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10ABSTRACT

The well-known linear-viscous constitutive model for sintering of a porous body is investigated for 
specific application to the 17-4 PH stainless steel, injection-molded, hydrogen-sintered system.  This 
model is implemented using Abaqus through the CREEP subroutine.   Modification of this model to 
include a Bingham type yield stress is discussed.  Due to the multi-phase characteristic of the 17-4 PH 
sintering system, this model shows that a simple, single-phase, diffusion-based viscosity does not offer 
enough complexity to simulate the sintering of this material accurately.  This model does simulate a 
single-phase system like nickel well, which leads to the conclusion that further development of viscosity 
models could lead to a useful model for multi-phase systems.

INTRODUCTION

Powder injection molding (PIM) entered the powder metallurgy industry with its first patent in 1938. 
Since then it has evolved into a multimillion-dollar global market.  The growth in this field in the last five 
years has been significant [1].  While Europe and Asia have made a serious commitment to PIM with full-
scale production plants, many North American enterprises are still testing the waters, with only a few 
players going full-scale.  As a result of technology development, confidence in this field is picking up.
Sales per employee have reached over the $100,000 mark and research into methods for improving 
productivity and design is becoming more critical. 

Computer modeling is a powerful technique for aiding design and improving productivity of engineering 
processes.  For PIM modeling efforts involve the injection molding, debinding, and sintering process.  As 
with any type of modeling, it is vital that the mechanism being described is fully understood for the model 
to yield meaningful and accurate results.  To date, significant effort has been dedicated to the 
development of models describing sintering kinetics.  However, modeling of the sinter process is still too 
inaccurate to be commercially useful. 

There are two basic approaches to the modeling of sintering that have been explored: one is mechanistic, 
based on modeling the particle-to-particle contacts and contact area growth, merged with models of 
diffusional flow mechanisms used to describe sintering [3-19].  The other more recent trend uses a 
continuum model, based on plastic and viscous flow theories, to describe the overall densification of the 
material [20-36].

In this paper, a continuum model is used, based on the sintering kinetics of a porous linear-viscous
material.  The effective equivalent stress relates to the effective equivalent strain rate through the material 
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mechanical response parameters, normalized shear and bulk viscosity.  The viscosity parameters are 
normalized by the material viscosity  and dependent on the porosity.  It is therefore crucial that a thorough 
understanding of the viscous response of a material during sintering is acquired. 

At present most models describe the behavior of materials during sintering as Newtonian where the strain
rate response to stress is linear.  In this paper a Bingham response is investigated as a more accurate 
rheological response model for simulating sintering of injection molded particulate materials.  A Bingham 
response assumes a minimum yield strength has to be reached before material flow occurs [36-37].  The 
material chosen for this study is injection-molding grade 17-4 PH stainless steel.  This material is 
becoming increasingly popular in the PIM industry due to its high-corrosion resistance qualities and thus 
makes it apt for demonstration purposes.

EXPERIMENTAL PROCEDURE

Sintering experiments were run on an Anter (Model 1161) vertical pushrod dilatometer to measure the 
shrinkage behavior during sintering.  A sketch showing the dilatometer furnace chamber setup is shown in 
Figure 1.

The sample used in the experiments was cut from the gate of injection molded tensile bars.  The bars were 
injection molded by Honeywell using their agar-based binder system with 55%vol. solids loading.  The 
powder used was ATMIX water-atomized 17-4 PH injection-molding grade stainless steel.  The powder 
characteristics are given in Table 1. 

Figure 1. Sketch of dilatometer
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Table 1. Powder Characteristics

Particle size:

D10 D50 D90 Mean

3 μm 5 μm 10 μm 9 μm
Powder density:

Apparent Tap Pycnometer
2.85 g/cm3 4.25 g/cm3 7.66 g/cm3

Thermal debinding was performed in hydrogen after the sample was cut using the following cycle: 
room temperature →  2°C/min to 60°C, hold 2hrs →  2°C/min to 110°C, hold1 hr →  2°C/min
to 450°C, hold 2hrs →  cool at 5°C/min to room temperature. 

The sample was then sintered in hydrogen using the following sinter cycle:
room temperature →  10°C/min to 1010°C, hold 1hr →  1.67°C/min to 1365°C, hold 1hr →
cool at 10°C/min to room temperature.

The dimensions of the green and debound sample are given in Table 2.

Table 2. Sample #103-15 green and debound dimensions

Green dimensions Debound dimensions

Top diameter 6.67 mm 6.69 mm
Bottom diameter 7.23 mm 7.23 mm
Height 11.67 mm 11.68 mm
Mass 2.0460 g 2.0044 g
Density 4.6214 g/cc 4.5106 g/cc

CONSTITUTIVE MODEL

The rheological constitutive equation describing the response of linear-viscous porous materials, written 
in terms of the stress tensor σij and the strain rate tensor ijε� , is [27]

( ) [ ] ijLijiiijij P
W
W δδεψεϕσσ ++′= �� (1)

where σ(W) is the effective equivalent stress, W is the effective equivalent strain rate, ijiiijij δεεε ���

3
1−=′

is the deviatoric strain rate, and PL is the Laplace stress (sintering stress).

The Laplace stress, in this case defined as the collective action of capillary stresses in a porous material 
[27], is similar to the bulk sintering stress [37], an equivalent stress distributing the localized capillary 
stresses at the particle-to-particle contacts out over the compact cross section.
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The effective equivalent stress σ(W) determines the rheological response of the material through its 
relation with the effective equivalent strain W, defined as

θ
εψγϕ

−
+

=
1

22
iiW

��

(2)

where θ is the porosity, and γ� is the equivalent shear strain rate.

ijijεεγ ′′= ���  (3)

 
For a porous body the rheological response described by σ(W) is limited on one side by rigid-plastic
response, σ(W) = το and on the other by the linear-viscous case, σ(W) = 2ηW.  The rigid-plastic response 
assumes that body fully yields once το, the yield stress for the fully dense material is reached.  The linear-
viscous (Newtonian) case assumes that σ(W) is linearly related to W  by the apparent viscosity η,
equivalent to the shear viscosity for the fully dense material. 

The Bingham response lies somewhere between the linear-viscous and rigid-plastic response: the material 
does not deform until a yield stress is reached, and beyond that point it experiences linear-viscous flow, 
σ(W) =  2ηW - το .  The intercept is chosen as a negative value as the flow that correlates to shrinkage is 
due to an effective compressive (-ive) sinter stress.  Each rheological response is shown graphically in 
Figure. 2.
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Figure 2. Rheological responses of materials

The temperature dependent apparent viscosity can be determined from the diffusivity of the material
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where ro is the initial particle radius, k  is Boltzmann’s constant, T is temperature, δDb is the product of the 
grain boundary width and the grain boundary diffusivity, θ  is the porosity and the subscript o represents 
the initial porosity, Dv is the volume diffusivity, and Ω is the atomic volume.  The grain boundary 
diffusivity has an Arrenhius type dependence 

( ) RTQ
obb

beDD δδ = (5)

where (δDb)o is the pre-exponent for grain boundary diffusion, Qb is the activation energy for grain 
boundary diffusion, R is the universal gas constant, and T is the temperature.  This Arrenhius type 
dependence applies to the volume diffusivity too

( ) RTQ
ovv

veDD = (6)

where (Dv) is the pre-exponent for volume diffusion, Qv is the activation energy for volume diffusion, and 
R and T are the same as in equation (5).  Typical values for the diffusion parameters as well as the 
activation energies are given in Table 3.  The values given are for 316L stainless steel, and pure iron.

Table 3. Diffusivity pre-exponents and activation energies

Dv, m3/s Qv, kJ/mol δDb, m2/s Qb, kJ/mol
Iron 2x10-4 239 1.10e-17 128
316L stainless 4x10-5 280 2x10-13 167

There is no available information for 17-4PH stainless steel, but even if there were it should be noted that 
these values vary orders of magnitude between sources making it extremely difficult to find an accurate 
value for viscosity[42].

The equation for the apparent viscosity can therefore be simplified to an Arrenhius type equation, with all 
the influencing parameters collected into an experimentally determinable viscosity pre-exponent ηo and 
an activation energy for viscous flow Q.

RTQ
oeηη= (7)

Applying the Bingham response to equation (1) gives the following 

[ ] [ ] ( ) ijLijiiijijLijiiijij PP
W

W δτδεψεϕηδδεψεϕτησ 0
0 22 −++′≈++′−= ���� (8)

The stress invariants can be calculated from this equation: the effective shear stress is

γηϕσστ �2=′′= ijij (9)

and the hydrostatic pressure is
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02
3

τεηψσ −+== Lii
ii Pp � (10)

where iiε�  is the volumetric shrinkage rate.

An important relationship, true for any rheological response σ(W), between these stress invariants is 
determined from equation (9) and (10)

( ) γϕετψ �� Lii Pp −= (11)

The normalized shear and bulk viscosities are defined by[27]

( )21 θ
η

ϕ −== G
(12)

( )
θ
θ

η
ψ

31
3
2

2
−== K

(13)

where G and K are the shear and bulk moduli respectively.

The sintering stress has been related to porosity by many models [27].  In this case we use the following 
definition

( )213 θα −=
o

L r
P (14)

where α is the surface energy and ro is the initial particle radius.

FINITE ELEMENT MODELING 

For FEM analysis, the Abaqus CREEP subroutine is used to model the sintering behavior [41].  The rate 
dependent plasticity equation describing material response in the CREEP subroutine is

In swcrpl
ij εεε ���

3
1+= (15)

where crε�  is the equivalent creep strain rate (a scalar quantity), swε�  is the equivalent swelling 
strain rate (a scalar quantity), n  is the gradient of the deviatoric stress potential and I  is the unit 
matrix (equivalent to ijδ ).

The constitutive law for sintering given by equation (8) has to be arranged in the same form as 
equation (15) for implementation in Abaqus.  The stress tensor decomposition is given by

ijijij pδσσ +′= (16)
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and strain rate decomposition by

ij
ii

ijij δ
ε

εε
3
�

�� +′= (17)

Applying equations (16) and (17) to equation (8) gives the Bingham response constitutive equation 
rearranged with the strain rate as the independent variable for PL>το 
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⎥
⎦
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Comparing equation (18) to equation (15) gives the following relationship for the equivalent swelling 
strain rate

( )
ij

Lsw Pp
δ

ψ
τ

η
ε ⎥

⎦
⎤

⎢
⎣
⎡ −−

= 0

2
1

� (19)

Note that the hydrostatic pressure p in this paper is defined by equation (10), however in Abaqus it 
has the opposite sign (-).

To find the similar relationship for equivalent creep strain rate consider the definition of the Mises 
or equivalent stress given in Abaqus

⎥⎦
⎤

⎢⎣
⎡ −=′′= 2

3
1

2
3

2
3

kkijijijijq σσσσσ (20)

The gradient of the deviatoric stress potential is defined by

ij
ij

ij q
q

n σ
σ

′=
∂
∂

=
2
3

(21)

Now substituting equation (21) into equation (15), 

''

2
3

ij
cr

ij
cr

ij q
n σεεε ��� == (22)

and comparing equation (22) to equation (18), determine the expression for the equivalent creep 
strain rate

ηϕηϕ
ε

33
2

2
1 qqcr ==� (23)

Using equations (19) and (23) along with equations (12), (13) and (14) the sintering behavior can be 
modeled using Abaqus.
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As we are dealing with the case of free sintering, p = 0, and the equation (18) reduces to

( )
⎥
⎦

⎤
⎢
⎣

⎡ −
−

′
= ij

Lij
ij

P
δ

ψ
τ

ϕ
σ

η
ε

32
1 0

� (24)

For further simplification, the influence of deviatoric stresses, such as gravity, internal residual stresses or 
dilatometer pushrod force, are ignored, and isotropic shrinkage is assumed.  This leads to a direct 
relationship between volumetric shrinkage, sintering stress and threshold stress:

( )
ηψ

τε
6

0−−= L
ii

P
� (25)

From equation (25) it is clear that the compact shrinks in linear relation with the sintering stress, related 
through the viscosity and to the porosity, once a threshold stress has been reached. It is important to note 
that this Bingham response equation hold true only for PL>τo.  For PL<τo there is no shrinkage.

RESULTS AND DISCUSSION

For the purposes of this study a comparison of results obtained using a constant threshold strength of 
1Mpa, which is in the same range as the sintering stress [37], is used throughout the sinter cycle. 

Using the diffusivity data in Table 3. along with equation (7) to calculate the viscosity in the simulation 
proved ineffective.  The shrinkage obtained was orders of magnitude too small.  By fitting a curve to the 
diffusivity-based viscosity of the form of equation (8) , and scaling the viscosity down until the 
simulation results were in the same range as the dilatometer results, satisfactory results were obtained as 
shown in Figure 3 .
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Figure 3.  Simulated shrinkage compared to experimental dilatometer shrinkage for 17-4 PH.   Shrinkage 
rate and temperature profile are also shown.

The simulated results show the thermal expansion that occurs to just before 1000°C, at which point 
shrinkage starts. For the simulated results, the shrinkage shows a smooth curve, which does not mimic the 
experimental results. The reason for this is the choice of one viscosity relationship for the entire sinter 
cycle,

RTRTQ
o ee 500,277104.3 ⋅==ηη (25)

In the case of a single -phase solid state sintering system, such as with nickel, the use of one viscosity 
equation for the whole sinter cycle is warranted.  The viscosity is linked to the diffusion parameters of 
nickel, and these parameters do not change during sintering for a single -phase system.  The simulation 
yields good results as is shown in Figure 4. where nickel dilatometry has been simulated.

Figure 3.  Simulated shrinkage compared to experimental dilatometer shrinkage for Nickel. Shrinkage 
rate and temperature profile is also shown.

In the case of 17-4 PH there are a couple of phase transformations that the material goes through during 
sintering [43].  Due to these phase transformations the shrinkage is not as smooth and continuous as for the 
single-phase system of nickel.

First of all, for 17-4 PH, around 780°C there is a phase transformation from the room temperature 
martensitic phase to austenite.  As martensite has a BCT (body-centered tetragonal) atomic structure, and 
austenite has a FCC (face-centered cubic) atomic structure that occupies less volume than the BCT 
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structure, this phase transformation is associated with volumetric shrinkage.  The simulation does not 
mimic this phase transformation, as the only factors affecting expansion (or shrinkage) in the model are 
thermal expansion and viscosity.

At around 1220°C, there is prominent delta-ferrite formation along the grain boundaries and at the pores.
Delta ferrite has a BCC (body-centered cubic) atomic structure, which like BCT is more loosely packed 
than the FCC austenitic structure.  This looser structure allows diffusion to occur more easily, in other 
words, the diffusion parameters for the austenitic phase are different for those of the ferritic phase in 17-4
PH.  Thus the viscosity drops and shrinkage rate increases.  This can be clearly seen by comparing the 
simulated and dilatometer shrinkage in Figure 3.  At 1220°C the significant change in the shrinkage rate 
causes the compact to densify to its maximum value before it even reaches the last hold temperature at 
1365°C.  Seeing as the simula tion uses only one equation for viscosity, based on 316L stainless steel that 
is austenitic, once the atomic diffusion becomes dominated by the delta ferrite phase, the viscosity value 
is too high and the associated shrinkage rate is too slow.  The resultant simulated shrinkage is too small. 

CONCLUSIONS

While this model offers a good correlation for a single-phase system, the results for a multi-phase, and 
conceivably for a liquid-phase system, are not accurate.  Further development of a viscosity model is 
needed to control the shrinkage rate through implementation in the constitutive model.  Also while the 
general form of a diffusion-based viscosity allows for an accurate representation of shrinkage during 
sintering, the viscosity has to be scaled several orders of magnitude before an accurate result is found.
This again leads to the conclusion that further investigation into what influences viscosity, and how to 
estimate in-situ viscosity for a sinter compact is needed.
Development of this model needs to incorporate a more in-depth study of the exact interaction between 
the capillary strength and the yield strength, and their evolution with during the sinter cycle.
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