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Abstract Browsing and visualizing large datasets is often a tedious chore. Locat-
ing features, especially in a wavelet transform domain is usually offered
as a possible solution. Wavelet transforms decorrelate data and facilitate
progressive access through streaming. The work reported here describes
a scheme that allows the user to first visualize regions containing sig-
nificant features. Various region and coefficient ranking strategies can
be incorporated into this approach so that a progressively encoded bit-
stream can be constructed. We examine four wavelet ranking schemes
and demonstrate the usefulness of the feature-based schemes for a 2D
oceanographic dataset.
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1. Introduction

In terascale visualization, locating important features in the data is
one of the keys to effective data exploration. Also, for practical rea-
sons arising from resource limitations, only parts of the dataset can be
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Figure 1. 1a. Features in the original image, 1b. Feature with highest priority sent
first, and 1c. Feature with next highest priority sent second.

accessed at any time. The primary motivation for this effort has its
genesis in embedded visualization systems that facilitate ranked access
to relevant features in a dataset as described in Machiraju et al., 2001.
The operation and utility of such a system is illustrated in Figure 1.
Figure 1a shows the features in a two-dimensional field. Two features
are automatically selected to receive a higher priority based on a user
defined criteria. Figures 1b and 1c show the reconstructed image at
various stages of a progressive transmission. Initially, the background is
transmitted. Then, according to a feature-based priority schedule, infor-
mation is transmitted one feature at a time. Features appear according
to the priority schedule and are incrementally refined over time.

The effort described herein is a summary of the work detailed in Naksha-
trala, 1999 and examines various ranking strategies for regions and
wavelet coefficients with special emphasis on feature based ranking strate-
gies. A block-diagram depicting different components of the current ef-
fort along with the sections in this paper that discuss these components
is shown in Figure 2. The lifting scheme is first applied to obtain the
wavelet transform of the data. Vector data is treated by applying the
transform to each component. Point-based feature detection methods
are then used to detect features in the data at multiple scales. Tech-
niques from multi-grid solution algorithms are used to improve gradi-
ent estimations at different scales. Segmentation of the resulting scalar
field at each resolution produces a multi-scale significance map. User-
specified criteria (including scale-space persistence) are used to rank
the ROIs located in the significance map. Various techniques can then
be used to rank the wavelet coefficients and may include feature-based
methods that use the multi-scale significance map generated earlier. Fi-
nally, Section 6 describes results for a limited two-dimensional oceano-
graphic dataset representing ocean currents in the equatorial region of



Figure 2. Generating a wavelet domain representation of a vector field

the Pacific Ocean. The dataset was generated by the Naval Layered
Ocean Model (NLOM) simulation program described in Wallcraft, 1999.

1.1 Related Work

Previous efforts for compressing computational datasets include pre-
dictive methods, fractal methods, vector quantization, discrete cosine
transforms, and wavelets. A survey is included in Machiraju et al.,
1998. Feature detection is an important component of the proposed sys-
tem. In Machiraju et al., 1998, scale coherent features are detected and
used to guide the ranking of the wavelet coefficients. Scalar fields such
as pressure or density of a flowing media can be employed to detect cer-
tain types of features, e.g. Marcum and Gaither, 1997. Other features,
such as vortices are characterized by changes in direction of a vector
field. Banks and Singer, 1996 developed a vortex detection technique
that exploits the kinematic and dynamic properties of a vortical flow.
This approach can be contrasted with those methods based purely on
the kinematic properties of the velocity field such as Helman and Hes-
selink, 1989, which determines critical point locations and attempts to
connect them, and Sujudi and Haimes, 1995, which attempts to locate
vortex core regions using the velocity gradient tensor.

2. Linear Lifting Scheme for Vectors

An intentionally simple extension of the linear-lifting scheme to per-
form a wavelet transform for vector data is discussed in this section. In
general, the lifting scheme consists of three steps: split, predict, and
update (see Sweldens, 1997 for further details). For linear lifting, the fil-
ter coefficients employed during the predict stage are g = {0.5, 1.0, 0.5},
while the coefficients for the update stage are h = {0.25, 0.25}. We
use a critically sampled (i.e., decimated) transform and achieve a multi-



dimensional transform by applying a sequence of one-dimensional wavelet
transforms along each dimension in succession. For example, for a two-
dimensional dataset, one-dimensional transforms are applied first along
rows and then along columns. Each transform level yields four subbands
corresponding to a smooth decimated representation and details along
horizontal, vertical, and diagonal orientations. For vector-valued data,
the wavelet transform is applied to each component of the vector in an
independent fashion.

3. Detecting Regions of Swirling Flow

Berdahl and Thompson, 1993 define a derived scalar quantity called
swirl which can be used to identify features such as vortices. The method
is based on the observation that a sufficient condition for the existence
of swirling motion is that the eigenvalues of the velocity gradient tensor
must contain a complex conjugate pair. In this procedure, a scalar value
based on the local velocity and velocity gradients is assigned to each
field point. The swirl value is interpreted as the tendency for the fluid
to swirl at a given point. Contiguous regions of nonzero swirl values can
therefore be thought of as distinct features. Core regions of vortices are
characterized by larger swirl values.

The swirl parameter τ is defined as the ratio of the time for a fluid
particle to convect through the region of complex eigenvalues to the orbit
time

τ =
tconv
torbit

=
|Im (λ1,2) |

2πVconv
(1)

where Im (λ1,2) is the imaginary part of the complex conjugate pair
of eigenvalues and Vconv is a suitable convection velocity. For small
values of τ , the fluid convects too rapidly through the region of complex
eigenvalues to be captured in the swirling motion. In regions of large
τ , the fluid is trapped in a swirling motion. It should be noted that
the swirl values used in this work are calculated as the logarithm of the
result given by Equation 1.

4. Multi-Scale Significance Map Generation

In this section, we discuss the generation of a multi-scale significance
map. A multi-scale significance map is obtained from multiple seg-
mented single resolution maps. In essence, a feature pyramid is derived
from this effort, marking all feature-rich spatial regions. The multi-scale
map, although more expensive than a single map, allows for better dis-
crimination of the feature preserving properties of individual wavelet
coefficients. We first focus on the need for a multi-scale map. We then



describe the techniques needed to generate feature-centric significance
maps.

4.1 Multi-Scale Significance Map

Consider a single-scale significance map denoted by

Ssingle = {s (i, j) |i, j = 0, . . . , N − 1} . (2)

The quantity S is a scalar that indicates the presence of the desired
features. This approach is valid for any feature whose presence and
relative strength can be deduced using a scalar field. For flows with
vortices, the swirl parameter, as defined in Equation 1, can be used as
the representative scalar. The significance map delineates ROIs in the
vector field of size N ×N at a single resolution, usually the finest.

For large datasets, a multi-scale transform, such as a wavelet trans-
form, is conducted to obtain a sparser representation of data by only
considering coefficients which contribute to a meaningful version of the
reduced data. This reduced set of coefficients can be determined in sev-
eral ways. Often, coefficients with the largest magnitude are selected.
We propose to select those that contribute to features at all scales. The
wavelet-coefficient pyramid obtained from the L-level wavelet transform
of an N ×N -sized vector field (with N = 2L−1) using the lifting scheme

WL =
{
wk (i, j) |k = 0, . . . , L− 1, i, j = 0, . . . , 2k − 1

}
(3)

is arranged at multiple resolutions. Therefore, the single resolution sig-
nificance map Ssingle cannot be used directly to rank the wavelet co-
efficients wk (i, j). Additionally, to implement progressive access as we
described earlier, ROIs at all scales need to be ranked. We achieve this
by measuring the feature strength of a ROI and its persistence across
multiple scales. These attributes can only be measured if significance
maps at all scales are available. This section focuses on the generation
of a multi-scale significance map,

SL =
{
sk (i, j) |k = 0, . . . , L− 1, i, j = 0, . . . , 2k − 1

}
(4)

that can be used directly on the multi-scale wavelet-coefficient mask WL

to determine the significance of the wavelet coefficients in terms of their
contribution to feature preservation, thereby allowing ranked access to
features.

4.2 Approximate Reconstruction of Features

To generate a multi-scale significance map, it is necessary to per-
form a feature detection at each scale. The swirl-detection algorithm



described previously requires the computation of the velocity as well as
the velocity gradient at each point in the domain. We use the technique
described in Machiraju et al., 2001 to approximately reconstruct the ve-
locity and the velocity gradient using only data in the wavelet domain.
This technique corrects for the effects of the linear-lifting scheme as well
as truncation error and is based on techniques used in multigrid-solution
algorithms (see Brandt, 1973). We note that the following discussion
is conducted in terms of one-dimensional data and operations. How-
ever, since a multidimensional wavelet transform can be constructed as
multiple one-dimensional transforms applied along each dimension in se-
quence, we apply the operations we describe below for one dimension (we
consider the x direction) in a similar manner to construct an equivalent
multidimensional operator.

Let the wavelet approximation obtained after an n-level wavelet trans-
formation of a scalar quantity uk,i defined on the grid xk,i be represented
by uk−n,i. The corresponding coarser grid is xk−n,i and ∆xk−n = 2n∆xk.
Here k represents the level of the wavelet transform and i indicates the
spatial position.

A correction for the potentially undesirable effects of of the wavelet
transform may be derived through a Taylor series analysis of the update
step of the linear lifting scheme. The resulting expression is given by

uk,2ni =

(
1 +

1

16

(
n−1∑

k=0

1

4k

)
δ +O

(
∆x4

k−n
))

uk−n,i (5)

where the operator δ is defined by

δ = δ2 − 1

16

(
n−1∑

k=0

1

4k

)
δ4 (6)

and δ2 and δ4 are standard second and fourth difference operators. The
central-difference operators used to define the velocity gradient tensor
can be corrected to account for differences in truncation error between
levels k and k − n using

δuk,2ni
2∆xk

=
δuk−n,i
2∆xk−n

− 1

8

(
n−1∑

k=0

1

4k

)
d3u

dx3
∆x2

k−n +O
(
∆x4

k−n
)
. (7)

Equation 7 specifies the correction that should be added to the central-
difference approximation on level k − n so that it is equivalent to the
central-difference approximation on level k to the order of the approx-
imation. A standard second-order, central-difference can be used to
approximate the third-derivative term.



The resulting procedure to compute approximations to the velocity
and velocity gradients using only the transformed data is as follows:

Compute an approximate reconstruction to the velocity compo-
nents at the current level using Equation 5 applied for each direc-
tion.

Compute the gradients using these reconstructed values using Equa-
tion 7.

Use these reconstructed values and gradient approximations to
compute the swirl.

Since the above methods is point-based it is necessary to create regions.
A simple segmentation procedure is applied at all scales to derive various
ROIs.

4.3 Segmentation

The segmentation process involves identifying different swirl regions in
the significance map and assigning each a label to facilitate later access.
Here, a feature is defined as a set of connected points that have non-zero
swirl and are surrounded by a zero-swirl region. A simple two-pass scan-
line algorithm similar to those used in image processing and described
in Jain, 1989 is used for segmentation of the significance map.

5. Wavelet Coefficient Ranking Strategies

This section describes ranking strategies that are suitable for wavelet-
based compression techniques. Ranking is a two-step process. The ROIs
are ranked first to allow access to regions of significant data. Then, coef-
ficients of each ROI are ranked. To compare ranking strategies, an error
analysis of the reconstructed vector field is required. This embodies the
rate-distortion approach. Thus, at a given rate the smallest distortion or
error should result in the best representation. We first describe the error
metrics employed to quantify these results. We then describe the ROI
ranking scheme and four different wavelet coefficient ranking schemes.

5.1 Error Metrics

The most commonly used error metric for scalar data is the Mean
Square Error (MSE). Let the original and reconstructed signals for a
scalar field ω be represented by

ωorig = {ω (i, j) |i, j = 0, . . . , N − 1}

ωrecon = {ω̃ (i, j) |i, j = 0, . . . , N − 1}.
(8)



The MSE of the difference between the two fields is given by

MSE (ωorig, ωrecon) =
1

N ×N
N−1∑

j=0

N−1∑

i=0

(δωi,j)
2 (9)

where
δωi,j = ω̃i,j − ωi,j (10)

measures the difference between the two fields.
In the case of a vector field, there are errors in direction as well as

magnitude. A simple error measure for the magnitude error can be
defined using Equation 9 with the magnitude of the difference of the
reconstructed and original velocity vectors,

δωi,j = |ṽi,j − vi,j | (11)

ṽi,j and vi,j , respectively. Similarly, a metric for measuring the direction
error can be based on the angle between the original and the recon-
structed vector using

δωi,j = cos−1

(
ṽi,j · vi,j
|ṽi,j ||vi,j |

)
. (12)

An error metric based on the swirl parameter (see Equation 1) can also
be defined by directly substituting the swirl field τi,j and τ̃i,j into Equa-
tions 9 and 10.

5.2 Ranking ROIs

We employ a scale-coherent method to rank features. This method
assigns a feature that persists across scales a higher rank than a feature
that persists across a smaller number of scales. To quantify the persis-
tence of a feature across scales, it is necessary to track a feature across
scales. Simple tracking is conducted by checking for the intersection of
features in one scale with the features in other scales. If the intersection
area is greater than a certain threshold, it is likely that they are the
same features at different scales because they exist at the same spatial
location. The algorithm also allows for the possibility that features are
created or destroyed. We should note that all efforts to describe the
evolution of features are, at best, empirical in nature. However, the
approach employed here appears sufficient to track features in oceano-
graphic data. Details of the algorithm are given in Nakshatrala, 1999.
At the end of the tracking process, features that exist from coarsest scale
onwards get a higher rank compared to those that appeared only at finer
scales.



5.3 Prioritizing the Wavelet Coefficients

We now use the significance map to prioritize the wavelet coefficients
wk(i, j) from each ROI. The priority assignment strategies considered
here fall into two categories: those that aim at minimizing the overall
MSE without using any feature information and are based on the mag-
nitude of the wavelet coefficients and those that use application spe-
cific information about features in the dataset. These methods use the
feature-based parameter, swirl, to rank or assign priority to the coeffi-
cients from the wavelet pyramid.

Ranking Based on Magnitude - Scheme 1: The most direct method
is to order the coefficients by their magnitude (in decreasing order).
This ranking scheme does not use any knowledge of the features.

Ranking Based on Scale and Magnitude - Scheme 2: With Rank-
ing Scheme 1, a problem arises because it is based solely on the
magnitude of the wavelet coefficients and does not accord any im-
portance to scale. A wavelet coefficient at finer scale represents
higher frequencies and has a small region of influence whereas a
coefficient at lower scale represents lower frequencies and has a
broader region of influence. Hence, Scheme 2 was developed to
take into consideration both scale and magnitude in ranking the
coefficients.

Ranking Based on Scale and Swirl - Scheme 3: With a slight mod-
ification to Ranking Scheme 2, a new feature-based ranking can
be developed. This new ranking uses the knowledge of features to
rank the wavelet coefficients. The idea is to first order the coeffi-
cients by their scale and at each scale, rank the coefficients in the
regions of interest higher than other coefficients. This is achieved
using the multi-scale significance map described in Section 4.

Ranking Based on Feature and Scale - Scheme 4: The final ranking
scheme provides ranked access to features in a dataset, which is the
objective of this work. This scheme is similar to Scheme 3 except
that instead of progressively embedding all the features simulta-
neously, they are sent sequentially. Thus, the coefficient stream
consists of features arranged in a ranked fashion. The coefficients
corresponding to each feature are ranked by scale and then at each
scale, ranked by their significance value. This scheme uses addi-
tional information to rank features obtained using the algorithms
described in Section 4, along with the significance map showing
the regions of interest.



6. Results

The four ranking schemes are compared using the error metrics based
on MSE of magnitude, direction, and swirl. The results are tabulated in
Table 1, Table 2, and Table 3, respectively. The results for all metrics
indicate that the smallest error occurs for Ranking Scheme 2. This
can be explained as follows. In general, the significance of a wavelet
coefficient in terms of reconstruction error decreases from the coarsest to
the finest scales because the lower frequencies are more important than
the high frequencies. In essence, large-scale features are defined by the
lower frequencies. Therefore, the ranking based on scale-and-magnitude
is the best of the four schemes considered here for applications desiring
the smallest overall distortion.

On the other hand, from a feature preservation perspective, ranking
Schemes 3 and 4 are more promising. Scheme 3 does well in preserving
the core of the swirl regions even at very low data rates indicating its
usefulness in visualization for fluid flow applications. With reference to
this dataset with densely packed features, the performance of Ranking
Scheme 4 is found to be very close to that of Ranking Scheme 3. It is
noteworthy, however, that Scheme 4 out-performs Scheme 3 at low bit
rates in terms of feature preservation. Figure 3 shows the swirl field
computed from a reconstructed velocity field using the ranking scheme
based on feature and scale (Ranking Scheme 4) for different data rates.
It is evident that schemes of this type can produce visually acceptable
images even for low data rate reconstructions (≤10%).

7. Conclusions

This paper explored feature-based wavelet representations of vector
fields arising from flow simulations. The desired end-result was a pro-
gressively embedded wavelet coefficient stream that facilitated visualiza-
tion of significant features first. A macroscopic derived feature, namely
swirl, was used to locate features in the wavelet domain. A signifi-
cance map was used to delineate the presence of features and hence cre-
ate regions of interest (ROIs). Scale- and space-coherent, feature-based
ranking schemes were then used to rank these regions. The wavelet co-
efficients in the ROIs were later assigned priority in four different ways.
It was determined that ranking schemes based on feature presence out-
performed those based purely on coefficient magnitude in terms of fea-
ture preservation at low bit rates. On-going and future efforts include
the development of feature-preserving wavelet transforms, detection of
other multi-scale region-based feature detection algorithms for features
besides vortices, and robust region ranking algorithms.



Table 1. Performance of ranking schemes measured by magnitude error

% coefficients Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 8.84353 5.04709 5.32602 5.32602
5 2.32089 2.60399 2.65862 2.65499
10 1.13143 0.945083 2.16447 2.36633
50 0.0730064 0.0721421 0.366211 0.369339
90 0.00233092 0.002299 0.00329009 0.107419

Table 2. Performance of ranking schemes measured by direction error

% coefficients Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 0.655156 0.229031 0.240577 0.240577
5 0.152475 0.0785144 0.0825083 0.0821206
10 0.0727711 0.0435664 0.0600747 0.0666317
50 0.00618106 0.00561497 0.011194 0.0110675
90 0.0011587 0.00115214 0.00124038 0.00345433

Table 3. Performance of ranking schemes measured by swirl error

% coefficients Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 0.00356073 0.00343956 0.00343946 0.00343946
5 0.00294123 0.00251154 0.00258059 0.00258031
10 0.00240242 0.00212799 0.00233285 0.00232595
50 0.000860466 0.000802647 0.00120138 0.00111869
90 0.000355893 0.000353267 0.000376555 0.000588404
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Figure 3. Swirl field computed from velocity field reconstructed at different data
rates using Ranking Scheme 4
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