISV, a, reflects the

effect of anisotropic dislocation density, and the

isotropic hardening ISV R, reflects the effect of
the global dislocation density. As such, the hard-

ening equations (4) and (5) are cast in a harden-

ing-recovery format that includes dynamic and

static recovery. The functions rsðT Þ and RsðT Þ are
scalar in nature and describe the diffusion-con-

trolled static or thermal recovery, while rdðT Þ and
RdðT Þ are scalar functions describing dynamic

recovery. Hence, the two main types of recovery
that are exhibited by populations of dislocations

within crystallographic materials are captured in

the ISVs. The anisotropic hardening modulus is

hðT Þ, and the isotropic hardening modulus is

HðT Þ.
The hardening moduli and dynamic recovery

functions account for deformation-induced an-

isotropy arising from texture and dislocation
substructures by means of stress-dependent vari-

ables. Using J �
3 in the hardening equations [49] the

different hardening rates between axisymmetric

compression and torsion (torsional softening) were

accurately captured. This feature was included

[50,51] in the BCJ ISV models as
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2
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� C16T ; ð18Þ
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where J 0
2 ¼ 1

2
ðr0 � aÞ2 and J 0

3 ¼ 1
3
ðr0 � aÞ3. The de-

viatoric stress r0 is expressed in indicial notation

as

r0
ij ¼ rij � 1

3
rii: ð20Þ

The damage variable D represents the damage
fraction of material within a continuum element.

The mechanical properties of a material depend

upon the amount and type of microdefects within

its structure. Deformation changes these micro-

defects, and when the number of microdefects

accumulates, damage is said to have grown. The

notion of a damaged state in continuum field

theory emerged when a damage variable was in-
troduced [52] to describe the microdefect density

locally in an inelastic material. This notion was

furthered [53] with a rate equation of void density.

Examples of unified-creep-plasticity formulations

were used [54,55] successfully for practical engi-

neering applications. The BCJ equations follow

the general philosophy of unified-creep-plasticity

coupled with damage. However, Eq. (6) introduces
the void volume fraction (porosity) as damage very

much different than that in [52,53]. By including

damage, D, as an ISV, different forms of damage

rules can easily be incorporated into the constitu-

tive framework. Demonstrated in [41,42,56,57] are

the applicability of the void growth rule [58] used

as the damage rate equation in the BCJ model.
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Other related works show under quasi-static and

high strain rate conditions that the plasticity-

damage framework has been experimentally vali-

dated for large deformation plasticity and damage

under blast loadings [56], large scale systems level

damage analysis of explosions on ductile steel
[57], development of forming limit diagrams under

quasi-static loads [59], and penetration mechanics

[43].

The generalized thermodynamic force conju-

gate, /, is often referred to as the energy release

rate for elastic brittle materials and the J -integral
for inelasticity. In essence, an increment of damage

will have associated energy released per unit dam-
age extension as new damaged area (or volume) is

developed.

In Eqs. (6)–(11), the damage progression is di-

vided into void nucleation and growth from silicon

particles and from pores. Coalescence is intro-

duced to reflect pore–pore interactions and silicon-

pore interactions as expressed in Eq. (10). The void

nucleation evolution described by Eq. (8) is dis-
cussed in length [37]. The void growth related to

silicon particles, Eq. (9), is that from [60]. Other

forms can be used and evaluated [38], but this

equation allows for a strain rate sensitivity in re-

lation to the plasticity model (m ¼ V ðT Þ=Y ðT Þ).
For the porosity evolution, the [58] void growth

rule [58] is used as shown in Eq. (11).

The combination of the plasticity and dam-
age equations are solved simultaneously since the

damage and stress equations are coupled. A non-

linear regression algorithm is used to determine

material constants that are included in Appendix

A. Since void nucleation occurs at a different rate

under tension, compression, and torsion, a corre-

sponding effect on the stress state arises. Discussed

in [37] is the stress-state dependence of the void
nucleation model. Before analysis of the notch

tensile tests is performed, we determined the plas-

ticity and damage constants for the material model

with other (nonnotch) tests under tension, com-

pression, torsion, tension-followed-by-compres-

sion, and compression-followed-by-tension. Fig. 5

shows a stress–strain comparison of the model

(material constants are given in Appendix A) and
uniaxial experiments under tension, compression,

and torsion performed at room temperature and at

a strain rate of 10�4 s�1. Fig. 6 shows a comparison

of the void nucleation density versus effective

strain which correspond to the stress–strain re-
sponses in Fig. 5. Other tests with the applied

strain rate varying from 0.0001 to 3500 s�1 and

temperature varying from 222 to 400 K were used

to help determine some of the constants. Described

in [38] are the details for material constant deter-

mination as well as the numerical implementation

of the model.

Once the model parameters were determined
from compression, tension, torsion, tension-fol-

lowed-by-compression, and compression-followed-

by-tension tests, predictive comparisons to the

Fig. 5. Uniaxial stress–strain response comparing the plasticity-

damage model and experiments for cast A356 aluminum under

tension, compression, and torsion.

Fig. 6. Void nucleation response comparing the plasticity-

damage model and experiments for cast A356 aluminum under

tension, compression, and torsion.
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notch tests could then be performed. Because

variability in porosity levels and silicon particle

distributions are evidenced in cast A356 alumi-

num structural components, the model was exer-

cised with homogeneous and random distributions

based on size. Moreover, included were different
initial void volume fractions that could arise from

different casting processes. Fig. 7 shows the load–

displacement curves for the finite element simula-

tions of notch tensile tests in which random and

homogeneous initial porosity distributions were

assumed with porosity levels of 0.0001 and 0.001.

One observes from these simulations that the

initially randomized porosity gives lower failure
displacements than the homogeneous case. This

difference lessens as the initial porosity level in-

creases. It can be seen, from these initial assump-

tions that the failure displacements ranged from

approximately 0.05–0.11 mm (the gage radius was

4.7625 mm). Later, we will show that the experi-

mental failure displacement was approximately

0.11 mm indicating that our initial porosity as-

sumptions were comparable to the experimental

specimens.

Fig. 8 illustrates that the point of failure can

occur at different locations and applied ‘‘strain’’

levels with different initial porosity levels and dis-
tributions. This is much different than a wrought

alloy which fails at the notch center. The notch

geometry generates stress and strain gradients

from the specimen center to the notch edge. The

highest stress triaxiality is at the specimen center,

but the highest strain level occurs at the notch

edge. This affects the void growth much differently

depending upon the initial void distribution and
porosity level. Fig. 9 shows the progression of total

damage for the case with a random initial porosity

level of 0.001.

In the case of initial homogeneous porosity

distribution two cases arise. When the initial void

volume fraction is 0.0001, the first element failure

location occurs near the notch edge. This happens

Fig. 7. Finite element simulations of load–displacement curves with four different initial assumptions for the microstructure:

(a) initially homogeneous casting porosity with a level of 0.0001, (b) initially homogeneous casting porosity with a level of 0.001,

(c) initially random casting porosity with a level of 0.0001, and (d) initially random casting porosity with a level of 0.001.
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Fig. 8. Contour plots of total void volume fraction comparing the finite element simulations at first element failure, total damage ðf Þ is
SDV14, assuming initial random and homogeneous distributions.
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because when the initial porosity level is small,

total damage is not driven by casting pores but

by voids nucleating from second phase particles.

Although voids nucleate as a function of stress

Fig. 9. Progression of damage, SDV14, in FEM simulations with initial random porosity level of 0.001.
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triaxiality their dependence on stress triaxiality is

much less than for void growth. As such, the ef-

fective plastic strain, which is highest near the

notch edge, drives the void nucleation and in this
case the total damage. As the initial porosity level

increases, damage from the second phase particles

becomes less important compared to the void

volume fraction of the casting pores. Hence, a

mechanism change arises. When the casting pore

volume fraction is high, the initial voids grow

primarily as a function the stress triaxiality, which

is highest at the specimen center. Fig. 9 illustrates
that with an initial porosity level of 0.001 (and

above), failure occurs at the specimen center as

opposed to the notch edge. The work in [43]

showed a similar trend for a wider range of initial

porosity levels for wrought 6061-T6 aluminum,

but no random initialization of porosity was per-

formed in that study.

When comparing an initial random versus an
initial homogeneous distribution of voids, it can

be seen from Fig. 7 that different elongations at

Fig. 10. Progression of stress triaxialities (hydrostatic stress/deviatoric stress) over the spatial domain of a notch specimen under tensile

deformation.

Fig. 11. Total damage contours just before final failure of a

notch tensile specimen with a notch acuity to radius ratio of

0.117 for a cast A356 aluminum alloy. Note that the dark re-

gion indicates the peak damage level near the notch edge and

between the center of the specimen and notch edge.
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failure arise, although the overall porosity level

was the same in both cases. Just as different initial

porosity level simulations were run with the ho-

mogeneous distribution, simulations with the same

initial porosity levels were run with random dis-

tributions. The motive for analyzing the random
case arises because the casting process can yield

various pore sizes throughout the specimen. In all

the cases, the random initialization always in-

curred a lower elongation at failure than did the

homogeneous case. The effect of void size differ-

ences from neighbors is strong because the larger

voids incur a larger plastic zone around the void

thus enhancing void growth in neighboring small
voids [38]. Though based upon these few simula-

tions, the stress triaxiality from the notch seems to

play more of a role than the effective plastic strain

as both the low and high initial porosity levels tend

to show failure towards the specimen center re-

gardless of whether a random or homogeneous

distribution exists.

The typical progression of damage evolution
for wrought materials in notch tensile tests arises

from voids growing at the center of the specimen

because of the high stress triaxialities. Actually, the

peak stress triaxiality starts at the notch edge at

the start of the deformation because of the stress

concentration but moves fairly rapidly to the

center as deformation proceeds. The stress triaxi-

ality is nonuniform throughout the cross-section
of the specimen and reaches a level sufficient to

start void growth when its peak value reaches the

center of the notch specimen. Fig. 10 shows con-

tour plots of the stress triaxiality (hydrostatic

stress/deviatoric stress) of a notch tensile test il-

lustrating spatial movement of the peak stress

triaxiality. Again, this is typical for wrought, duc-

tile materials that could even have a small fraction
of brittle second phases.

For ductile materials with large scale brittle

phases, such as the cast A356 aluminum alloy ex-

amined in this study, the final failure location may

not occur at the specimen center depending on the

fracture mechanisms of pore growth from casting

porosity versus from silicon particle breakage. As

the peak stress triaxiality increases in magnitude
and moves toward the center of the specimen,

voids have been nucleated by the fracture of the

particles and/or by debonding of the particle–alu-

minum interface. As such, the damage increases

Fig. 12. Plastic strain contours just before final failure of a

notch tensile specimen with a notch acuity to radius ratio of

0.117 for a cast A356 aluminum alloy. Note that the dark re-

gion indicates the peak plastic strain level near the notch edge.

Fig. 13. Pressure contours just before final failure of a notch

tensile specimen with a notch acuity to radius ratio of 0.117 for

a cast A356 aluminum alloy. Note that the light region indicates

the peak negative pressure (where the highest stress triaxiality

occurs) between the center of the specimen and notch edge.
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not only by voids growing but by new voids ini-
tiating and then growing as well. Damage reaches

a critical level (interpreted as defining a hole in the

material the size of the finite element) before it

reaches the center of the specimen. In a wrought

alloy at first element failure, the highest level

of plastic strain occurs at the notch edge, but

the highest stress triaxiality occurs at the center of

the specimen. As such, we conclude that the

stress triaxiality drives the void growth more than
the plastic deformation, because damage evolves

mainly at the specimen center. For this cast alu-

minum alloy, the highest plastic strain occurs at

the notch edge and the stress triaxiality occurs

away from the edge similar to wrought materials;

however, Fig. 11 shows that the highest damage

(which comprises void nucleation, growth, and

coalescence) occurs at two different locations when

Table 2

Peak void volume fractions within notch specimen at different strain levels

Failure

load (%)

X-ray

tomography

FEM

(/i ¼ 0:0001

homogeneous)

(/i ¼ 0:0001

random)

(/i ¼ 0:001

homogeneous)

(/i ¼ 0:001

random)

90 0.028 0.003 0.056 0.069 0.071

95 0.186 0.017 0.124 0.155 0.168

98 0.451 0.123 0.445 0.483 0.520

Fig. 14. Pictorial illustration of porosity distribution for the 90% of failure load specimen from (a) image analysis, (b) X-ray to-

mography, and (c) finite element simulation with an initially random distribution of porosity at a level of 0.001.
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the initially homogeneous distribution of porosity
at 0.0001 was used. This low level of initial po-

rosity allows for silicon particle damage to be a

more dominant mechanism than void growth from

casting porosity. The two different locations are

aligned with the peak plastic strain and peak stress

triaxiality as shown in Figs. 12 and 13, respec-

tively. In Fig. 12, the dark contour shows that the

plastic strain reached a level of 42% at the notch
edge and around only 1% near specimen center.

The highest negative tensile pressure shown in Fig.

13 (stress triaxiality equals the negative pressure

over the deviatoric stress) occurs between the

notch edge and specimen center. This is where the

peak void growth occurs.

6. Results and discussion

The progression of damage in notch tensile

specimens for this cast A356 aluminum alloy gives

an understanding of the role of the nonhomoge-

neous distribution of initial porosity and second
phase silicon on the final failure state. With this

understanding, we now focus on comparisons of

the finite element simulations and experimental

results, which include image analysis and X-ray

tomography of the physical specimens.

With a higher initial porosity level, pore growth

and coalescence mechanism is more dominant

than the void nucleation from the second phase
material, albeit both interact together in the dam-

age process. We summarize the FE simulation

porosity levels in Table 2 with data from the X-ray

tomography. The finite element results show that

porosity levels comparable to the experimental

results can be achieved by the right combination of

initial porosity and distribution level. It appears

that three of the cases could match the experi-
mental data, but clearly the homogeneous distri-

bution with an initial porosity of 0.0001 does not

correlate well. Because different specimens were

used in the tests with different initial porosity

levels and amounts of randomness, comparison

Fig. 15. Total void volume fraction determined for the 90% of failure load specimen from (a) image analysis, (b) X-ray tomography,

and (c) finite element simulation with an initially random distribution of porosity at a level of 0.001.
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Fig. 17. Total void volume fraction determined for the 95% of failure load specimen from (a) image analysis, (b) X-ray tomography,

and (c) finite element simulation with an initially random distribution of porosity at a level of 0.001.

Fig. 16. Pictorial illustration of porosity distribution for the 95% of failure load specimen from (a) image analysis, (b) X-ray

tomography, and (c) finite element simulation with an initially random distribution of porosity at a level of 0.001.
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with FEM simulation comparisons show some

differences. Clearly, the trends are similar, which

suggests that the damage progression was driven

more by the notch geometry and not the initial

microstructure in this particular case although

both certainly influence the final fracture.

Finite element and X-ray tomography results
were not only determined over the highest spatial

resolution, but comparisons to the image analysis

results were considered by averaging over a larger

region (three different sections).

Figs. 14–20 illustrate the comparisons for the

small and large region averages. For Figs. 14, 16

and 18, high-resolution large area montages of

the microstructure show the porosity distribution
in the entire notch region of the specimens. The

image analysis results were determined from a

two-dimensional plane, and the finite element and

X-ray results were taken circumferentially around

the axisymmetric geometry. Although three-

dimensional porosity levels can be approximated

by two-dimensional image analysis measurements

[61], the X-ray tomography and finite element

analyses results were typically closer. This can be

seen clearly in Fig. 18. Recall that the image
analysis resolution was 0.5 lm and the X-ray res-

olution was 28 lm. Almost an order of magnitude

higher. As such, the lower scale shrinkage below

28 lm was not captured by the X-ray tomography

results.

Fig. 18 shows a comparison of the image

analysis montage, X-ray tomography picture, and

a contour plot of total void volume fraction from
the finite element simulation in which an initially

random porosity level of 0.001 was assumed for

the 90% of fracture load case. The differences in

Fig. 18. Pictorial illustration of porosity distribution for the 98% of failure load specimen from (a) image analysis, (b) X-ray

tomography, and (c) finite element simulation with an initially random distribution of porosity at a level of 0.001.
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Fig. 19. Total void volume fraction determined for the 98% of failure load specimen from (a) image analysis, (b) X-ray tomography,

and (c) finite element simulation with an initially random distribution of porosity at a level of 0.001.

Fig. 20. X-ray tomography data of fractured specimen illustrating the final porosity level.
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the montage and X-ray tomography picture arise

because the image analysis only shows one plane

cutting axially through the specimen. The X-ray

tomography results average 360 planes rotated at

one degree throughout the specimen. As one would

expect, the X-ray tomography results slightly differ
than the image analysis results but closer the finite

element analysis, since the same axisymmetric as-

sumptions are included in the simulations. Al-

though the peak values are different between the

X-ray tomography and finite element simulations,

the maximum void volume fraction is largest at

z ¼ 0 in the axial direction for both and decreases

as the direction z increases or decreases.
Fig. 15 is the quantitative data retrieved from

Fig. 14. When comparing the X-ray tomography

and FEM results, one can see that the FEM peak

void volume fraction (total damage) is slightly

higher (7.1–2.8%). The difference peak void vol-

ume fraction arises due to the initial porosity level

assumption. However, the general character and

distribution seems to match fairly well. The reader
should keep in mind when comparing the finite

element simulations with the X-ray results that the

resolution is finer for the simulations and a lower

bound cut-off exists for the X-ray results. Given

these constraints, the comparisons are encourag-

ing.

Comparisons along both the radius and axial

dimensions were made within the specimens. Since
the notch induces a stress triaxiality that drives

void growth from the specimen center, one can

observe a higher void volume fraction at the center

than at the edge. Figs. 14–20 confirm this notion.

Figs. 16 and 17 showed similar qualitative trends

as Figs. 14 and 15 but for the 95% of failure load

case. Here, the porosity levels are higher than the

90% case (Figs. 14 and 15) as damage has pro-
gressed, and all three methods (X-ray tomography,

optical metallography, and finite element analysis)

quantitatively capture the trend fairly well.

Figs. 18 and 19 show the comparisons for the

98% of fracture load case. Fig. 20 shows a speci-

men that was fractured in the center and the cor-

relating finite element simulation comparison

showing the fracture at the center as well. Again,
all three methods appear to reflect the expected

damage progression.

Based on these six figures, one�s confidence in

all three methods is enhanced since they seem to

independently corroborate each other�s results in

terms of maximum void volume levels and their

correlating distributions. Minor differences in the

X-ray tomography and optical image results arise
because each of the measurements were from dif-

ferent specimens which had different initial po-

rosity levels, while the finite element simulations

were from a single calculation using an initial

starting porosity level of 0.001 that provided quali-

tative damage progression agreement with both

the X-ray tomography and optical metallography.

Interestingly, on a particular wrought 304L stain-
less steel [62] different initial porosity levels ex-

perimentally still gave final failure starting at the

notch center. For these castings, final failure may

or may not start there depending on the initial void

volume fraction and void distribution.

7. Conclusions

Damage progression has been quantified and

confirmed by independent methods of evalua-

tion for a cast A356 aluminum alloy notch tensile

testing. The methods include experiments; X-ray

CT; optical microscopy/stereology metallography

image analysis; and finite element simulations

that include a history dependent elastic–plastic
ISV plasticity model involving evolution equations

for void nucleation, growth, and coalescence.

Furthermore, parametric finite element simula-

tions were performed to give insight into various

initial conditions and responses of the notch tensile

bars. This study provides a new methodology of

evaluating metal damage progression and pro-

vides the quantitative data needed to establish in-
creased confidence in using a simulation-based

finite element analysis to achieve optimal geome-

tries and reduced masses for structural compo-

nents.
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