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Abstract—We examine size scale and strain rate effects on single-crystal face-centered cubic (fcc) metals.
To study yield and work hardening, we perform simple shear molecular dynamics simulations using the
embedded atom method (EAM) on single-crystal nickel ranging from 100 atoms to 100 million atoms and
at strain rates ranging from 107 to 1012 s�1. We compare our atomistic simulation results with experimental
data obtained from interfacial force microscopy (IFM), nano-indentation, micro-indentation and small-scale
torsion. The data are found to scale with a geometric length scale parameter defined by the ratio of volume
to surface area of the samples. The atomistic simulations reveal that dislocations nucleating at free surfaces
are critical to causing micro-yield and macro-yield in pristine material. The increase of flow stress at increas-
ing strain rates results from phonon drag, and a simple model is developed to demonstrate this effect. Another
important aspect of this study reveals that plasticity as reflected by the global averaged stress–strain behavior
is characterized by four different length scales: (1) below 104 atoms, (2) between 104 and 106 atoms (2µm),
(3) between 2µm and 300µm, and (4) above 300µm.  2001 Acta Materialia Inc. Published by Elsevier
Science Ltd. All rights reserved.
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1. INTRODUCTION

Analysis of size scale effects and strain rate effects
related to plasticity is studied in the context of mol-
ecular dynamics simulations. Few studies, if any, cou-
ple these size scale and strain rate effects in plasticity.
At the macro scale, strain rate and temperature effects
have been studied for many ductile metals [1–3].
Attention to plasticity at smaller size scales has
included independent studies of indentation experi-
ments, thin-wire torsion tests, and atomistic simula-
tions. Experimental and some theoretical studies on
size scale dependence related to plastic deformation
followed after the seminal work of Hall [4] and Petch
[5]. For example, recent studies such as those by Ma
and Clarke [6], McElhaneyet al. [7] and Michalske
and Houston [8] examined grain size effects on yield
and hardness for different face-centered cubic (fcc)
metals. Nix and Gao [9] and Begley and Hutchinson
[10] explained this plastic indentor size effect by
modifying classical plasticity theory to include strain
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gradients, which are attributed to the presence of geo-
metrically necessary dislocations. Thin-wire experi-
ments like those of Flecket al. [11] included wires
with diameters down to 12µm. In these experiments,
a definite size scale effect was observed in torsion on
the yield stress and plasticity of the wires. Fleck and
Hutchinson [12, 13] later applied a strain-gradient
theory to analyze the size scale effects they found.
Daw and Baskes [14], Taylor and Dodson [15–17],
Taylor [18], Holian and Lomdahl [19] and Hoagland
and Baskes [20] have studied effects of dislocations
on plastic response using atomistic methods. Kita-
mura et al. [21] examined nano-scale tensile bars of
nickel employing molecular dynamics. The purpose
of our study is to analyze spatial size scale and strain
rate issues on yield and plasticity at the atomic scale,
since little work has focused on this coupling.

The upper limit of atomic size is determined by the
capability of the computing platform. When the
model size is increased, more computational time is
needed to attain a certain strain level. Otherwise, one
can increase the strain rate to achieve that certain
strain level, but then the applied strain rates must be
large. This trade-off of model size and strain rate is
illustrated schematically in Fig. 1. Here the time
domain can be inversely related to the strain rate, so
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Fig. 1. Schematic illustration of strain rate and spatial size scale
effects on computing and the regions where local and non-local

continuum theories are applicable.

the time can be increased with decreasing strain rate
and vice versa. If lower strain rates are desired, it is
necessary to decrease the size of the atomic model
because of the time needed to run the simulation. Our
purpose in this paper is to broach the limits of current
atomistic computing for examination of yield and
plasticity of single-crystal nickel by using serial and
parallel computing platforms. The schematic illus-
tration in Fig. 1 indicates the regions where local and
non-local continuum theories are applicable based on
this study. Here, a non-local continuum theory is one
in which a size scale is included within the structure
of the governing equations.

2. ATOMISTIC BACKGROUND

We first start at the atomic scale by performing
atomistic simulations at various length scales to ana-
lyze yield and plasticity. Daw and Baskes [14] pro-
posed a numerical method for calculating atomic
energetics, the embedded atom method (EAM). Daw
et al. [22] reviewed the basic method and several
applications of EAM. The major component of EAM
is an embedding energy of an atom determined by the
local electron density into which that atom is placed.
A function, r(r), is viewed as the contribution to the
electron density at a site due to the neighboring
atoms. The embedding energy F is associated with
placing an atom in that electron environment. The
functional form of the total energy is given by

E � �
i

Fi(�
i�j

ri(rij)) �
1
2�

ij

fij(rij), (1)

where i refers to the atom in question and j refers to

the neighboring atom, rij is the separation distance
between atoms i and j, and fij is the pair potential.
Because each atom is counted, contravariant and
covariant index notation is not used here. Subscripts
denote the rank of the tensor; for example, one
subscript denotes a vector, two subscripts denote a
second-rank tensor, and so on. Superscripts identify
the atom of interest. In molecular dynamics, the
energy is used to determine the forces on each atom.
At each atom the dipole force tensor, b (termed as
the local stress tensor hereafter), is given by
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where i refers to the atom in question and j refers to
the neighboring atom, fk is the force vector between
atoms, rm is a displacement vector between atoms i
and j, N is the number of neighbor atoms, and �i is
the atomic volume. If stress could be defined at an
atom, then b would be the stress tensor at that point.
Since stress is defined at a continuum point, we deter-
mine the stress tensor (termed as the global con-
tinuum stress hereafter) as a volume average over the
block of material,

smk �
1
N�

N∗

i

bi
mk, (3)

in which the stress tensor is defined in terms of the
total number of active atoms, N∗, in the block of
material. We use this averaged stress to determine the
stress–strain response and yield point of the block
of material.

3. COMPUTATIONAL SET-UP

We perform classical molecular dynamics simula-
tions using the following EAM potentials [14]: for
nickel [23]; for copper [24]; and for aluminum [25,
26]. The EAM simulations were designed to mimic
fixed-end, simple shear for different cross-sectional
sample sizes and crystal orientations. As illustrated in
Fig. 2(a), the computational block of material had free
surfaces in the x- and y-directions with an aspect ratio
of roughly 2:1 in x:y and was periodic in the z-direc-
tion. The crystal orientation was [100, 011, 01̄1], and
the shear loading on the y-face was in the [100] direc-
tion. We have chosen this orientation to investigate
multiple slip. Our model has a quadruple slip orien-
tation, with two equal primary slip planes with two
equal directions for slip in each plane. For more
details on the effects of crystal orientation, the reader
is referred to Ref. [27]. The shear modulus for this
nickel potential is 124.8 GPa. In previous work, Hor-
stemeyer and Baskes [28] showed that in fixed-end
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Fig. 2. Schematic illustration of simulation block of atoms at
(a) the initial state and (b) at large strain in which the clear
circles represent the active atoms and the dark circles represent

the boundary atoms.

simulations the global continuum stress saturates if
the z-direction is four or more unit cells in thickness;
smaller samples introduce a separate size scale effect.
Since one of our goals was to model as large a cross-
sectional area as possible, we used a four-unit-cell z-
direction thickness in our simulations.

After creating the samples with a desired crystal
orientation, a few planes of atoms at the top and bot-
tom (xz-planes at the +y and �y extrema) were frozen
on their perfect lattice sites. The remainder of the
atoms were allowed to relax to minimum energy to
accommodate any surface relaxation at the two
remaining free surfaces (yz-planes). Velocities of the
interior (or active, non-frozen atoms) were then
initialized using a Boltzmann distribution at a chosen
temperature (300 K). For simple shear, a strain rate
was then applied to the block of atoms by setting the
x-velocity of the frozen xz-planes to a constant value.
The bottom atomic plane had a prescribed x-velocity
of zero for the duration of the dynamics simulation,
and the top atomic plane had a prescribed constant
velocity to create a strained sample as shown in
Fig. 2(b).

If just the top row of atoms initially experienced
the prescribed velocity without the active internal
atoms experiencing the same velocity field, a shock
would be induced into the block of material because
of the high strain rates. In our calculations, we intro-
duced an initial velocity field that mitigated the shock
wave and then applied the boundary velocity fields.
To accomplish this, the interior atoms in the model
were also given an initial x-velocity (superposed on
their thermal 300 K velocities) that varied linearly
from 0.0 to the prescribed velocity at the top atomic
plane depending on their y-coordinates in the simul-

ation box. In these simulations, the prescribed velo-
city was chosen to model strain rates ranging from
107 s�1 to 1012 s�1.

Following initialization, a constant number of
atoms, constant volume and constant temperature
(NVT) simulation was performed with a 0.001 ps
time step until the block of atoms had undergone
strain sufficient to create yield, typically a few per
cent strain or more. Because straining via moving the
frozen planes adds considerable energy to the active
atoms, a Nose–Hoover thermostat [29, 30] was used
during the molecular dynamics simulation to keep the
active atoms at constant temperature. The thermostat
applies a damping (or acceleration) factor to the
active atoms based on the difference between their
current temperature and the desired temperature (300
K). We computed the instantaneous temperature of
the ensemble of active atoms after first subtracting
from each atom the non-thermal x-velocity that was
initially prescribed, since the active atoms essentially
maintain the same component of x-velocity for the
simulation.

Because this study focused on plasticity, the notion
of a yield is important. In this context, we define two
micro-yield points and a macro-yield point. First, the
average global stress of the active atoms was com-
puted by using equation (3), and a stress–strain curve
was generated. Figure 3 shows stress–strain curves
for atomistic simulations of 10,000 and 10 million
atoms just to illustrate the behavior at different
material block sizes. We identify three locations on
the curve. The first location is defined as micro-yield
1, where the stress–strain behavior first deviates from
elastic linearity, i.e., the proportional limit. At this
point, initial dislocations are emitted from the surface
because of the local stress gradients in the corners
due to the boundary conditions. The second location
is micro-yield 2, which is defined by the macro-scale
continuum concept of a 0.2% offset strain. The third
location is defined as macro-yield, the point at which
the maximum stress occurs. We also define the quan-
tity �eyield, which is the difference in strain between
the macro-yield and micro-yield 2. Because we start
with a perfect lattice, there are no initial defects. As
such the stress–strain responses, in terms of the stress
drop-off, look very similar to experimental data of
metal “whiskers” that have essentially no initial
defects (cf. [31]). In whiskers, yield is typically
defined at the “macro-yield” point. At this point, the
stress required to activate a certain density of dislo-
cations is reached and the material plastically
deforms, precipitating dislocations with subsequent
propagation of local Luders bands that lead to irregu-
lar fluctuations in the plateau region of the stress–
strain curve after the macro-yield stress drop-off.
These two curves illustrate that micro-yield 1 and
micro-yield 2 are essentially the same and in many
cases, as exemplified in the 10,000-atom simulation,
macro-yield is very close to the other two micro-
yield points.
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Fig. 3. Shear stress–strain curve of material blocks at an applied strain rate of 2.4×108 s�1 with (a) 10,000
atoms and (b) 10 million atoms, showing micro-yield 1 at the proportional limit, micro-yield 2 at 0.2% offset

strain, and macro-yield.

In determining the yield points in many of the
simulations, we also unloaded the material block at
each of the micro-yield and macro-yield points to
give information regarding permanent set and the
influence of dislocations on the yield points. In Fig.
4, we show the atom positions at different locations
along a simple shear deformation path for a block of
nickel with 2242 atoms. Here, we unloaded at micro-
yield 1 and micro-yield 2.

Fig. 4. Shear stress–strain curve for 2242 atoms of nickel illustrating atomic positions and relative displacements
(denoted by arrows on atoms) at different strain levels.

The type of simulation shown in Fig. 4 was typical
of the ones that we performed with differing block
sizes of material that ranged from 100 atoms to 100
million atoms, and the time steps from a few thousand
to many millions depending on the applied strain rate.
The largest simulations were run using a parallel ver-
sion of the EAM code designed for distributed mem-
ory supercomputers (cf. [32]). Consequently, the CPU
cost of the simulations also varied from a few seconds
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on a single processor workstation to many hours on
hundreds of processors on the Sandia/Intel Teraflop
machine. In fact, the largest simulation took 13 CPU
hours on 3000 processors.

4. ATOMISTIC RESULTS

There are two main themes we would like to dis-
cuss separately regarding the results, which are the
effects of size scale and time scale. Unfortunately,
they are linked together, so discussing one of these
topics independently is difficult without begging
questions about the other. However, we shall try to
do so by first starting with time scale issues as related
to strain rate effects on dislocation nucleation, motion
and interaction. Recall from Fig. 1 that a competition
between the size scale and time scale in performing
atomistic simulations exists. If a strain rate of 107 s�1

is to be achieved in the current molecular dynamics
paradigm, one must have a small number of atoms.
The converse is also true. If a large block of atoms
is desired, the applied strain rate must be rather high
(�109 s�1). The reason for this time–space relation in
the computations is related to the time scale of the
atomic period involved, and this in turn affects the
applied strain rates. With this in mind, we briefly
address the time domains pertinent to our simulations.

4.1. Strain rate effects

There are several time domains to consider when
considering strain rate effects on small specimens.
First, the highest-frequency component will arise in
relation to the atomic frequency. These vibrations
occur on the order of 10�12 s. If shock is involved,
then the longitudinal elastic shock wave velocity can
be derived from the wave equation given by

Celastic � �K � 4/3G
r

, (4)

and the plastic wave speed as

Cplastic � �K
r

, (5)

and the shear (or distortional) wave speed as

Cshear � �G
r

, (6)

in which r is the density of nickel, K is the bulk
modulus and G is the shear modulus. Typical sound
speeds are �20 Å/ps. Since our blocks of material are
small, shock waves propagate through the material
many times on the time scale of our simulations

which achieve large strains (�30%). However, in our
simulations, we avoid the shock by initializing all the
atoms with an initial velocity gradient in the x-direc-
tion as discussed above, thus alleviating the time issue
with the shock wave.

Another time domain to consider is that of the dis-
location motion. Baskes and Daw [33] showed that
the modified Leibfried [34] continuum equation for
dislocation velocity can be used to explain the atom-
istic simulations in simple shear for nickel:

d
dt

mv

√1�(v/c)2
� (s�s0)b�a

3kT
10b2

v/c

√1�(v/c)2
, (7)

where m is the dislocation per unit mass length (0.2
atoms/Burger’s distance), c is the dislocation terminal
velocity or sound speed (20 Å/ps), s is the applied
stress, s0 is the friction stress (4 MPa), b is the Burg-
er’s vector of the dislocation (2.5 Å for nickel), and
a is a dimensionless drag constant (0.98). The above
values for nickel were determined in Ref. [33]. A
closed-form solution can then be used to track the
dislocation motion. The left-hand side is the time rate
of change of the dislocation momentum. The first
term on the right-hand side is the driving force for
motion, and the second term is the dissipation due to
dislocation–phonon drag, which is the important fac-
tor related to the applied strain rate. Baskes and Daw
[33] added the relativistic factor in the drag term to
allow an analytical solution of the equation. Consider
a dislocation nucleated a distance x0 from a free sur-
face. We modify equation (7) to include image forces
due to the nature of the free surfaces in the present
atomistic simulations and to remove the relativistic
factor in the drag term:

d
dt

mv

√1�(v/c)2
� seffb�a

3kT
10b2(v/c), (8)

in which seff is defined as

seff � � 0 s�sI � s0/M

M(s�sI)�s0 s�sI � s0/M
(9)

sI is the stress due to image forces and is related to
the nucleation stress, s∗, as follows:

sI �
x0

x
s∗, (10)

where x is the current dislocation position, and M is
the orientation factor related to the resolved shear
stress. Here, we assume that the dislocation is
nucleated at time zero at position x0 from the surface
when the applied shear stress equals the nucleation
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stress. The dislocation accelerates under increasing
load. When a 0.2% plastic strain offset is assumed
for yield, the only free parameter in the model is the
nucleation stress s∗, which is chosen to agree with
the atomistic simulations. The nucleation stress is the
only size-dependent quantity in the model.

The next time domain of importance is related to
the applied strain rate. In our simulations, we start
with a strain rate on the order of the atomic period
(1012 s�1) and then decrease it five orders of magni-
tude (107 s�1). A critical peak strain rate exists in
which the stress is so high that the lattice strength of
the crystal is reached and immediate fracture occurs
between the atoms with the applied boundary con-
dition and the adjacent atoms. The results that we
show do not include these data, since we are not con-
cerned with fracture in our study. When the applied
strain rate is between the peak fracture strain rate and
the time domain in which dislocation inertial effects
are important, the global yield stress increases with
increasing model size. When the applied strain rate
is below this regime, then the yield stress increases
with decreasing spatial size. In any event, as the
applied strain rate increases, the yield stress and the
magnitude of the stress drop increase as expected
from phonon drag.

Given this information, we ran several atomistic
simulations at different sizes and applied strain rates
and determined the yield stresses based on a 0.2%
strain offset. The stress–strain curves are presented in
Figs 5–11 for different atomistic model sizes. These
figures show that as the strain rate increases, the flow
stress increases. The yield stresses, normalized by the
shear modulus, for the different nickel simulations are
shown in Fig. 12. The strain rate behavior as dis-
cussed above is only observed for the intermediate
size samples. For these samples we see that at rela-
tively small strain rates, the yield stress is inde-
pendent of strain rate, while at higher strain rates the

Fig. 5. Shear stress–shear strain curves of material block with
196 atoms (length is 2.8 nm and height is 1.4 nm) at strain
rates from 1.5×107 s�1 to 1.23×1011 s�1, illustrating the

increase in yield as a function of strain rate.

Fig. 6. Shear stress–shear strain curves of material block with
1384 atoms (length is 7.8 nm and height is 4.0 nm) at strain
rates from 1.5×107 s�1 to 1.23×1011 s�1, illustrating the

increase in yield as a function of strain rate.

Fig. 7. Shear stress–shear strain curves of material block with
2×104 atoms (length is 0.0282 µm and height is 0.014 µm) at
strain rates from 1.5×107 s�1 to 1.23×1011 s�1, illustrating the

increase in yield as a function of strain rate.

Fig. 8. Shear stress–shear strain curves of material block with
1×105 atoms (length is 0.057 µm and height is 0.021 µm) at
strain rates from 1.5×107 s�1 to 1.23×1011 s�1, illustrating the

increase in yield as a function of strain rate.
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Fig. 9. Shear stress–shear strain curves of material block with
1×106 atoms (length is 0.18 µm and height is 0.07 µm) at strain
rates from 1.5×107 s�1 to 1.23×1011 s�1, illustrating the

increase in yield as a function of strain rate.

Fig. 10. Shear stress–shear strain curves of material block with
1×107 atoms (length is 0.55 µm and height is 0.21 µm) at strain
rates from 1.5×107 s�1 to 1.23×1011 s�1, illustrating the

increase in yield as a function of strain rate.

Fig. 11. Shear stress–shear strain curves of material block with
1×108 atoms (length is 1.7 µm and height is 0.7 µm) at a strain

rate of 1.53×1010 s�1.

yield stress increases rapidly. For the small samples
the extreme increase in yield stress is subsumed by
the fracture regime (not shown). For the large
samples, due to computer limitations, we were not
able to calculate strain rates low enough to reach the
strain-rate-independent regime.

Fig. 12. Yield stress normalized by the shear modulus as a
function of strain rate, comparing atomistic simulations (dots)
and the dislocation model (solid line). Various curves represent

different model sizes.

In Fig. 12 we also compare the same atomistic data
to the simple model presented above. The choice of
the nucleation stress as a function of size is discussed
below. We see that the simple model captures the
qualitative features of the data: strain rate indepen-
dence at low strain rate; a rapid increase in yield
stress at a critical strain rate; and an increase in the
critical strain rate with decreasing sample size. We
designate the stress level in the strain-rate-inde-
pendent region (low strain rate) as a plateau stress.
The decrease in this plateau stress with increasing
sample size is not a prediction of the model, but was
input as the size dependence of the dislocation
nucleation stress. However, the existence of the
strain-rate-independent region is a direct consequence
of the model. The dislocation model predicts an
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increase in yield stress at high strain rates more rapid
than the atomistic simulations. This effect is due to
the fact that we have only allowed the nucleation of
one dislocation, that is, the dislocation density is con-
stant. At the higher strain rates, multiple dislocations
are nucleated, lowering the yield stress from the
model calculation prediction. For comparison, Fig. 13
shows experimental curves for single-crystal copper
illustrating that the trend for increasing flow stress
with increasing applied strain rate occurs for other
metals as well. All of the strain rate features noted
above for the simulations and the dislocation model
have also seen in the experimental data (cf. [35, 36]).
Note that the critical strain rate in the calculations is
significantly higher than that of the experiments. This
behavior is expected from the model since the size
scale for the experiments is significantly larger than
for the calculations. Also note that stress scale for the
experiments is significantly lower than for the calcu-
lations. Again this behavior is consistent with the
model, since the plateau stress (rate-independent) is
size-dependent. We will return to the size dependence
in the next sub-section.

Again referring to Figs 5–11, we see that the
micro-yield and macro-yield both increase with
increasing applied strain rate. However, an increase
in applied strain rate increases the strain difference
(�eyield) between the micro-yield and macro-yield.
This effect also occurs as the model size increases as
shown in Fig. 3. For the high applied strain rate, the
reason that the strain difference increases between the
micro-yield and macro-yield point is due to the time
domains in which the dislocation nucleation rate and
velocity are of different magnitudes than the applied
strain rate. As such, at low dislocation densities and
at low dislocation velocities, the applied strain cannot
be fully accommodated by dislocation propagation, so
a lower modulus arises that looks like work hardening
between the micro-yield and macro-yield. The larger
size blocks of atoms exacerbate this effect.

Fig. 13. Experimental data examining yield stress versus
applied strain rate from Follansbee [36] and Edington [35] for

copper.

4.2. Size scale effects

When the nickel data in Figs 5–11 are rearranged
according to spatial size, we can see that a size scale
effect arises as shown by the stress–strain curves in
Fig. 14 at a strain rate of 2.4×108 s�1. This size scale
effect is also observed in copper as shown in Fig. 15
at a strain rate of 109 s�1. In a companion paper [37],
we examine different size scale effects on single-crys-
tal copper in simple shear and torsion.

We may also compare the plateau yield stresses as
a function of specimen size. In Fig. 16 we show the
normalized yield stress as a function of the x-dimen-
sion size of the model. Note that the models con-
sidered here have the z-dimension constant and the
x:y aspect ratio fixed at �2:1, so that the single x-
dimension fully characterizes the model. We see a
clear power-law dependence of the plateau (rate-
independent) yield stress, with the stress varying as
model size to the �1/4 power. This dependence was
used to define the size dependence of the dislocation
nucleation stress s∗ in the dislocation model calcu-
lations presented above in Fig. 12.

In our simulations, the dislocations nucleate at the
free surfaces. These free surfaces can be thought of
as true free surfaces or a grain boundary. In either
case, it is energetically favorable to generate dislo-
cations in the corners of the specimen because of
equilibrium considerations with the applied shearing.
In pure shear a balance in applied boundary con-
ditions exists, but in our simple shear simulations this
does not exist. As a result a continuum spin which
resolves into elastic and plastic components arises. It
is this rotational component that affects the dislo-
cation nucleation. A more detailed explanation can be
found in Ref. [27].

5. SIZE SCALE EFFECTS AND VARIOUS
EXPERIMENTS

Figures 14 and 15 show size scale effects in the
stress–strain response for single-crystal nickel and
copper. The goal here was to illustrate that another
fcc metal, besides nickel, experiences a similar size
scale effect in terms of increasing size decreasing the
yield stress. If this size scale effect is universal, what
is an appropriate length scale parameter?

In trying to understand yield at different length
scales, we need to have a common length scale para-
meter. For this purpose, we choose volume to surface
area as our metric. This volume to surface area can
be defined very clearly for each test method and
atomistic simulation. Table 1 summarizes the values
for the analysis performed in this study related to the
specimen geometries.

Figure 17 shows a log–log plot of yield stress under
simple shear (atomistics) and torsion and indentation
(experiment) normalized by elastic shear modulus and
resolved on a (111) slip plane as a function of the
characteristic length scale given by the volume-to-



4371HORSTEMEYER et al.: PLASTIC FLOW OF FCC METALS

Fig. 14. Shear stress–strain curves of various size atomistic models at an applied strain rate of 2.4×108 s�1 for
(a) 196 atoms, 1384 atoms and 2×104 atoms and (b) 105 atoms, 106 atoms and 107 atoms.

Fig. 15. Shear stress–strain curve of two atomistic models
showing the differences in yield and work hardening for single-

crystal copper at a strain rate of 109 s�1.

Fig. 16. Rate independent yield stress normalized by the shear
modulus as a function of the size (x-dimension) of the atomistic

model. The equation for the power-law behavior is shown.

Table 1. Volume to surface areas for various geometries

Geometry Volume Surface area Volume to surface area

Simple shear (cell dimensions: xc, yc, zc) xcyczc 2yczc xc/2
Torsion (cylinder radius: r, height: h) pr2h 2prh r/2
IFM (contact radius: a) 2/3pa3 pa2 2/3a
Indentation (contact radius: a, indentation

2/3pa3 pa2 2/3a = 2/3×h/tan q
depth: h, indentor tip angle: q)

Fig. 17. Yield stress normalized by the elastic modulus and
resolved on a (111) slip plane versus volume to surface area for
nickel, gold and copper for various experiments and atomistic
simulations: �, EAM (present work); �, Michalske and Hous-
ton [8]; �, McElhaney et al. [7]; �, Fleck et al. [11]; – – –,
Nix and Gao [9]; ———, power law. The equation for power-

law behavior is shown.

surface-area ratio. This plot shows a clear size scale
effect. The atomistic results come from the current
molecular dynamics calculations in the plateau (rate-
independent) region of (low) strain rate. A factor of
0.577 for the resolved shear stress was applied to the
data of Fig. 16.

The experimental torsion data (Fleck et al. [11])
shown in Fig. 17 are from small-scale torsion tests of
polycrystalline copper at a strain rate of 10�3 s�1 at
room temperature. The volume to surface area was
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chosen to be the torsion specimen radius divided by
two (Table 1). To obtain the maximum shear stress
at the surface of the cylinder, the normalized torque
data presented in the manuscript were multiplied by
p/3 and divided by the shear modulus of copper. It
was assumed that at least one grain in the polycrystal-
line sample was oriented perfectly for slip, hence no
resolution factor was applied. This analysis gives an
upper bound on the resolved yield stress.

Indentation hardness, H, of ductile metals is con-
sidered a measure of the yield stress in compression,
H = 3×yield [38]. Although inadequate measurement
techniques and surface contaminants can cause appar-
ent increases in hardness at small loads, the bulk of
the data from many experimenters illustrates a com-
mon thread of increased hardness, and subsequently
yield, as the size scale decreases. McElhaney et al.
[7] illustrated the size dependence on yield for both
single-crystal and polycrystalline copper. McElhaney
et al.’s single-crystal data [7] are included in Fig. 17.
To determine the appropriate length scale, we con-
sider the size of the volume of copper under the
indentor that has plastically deformed. A reasonable
assumption is to take that volume as a hemisphere
with radius equal to the contact radius [9]. The sur-
face area is taken as the contact area. A resolution
factor of 0.228 [39] and tip angle of tan q = 0.358
were used.

Interfacial force microscopy (IFM) data for gold
from Michalske and Houston [8], which are also plot-
ted on Fig. 17, appear to align very nicely, albeit a
bit higher, with the atomistic results. The difference
may be due to the fact that the atomistic data are rate-
independent values and a higher, changing strain rate
occurs in the IFM data. Here, the total volume to sur-
face area was determined for the spherical indentor
as 2/3 of the contact radius (see Table 1), which is
determined by simple geometry from the tip radius
and the indentor depth at yield. The yield stress was
calculated using the Hertz model and the shear stress
data presented in the experimental manuscript. A res-
olution factor of 0.228 [39] was applied to the applied
stress. Michalske and Houston’s [8] argument that
dislocation nucleation governs yield stress at this
length scale compares extremely well with the work
of Horstemeyer and Baskes [28].

We have also examined nanocrystalline metals in
the context of the volume to surface area but found
much scatter in the data and as such the data are not
plotted here. Masumura et al. [40] have reviewed
many studies on nanocrystalline materials and con-
cluded that the Hall–Petch relation operates above a
certain length scale, but not below that particular
level. Their data indicate that that the Hall–Petch
relation does not work in tension. As mentioned earl-
ier, by analyzing the length scale effect in tension
other competing dissipative mechanisms can contrib-
ute to the stress–strain or hardness behavior, in parti-
cular void nucleation or growth. With these different

mechanisms involved we deemed it unfruitful to
include these data.

One last comment regarding the size scale effect is
warranted. In Fig. 17 are the results of a simple model
using the concept of geometrically necessary dislo-
cations by Nix and Gao [9]. The model was fit to the
McElhaney et al.’s [7] single-crystal data. We see that
extrapolation of this model to smaller length scales
yields good agreement with the Michalske and Hous-
ton [8] data and fair agreement with the atomistic
simulations. Note that the model does not agree at all
with the torsion data. In contrast, a simple power law
seems to represent all of the data reasonably well in
which the only argument needed is that related to dis-
location nucleation.

6. SIZE SCALE PLASTICITY DOMAINS

By examining the global stress–strain responses of
the atomistic simulations, we observed two forms of
bulk plastic behavior depending on the size of blocks
of atoms. Coupling this computational information
with experimental data from others (cf. [11]), we
assert that four regions of bulk plastic behavior exist
based upon the size scale of the solid medium, as
summarized schematically in Fig. 18. The first spatial
domain is roughly below about 10,000 atoms, less
than 200 Å. The exact size varies depending upon the
crystal orientation, strain rate, temperature and
boundary conditions, but it is approximately this
scale. Here, the local atomic vibrations play a critical
role, and three characteristics of the stress–strain
curve are demonstrated: high-frequency stress oscil-
lations throughout the stress–strain curve and a stress
drop-off after macro-yield. To employ a continuum
plasticity model in this spatial domain, a vibration
analogy with a size scale parameter would be appro-
priate (cf. [28]). In terms of computations, these simu-
lations were performed in a serial environment.

Above several thousand atoms and below 100
million atoms (about 2 µm), the high-frequency stress
oscillations are dampened out because of the averag-

Fig. 18. Schematic showing the stress–strain responses at four
different size scales.
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ing procedure used to determine the global continuum
stress. However, the post-yield stress drop-off occurs.
We note here that a stress drop-off is observed in
indentation and IFM experiments after dislocation
nucleation [41]. To model this spatial domain with a
continuum plasticity model, a theory that includes a
size scale is needed. In terms of computations, these
simulations were performed in a parallel environ-
ment.

For single-crystal, nearly dislocation-free material,
these two smaller regions are dominated by dislo-
cation nucleation and not by the morphological distri-
bution or number density of dislocations. As dis-
cussed earlier, the stress–strain response looks much
like that of a whisker in this region. Figure 18 shows
a comparison of stress–strain responses for two differ-
ent sizes illustrating the two different plasticity
regions. Note that, as the size increases, the yield
stress decreases. We discuss these trends with rela-
tively small blocks of atoms elsewhere [28].

In the third spatial domain between 2 µm
(approximately) and 300 µm, the stress drop-off does
not exist and micro-yield and macro-yield start to
converge, but a length scale dependence is still
obtained as evidenced in Fleck et al. [11]. Since our
arguments are based upon single-crystal information,
future single-crystal experiments are planned. How-
ever, we expect a similar size scale response as
observed in Fleck et al.’s [11] data. Above 300 µm,
a power-law function without a size scale parameter
can describe the stress–strain response. Although sin-
gle-crystal whiskers can be obtained in spatial
domains 2 and 3, the Fleck et al. [11] data relate to
polycrystalline metals. For the polycrystals, dislo-
cation nucleation is not as dominant as the dislocation
number density and morphological distribution in
determining the stress state. Hence, there is a gradual
change of influence from dislocation nucleation at
much smaller scales to dislocation number density
and distribution at larger scales. Fleck et al. [11] con-
ducted torsion tests of polycrystalline copper that
ranged from 12 µm to about 300 µm. Their data
revealed that a stress drop-off did not exist after
macro-yield but a length scale effect did indeed exist
when determining yield and the work-hardening rate.
The length scale effect seems to disappear at about
300 µm, thus defining the demarcation between the
third and fourth spatial domains of plasticity. The
main difference between the third and fourth domains
is essentially a size scale dependence in the third
domain and no size scale dependence in the fourth.

In this fourth spatial domain, no oscillations, stress
drop-offs or size scale dependence is found based on
experimental observations. In this domain atomistic
simulations are currently out of reach for even paral-
lel computing. However, as computers get faster,
atomistic simulations will be able to be performed in
this region in the near future. As far as continuum
modeling, local continuum models have been used to

solve engineering problems in this spatial domain
fairly well.

7. CONCLUSIONS

Atomistic simulations using the embedded atom
method have been performed for nickel samples con-
taining 100 to 100 million atoms. Using molecular
dynamics the samples were deformed in simple shear
at 300 K at strain rates ranging from 107 to 1012 s�1.
It was found that samples with less than �1000 atoms
showed little dependence of the yield stress on strain
rate. Larger samples showed significant increases in
yield stress with increasing strain rate. At the lower
strain rates the yield stress approached a constant
value which depended on sample size. The transition
strain rate where the yield stress became independent
of strain rate decreased with increasing sample size.
The simulations showed that the yield phenomenon
was directly related to dislocation nucleation at free
surfaces. Using this concept, a simple inertial dislo-
cation model has been developed that captures these
features.

A size scale, based on the volume to surface area
of the sample, has been postulated. Using this scaling
concept, the yield stress of the atomistic simulations
was compared with experimental measurements using
indentation and torsion techniques. A simple power-
law scaling was found. It is noteworthy that the size
scale effect is shown for simple shear, a stress state
in which there are no strain gradients. In light of these
results, it is suggested that dislocation nucleation,
rather than the concepts of geometrically necessary
dislocations or strain-gradient plasticity, should be
considered as an explanation of plasticity size effects.
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