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Wavelets for Computationally Efficient Hyperspectral
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Abstract—Smoothing followed by a derivative operation is application dependent. If one is unsure of the appropriate
often used in the analysis of hyperspectral signatures. The width choice of window width or would like to conduct analysis for
of the smoothing and/or derivative operator can greatly affect several window widths, a tool known as scale-space imaging

the utility of the method. If one is unsure of the appropriate b d. Scal . : i intimatel lated t
width or would like to conduct analysis for several widths, C@n D€ USEd. Scale-space imaging IS Inimately related 1o

scale-space images can be used. This paper shows how the waveld¥avelet transforms. This paper shows how the wavelet trans-
transform modulus-maxima method can be used to formalize form modulus-maxima method can be used to formalize and

and generalize the smoothing followed by derivative analysis generalize the smoothing followed by derivative analysis and

and how the wavelet transform can be used to greatly decrease j,,\v the wavelet transform can be used to greatly decrease
computational costs of the analysis. The Mallat/Zhong wavelet . . .
computational costs of said analysis.

algorithm is compared to the traditional method, convolution with . . I -
Gaussian derivative filters, for computing scale-space images. Section Il describes the use of derivative-based analysis in

Both methods are compared on two points: 1) computational hyperspectral data. Section Il describes the scale-space image
expense and 2) resulting scalar decompositions. The results showand spectral fingerprint and how they are traditionally imple-
that the wavelet algorithm can greatly reduce the computational mented. In Section 1V, the authors describe the corresponding
expense while practically no differences exist in the subsequent e . .
scalar decompositions. The analysis is conducted on a databaseW"’M:"Iet decomposition and the modulus-maXIma represen'ta'ltlon
of hyperspec’[ra| Signa’[uresl name]y, hyperspec’[ra| d|g|ta| image and hOW the Ma”at/Zhong algOI’Ithm can be Used as an eﬂ:|C|ent
collection experiment (HYDICE) signatures. The reduction in implementation. Section V compares the traditional implemen-
computational expense is by a factor of about 30, and the average tation of the scale-space image and the Mallat/Zhong wavelet
Euclidean distance between resulting scale-space images is on th%\lgorithm in terms of their orders of complexity and experi-
order of 0.02. . .
mental benchmarking. In Section VI, the authors compare the
Index Terms—Computation time, computer-aided analysis, re- scale-space images produced by the two methods to determine
mote sensing, signal processing, wavelet transforms. how much error is introduced by using the less computation-
ally expensive wavelet algorithm. Sections VIl and VIII, respec-
l. INTRODUCTION tively, provide a discussion of the results and conclusions drawn

. . . _from this study.
ERIVATIVES play an important role in the analysis of 4

spectral signatures. For many years, derivative analysis
has been successfully applied to spectroscopy in analytical
chemistry. More recently, derivatives have been applied toln remotely sensed multispectral/hyperspectral signatures,
remotely sensed hyperspectral signatures. However, difféifst, second, and higher order derivatives have been used for
ences arise due to the fact that the remotely sensed dat@nglysis and recognition of vegetation, soil, minerals, etc.
not collected under controlled laboratory conditions. Viewingampbell and Esaias used second-order derivatives of remotely
geometry, illumination, atmospheric effects, and spatial resoltensed spectral signatures for estimating oceanic chlorophyll
tion are a few of the conditions that cause degradation of th@ncentrations [1]. Demetriades-Shahal. used first deriva-
remotely sensed data. One result of the degradation can bdiggs to detect the “red edge” in spectral signatures and to
additive high-frequency noise in the signature. This particularfiecorrelate soil background from vegetation spectra [2]. They
causes havoc with derivative analysis since derivatives acta§0 used second derivatives of canopy reflectance spectral
high-pass filters in the frequency domain. In order to overcongégnatures as measurements for estimating the concentration
the high-frequency noise problem, many researchers have ugédeaf chlorophyll. Blackburn also utilized derivatives of
smoothing prefilters, or other lowpass filters, before applyingmotely sensed spectra for quantification of plant chlorophyll
the derivative-based methods to the spectral signatures. Wh&ln He showed that the first and second derivatives of a
utilizing these types of methods, the widths of the derivativeseudo-absorbance spectral signature {Jof, where£ is the
window and the smoothing window are critical. Typicallyreflectance spectrum) are well correlated to the concentrations

these widths have been selected experimentally and have bekeghlorophyll a, chlorophyll b, and carotenoids at canopy and
leaf scales. Gongt al.used first derivatives of remotely sensed

hyperspectral signatures as input features for a neural network
Manuscript received June 10, 2000; revised March 15, 2001. This work wagstem [4]. The system was used to classify six conifer tree
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Philpot developed the derivative ratio algorithm (DRA) [5]Thus, it is a systematic means for analyzing the hyperspectral
DRA is a method that uses the ratio of thtéh derivative at signature with varying widths of the presmoothing filter.
a particular wavelengthy; to the nth derivative at a second Piech and Piech have utilized the scale-space image for auto-
particular wavelength. of a measured spectral signature. Heated analysis of hyperspectral signatures to determine soil
showed that under certain conditions, the above ratio is equivasisture content [7]. They have also extracted features from
lent to the ratio of thexth derivatives at the same wavelengthscale-space images to assess atmospheric absorption features
of the true reflected radiance of the target. Thus, under cert@inhyperspectral signatures [8]. Piech and Piech have also
conditions, the DRA can be used to analyze spectral signatunsed scale-space images to discriminate between terrains in
without the need for careful atmospheric correction algorithmmpographic/elevation images [9]. They used the method for
Another important utilization of spectral derivatives is for thautomated discrimination between shale and granite, as well as
deconvolution of constituent absorption/reflectance bands irbatween humid and arid shale.
spectral signature. In particular, Huguenin and Jones showed'sai and Philpot explored the use of several algorithms for
that if the second derivative were less than zero, if the fourimoothing hyperspectral signatures and calculating their deriva-
derivative were greater than zero, and if the fifth derivativiives: 1) Savitzky—Golay smoothing and derivative method; 2)
were equal to zero for a particular wavelength, then the Kawata—Minami's linear least mean square smoothing with
spectral signature contained a constituent reflectance bdimite approximation of derivative; and 3) mean filter smoothing
centered at\, [6]. They used a smoothing prefilter to reducawith finite approximation of derivative [10]. They examined the
high frequency noise. effects of changing the width of the smoothing operation and
Consider the first derivative of a hyperspectral signafifre  the tradeoff between noise removal and ability to resolve fine
spectral details. They discussed three effects of increasing the
df  fO) = fO0)  fO) — fON) smqothing width: the magnitude of the .spectral Qeta}ils in the
I = AN . (1) derivative spectra decrease, the details in the derivative spectra
2 1 . . . .
are displaced from the location of the corresponding feature in

The termA )\ is referred to as the derivative window. In the applithe signature, and the range over which the derivatives can be
cations of derivative analysis described above, the width of tRemputed is decreased due to the proximity of the endpoints
derivative window must be determined and can greatly affect tA& the finite length signature. Their conclusion was that the
results. By increasing the derivative window, the effects of higiinoothing width should be as large as possible but remain less
frequency components in the signal are decreased. A similari&@n the width of the spectral feature of interest. They utilized
fect is achieved by applying a lowpass prefilter, typically an afhe second, fourth, and fifth derivatives to locate constituent
eraging or smoothing prefilter, followed by the derivative anaPand centers in the smoothed spectra. They stated that a key
ysis. However, the challenge is to appropriately select the widgsue of the method is to allow users to adapt the smoothing
of the derivative window and/or the width of the smoothing previdth to match the scale of the spectral features of interest.
filter. Furthermore, they provided suggestions for future work: 1)
In Huguenin and Jones’s work in hyperspectral signature u#evelop procedures for selecting appropriate width smoothing
mixing, they used a smoothing prefilter to reduce the effects pfefilters; 2) formalize and extend the spectral decomposition
high frequency noise [6]. They determined the width of theprocedure for more general applications; and 3) improve
smoothing prefilter by optimizing the tradeoff between noisée algorithms to speed up computation for handling large
and signal attenuation. However, their approach required an eBiiperspectral images. Scale-space images can accomplish sug-
mate or prediction of the full-width-half-maximums of the congestions 1) and 2) but not suggestion 3). In this paper, however,
stituent reflectance bands contained in the hyperspectral sigte authors show how wavelet transform algorithms can be
ture. In Demetriades-Shadt al’s use of derivatives to detectused to compute scale-space images in a cost-efficient manner,
the red edge and to decorrelate soil background from vegetatibHs demonstrating how wavelet algorithms can accomplish all
spectra, they used the Savitsky—Golay method for determinitijee suggestions.
the derivative spectra [2]. They experimentally determined the
width of the smoothing operation by maximizing the SNR of the [Il. SCALE-SPACE IMAGES
smoothed signature. However, their approach required an esti- . . . .
mate for the signal and the noise components of the signature-.rhe cpmputz_mon of a scale-§pa_ce Image requires multiple
C QvquUons with Gaussian derivative filters [11]. This can be

They estimated the signal component as the mean of 40 scans. , .
They estimated the noise component as the difference betwé%%resented mathematically by lettifigh) denote a hyperspec-

: ) A )
the signature being analyzed and the estimate of the signal C%%uzggitﬁﬂirwsﬁ '; (tg)nOcljaerr&oéiv?aggsr;d(e)rlvatlve Zero-mean

ponent.
Piech and Piech have conducted extensive investigations ) Y 5 s
into the use of scale-space images for analyzing hyperspectral G,(A) = NG exp(—A"/207) 2

signatures [7]-[9]. Scale-space images are produced by con-
volving the hyperspectral signature with Gaussian derivatiggd the convolution
filters, which have been scaled, or stretched, to have increasing
variances. The Gaussian function smooths the signature and
the derivative operator computes the derivative of the signature.

Fv o) = (Fx 6w = [ T H0 - DG d @)
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Fig. 1. (a) Example hyperspectral signature, (b) scale-space image using first-derivative Gaussian filter, and (c) spectral fingerprint.

produces the smoothing ¢f A). Smoothing progressesasn- where f(\) is the hyperspectral signaturejs the scale, and
creases. The symbel is called the scale, anH(\, o) is the <;(A) is the scaled or dilated wavelet function. It is easy to
scale-space image. Typically, when using scale-space images that if the wavelet function is the first-derivative Gaussian
a spectral feature refers to a hill or valley contained betwe&mction, this equation is identical to the traditional scale-space
two adjacent inflection points. A scale-space contour refersitnage implementation described above. When the mother
an image of the inflection points of the filtered curve for varyingvavelet (scales = 1) has a variance af?, the scale factos is
scales. As the scale increases, the number of inflection poiatmivalent to the standard deviation of the Gaussian function.
decreases. As a result, contours usually appear as an assemiage that certain mathematical restrictions apply to the choice
of closed arches, each corresponding to a spectral feature ofdghethe wavelet function, and the first-derivative Gaussian
curve [7], [12]. When this technique is applied to a hyperspefinction satisfies those restrictions [14].
tral curve, the characteristic shape of the contours leads to thé&ast algorithms can be used for the computation of the
nickname of “spectral fingerprint.” The exact locations of thevavelet transform in order to avoid the computational expense
arch closures and the rate at which they close can provide iof-direct convolution. One such algorithm is described by Mallat
portant information about the spectral features. and Zhong [13]. It can be used for computing a discrete wavelet
In order to locate the inflection points, it is typical to use firsttransform which utilizes dyadic scales, i.e.= 27, Vj € L
derivative or second-derivative of Gaussian filters. This sterf®r this algorithm, the wavelet function is characterized by two
from the fact that when one convolves a first-derivative Gaussidiscrete filters: a lowpass filtell and a highpass filtefz. The
filter with a hyperspectral signature, inflection points will pronotation H; and GG; denote the upsampling of filterd and
duce extrema in the output curve (or spectral fingerprint). The by the factor of2’. The following algorithm computes the
extrema are tracked across the varying scales, and a plot ofdiserete wavelet transfornty,;+: f(\), at scales = 2/+! of
extrema forms the spectral fingerpriﬁt()\, o). If a second- the input signaturg’(A):
derivative Gaussian filter is used, the inflection points will pro-

duce zero-crossings in the output curve. Either way, the resulting Jj=0
spectral fingerprints are theoretically identical. Fig. 1 provides Soi f(A) = f(X)
a typical hyperspectral signature, its corresponding scale-space while (j < J)
image, when using first derivative Gaussian filters, and the cor- 1
responding spectral fingerprint. Warn f(X) = o “ 525 f(A) * G
Sait1 f(A) = Sai f(A) * H;
IV. WAVELET-BASED ALGORITHMS j=4j4+1
The scale-space image can be easily computed using wavelet end of while.

transforms [12]-[14]. The continuous wavelet transform can be

, . o The computation of the wavelet transform is an iterative
defined as the following convolution:

process, where the input signature is decomposed into approxi-

mation and detail signals. At each iteration, the approximation
_ _ 1 A is then further decomposed into coarser approximation and

Waf(A) = f) 5 9s(A) = fF(A) = §¢ <§> ) detail signals. For example, at each scafe the current
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TABLE | and
FINITE IMULSE RESPONSE OF THEFILTERS H AND GG FOR USE IN THE ) )
MALLAT /ZHONG WAVELET ALGORITHM — Wai f(A), WhereW”f()\.N
Waf(A) = is a local maxima  (8)
n | H@ | G() 0, otherwise.
1170025
010375} 20 Note that the wavelet mod-max representation is a more
L] 0375 ) 20 generalized signal decomposition than the spectral fingerprint.
2 012 However, by choosing the wavelet decomposition’s lowpass

and highpass filters{ andG) appropriately, the two represen-
TABLE I tations are virtually the same. The only difference, theoretically,
NORMALIZATION COEFFICIENTS TOCOMPENSATE FORDISCRETIZATION EFFECT iS that the Wavelet mod—max representation takes into account
IN THE MALLAT /ZHONG WAVELET ALGORITHM
only those scales that are a power of 2, where the spectral

Z a(j) fingerprint is typically computed over a continuum of scales.
s This point is discussed in more detail later in the paper.

2] L2

i_ 1‘2? V. COMPUTATIONAL EXPENSEANALYSIS

5 100 The “traditional” means of computing the scale-space image,

via convolution with Gaussian derivative filters as in (3) is com-
L . . . putationally expensive when compared to the Mallat—Zhong al-
approxmatlon S|gnal_5‘2jf_()\) IS decomposed into the ne_thorithm for computing the wavelet mod-max representation.
higher scale approximation signdl,;.. f(1) and a detail ¢ computational costs of these two methods were analyzed

signal WQjaff (A)- Due_ t:‘)l d|§cret|ze_1t|on, tr;]e waygletl extrem%nd compared in two manners: 1) analytical assessment and 2)
corresponding to an inflection point in the original spectr xperimental benchmarking.

curve do not have the same amplitude at all scales as they

should in the continuous model. The coefficient compen- A Analytical Assessment
sates for this discrete effect and corresponds to the choice of . . :
filters H andG. The filtersH andG are lowpass and highpass The traditional method of computing a scale-space image re-
filters. They can be appropriately selected such that the deﬁﬂ'res mult|ple convolutions with (_j||ated, or sca_lled, Gaussian
signals correspond to the output of equation (3). For s2ale liters. That is, at each scalé a direct convplut|on must be
Was f(A) ~ F(\, o = s). That is, each iteration of the algo_performed. LetNV be the number of bands in the hyperspec-

rithm produces a dyadic level of the scale-space image. Tabféa\l sig.natl%l'rle and bhe t?e Iengtlh ththe origiqal first-dgrivgzgle
provides the finite impulse response of filtefs and G such Gaussian filter. At the first scale, the operations required’are

that the wavelet decomposition is equivalent to a scale-sp gltlphes per band of the spectral curve e 1 additions per

image, and Table Il provides the normalization coefficienfs and o::éhe_s;)Lectril curve._Therefore,bfor th? first anle,ba an'
that are used to compensate for the discretization effect [13]_5tant ort = — 1 operations must be performed per band.

Just as the scale-space image can be used to produce asp%ﬁﬂmhsﬁale' tr:]e fﬁlthersGare d|]atef<_j| by Lhe scr:ggng fasmltro-.
fingerprint, so can a wavelet decomposition. In fact, in wavel us, the length of the Gaussian filter beconas At scales,

terminology the spectral fingerprint could be referred to as'ge r;umber (I)f operatli)ns _?_ﬁr bar::més _I L WTJ'Ch bfecome§
special case of the wavelet modulus-maximus (mod-max) r%L—S or very large scales. Thus, the total number of operations

resentation. Let the wavelet decomposition of a hyperspect Ul scale 'Q{;SN -Fora dtotaldoﬁ’ scales ' th? numbgr of gper—
signature be denoted as the following sequence of signals; 210NS Must be summed, and the number of operations becomes

{Sas f(N), (Was f(A\)1<j<r} (®) 2L§P:Ns. 9)
s=1

including a final approximation signal at scatéand detail sig-

nals from scale 1 t@”. The wavelet mod-max representation iShe term27, is a constant that is dependent on the type of
then obtained by detecting the local extrema of the wavelet qgassian filter selected and not dependent on the length of the
composition at each scale. The values of the wavelet decomﬁ?perspectral signature being analyzed. Thus, the order of com-

sition are then set to zero if the locations do not coincide wifhexity for direct convolution can be simplified to the following:
local extrema. Thus, the mod-max representation is defined as

P
{50t (Wi f) iy } () 04=0 <Z Ns) (10)
s=1
where
where/N is the number of bands in the original spectral curve,
Sys f(A), where|Sys f(N)] andP is the total number of scales utilized.
Soa f(A) = is a local maxima @) For a standard continuous wavelet transform (CWT) without
0 otherwise the use of fast algorithms, the order of complexity is the same

7
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as for the traditional method of direct convolution. That is, the TABLE Il
order of complexity for the CWT is the following: EXPERIMENTAL BENCHMARKING RESULTS
"Traditional™ method Wavelet-based method
OCVVT = Od- (11) 386,325 adds | 390.144 muls 10,901 adds 18,766 muls
This stems from the discussion in Section IV about the similg™ ™ss20cso | 60 46.59 ms 1.78 ms
ities between the direct convolution and the continuous wave—sswm; -~
transform. Pentium IT instructions 233 ms 0.09 ms

Multiple convolutions are also required for the Mallat/Zhong
algorithm for computing the wavelet mod-max representation. .
At each scale, a direct convolution must be performed to 00|1r:1Qr each ofthe _four dat_a cubes, 25 S|gnatu_res were ra_mdomly S€-
pute the detail signdl,;+:. f(\) and a direct convolution must Iect_ed, and thelr co_ordlnates were determl_ned_ by.usmg the fol-
be performed to compute the approximation sighiak: f( ). lowing two-dimensional (2-D) uniform distribution:

Let the length of the original spectral curve bg the length )

the original highpass filte€¥ be L, and the length of the orig- Wz, y) = { 1/320°%, for0 <z, y <320 (14)

inal lowpass filterH be M. At the first scale, the operations 0 otherwise.

required arel. + M multiplies per band of the spectral curv . .
and(L — 1)+ (M — 1) additions per band of the spectral curvee-.rhes.e signatures have a. length /6t = 2180' The f°"9W'T‘9
Therefore, for the first scale, a constant@f= 2L + 2M — 2 dyad|c_ sca_les were uses: = 1, 2, 4, 2 - First derlvatlvc_a
operations must be performed per band. At each scake fil- Gaussian filters were used, and the original length of the filters
ters are upsampled by a factorast This introduce2® —1 zeros wereL, = 2 andM = 4.

between each sample of the filters. Theoretically, this would i%— For .the dtre.\dlttl_onafllltmetht(;d tOft :j|rect bconvfo Iuélg_r; with
crease the lengths of the filtefsand M to Ls and A s. How- aussian derivative Titers, the total number of addition op-

ever, the algorithm can be implemented in an intelligent way ggtatllons Eer sflgnal'iyrle was ?pprommaFer t386 325’33?1;263
to avoid the multiplies and additions with the zero-samples jpral number of mulliply operations per signature was '

the filters. For example, when implementing this algorithm on imilarly, for the Mallat/Zhong algorithm, there were approxi-

DSP chip, one would use an indirect addressing mode inde){gately_atotal of 10 901 addition operqtions_and 18 776.multiply
by the amount of upsampling at each scale. In this way, the ord rations per s_lgnature. For a practical view of Fhe difference
of complexity is independent of the scale. Thus for each scalk ,the computational expense between th? trad!t|onal method
the order of complexity iSCV), or O(). That s, the order of and the Mallat/Zhong wavelet method, typical microprocessor

complexity is constant across scales. Once this is summed qgf,ps were chosen to evaluate the computational efficiency

all scales being utilized, the order of complexity becomes t sed on the c_rlte_na of time COStS.' For a Texas In_strumgnts
following: S320C30 chip, it takes 60 ns to implement a floating-point

addition or a floating-point multiply. For a 333 MHz Pentium

P II chip, it takes 3 ns to finish a floating-point addition or a

Oz = O <Z N) = O(NP). (12) floating-point multiply. Table IIl shows experimental results
=1 of the computational expense and illustrates the contrast of

the computational efficiency. Note that for the TMS320C30
Since this method uses dyadic scales, the total number of wiocessor, many features related to the DSP chip were not
lized scales if” = log, N. As a result, the total order of com-used, such as direct memory access and parallel multiply-add

7

plexity is instructions. These types of operations could greatly further
reduce the time requirements.
OJWZ = O(N 10g2 N) (13)
whereN is the total number of bands in the hyperspectral sig- VI. OUTPUT COMPARISONANALYSIS
nature. The outputs of the two methods, traditional direct convolu-

tion with Gaussian derivative filters and the Mallat/Zhong algo-
rithm were compared to determine if any differences existed in
The experimental assessment of the computational expetisescalar decompositions. The measurements used to compare
of the two methods was completed by computing the numbertbk two methods’ outputs included normalized cross correlation
floating-point operations during the computation of the scaland normalized Euclidean distance measures. The comparison
decompositions, i.e., scale-space images or wavelet mod-mias performed at each level or scale of the decompositions. The
representations. The assessment was conducted using hypamparison analysis was not conducted on the actual spectral
spectral digital image collection experiment (HYDICE) signafingerprint or mod-max representation. In order to create a spec-
tures. The authors constructed a database of 100 hyperspettahfingerprint from the scalar decompositions, the extrema (or
signatures. The signatures were extracted from a set of four H¥ro-crossings) of the image must be tracked across the varying
DICE data cubes. Each data cube was of the size (320 pixadsples. The technique used to go from the scalar decomposition
x (320 pixels)x (210 spectral channels). The four HYDICEto the spectral fingerprint is the same regardless of the method
data cubes included a mixture of vegetative and urban scenesed to obtain the scalar decomposition. Furthermore, in the

B. Experimental Benchmarking
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spectral fingerprints and wavelet mod-max representations, only TABLE IV
the extrema (or zero-crossings) are retained, i.e., the fingerprint ~ ERRORANALYSIS RESULTS FOR1I0 FNDOWLY: SELECTED
is simply a plot of the extrema (or zero-crossing) locations. If

the comparison were made between the spectral fingerprint ar o2, (x107) o2 (x107)
the wavelet mod-max representation, errors in locations that di _Scale Heorr Hue e
not correspond to extrema (or zero-crossings) would notbe ar 1 1.0000 0.0000 0.0000 0.0000
counted for. Thus, comparing the outputs of the two method ™ 2 0.9966 0.0061 0.0263 0.5183
before converting them to spectral fingerprints results in a mor—3 0.9936 0.0002 0.0120 0.0546
conservative r_neasurement of th(_a errors. _ _ 7} 09955 00053 00153 50636
The normalized cross correlation and normalized Euclideal
distance at each scale is defined as 3 0.9984 0.0013 0.0111 0.0259
6 0.9984 0.0021 0.0081 0.0206
SO\ = 1 7 0.9945 0.0080 0.0154 0.0198
\/Z TR Z WO 8 0.9641 0.2088 0.0382 0.0438
N N Average | 0.9935 0.0286 0.0157 0.0997
> TEW(r +X) (15)
r=—00 was by a factor of about 30. In this study, the number of
and sampling points of each hyperspectral signature was 210, since
Z T — W2 HYDICE data was used. When using dyadig.scales for the
S wavelet-based method, the total number of utilized scales was
Eucl = (16) eight. If the signatures were longer (more spectral bands), the

in signature length and number of scales, the computational
efficiency gained from using the wavelet-based algorithms

. . . L would also increase.
respectively, wherd’(A) is the traditional Gaussian filtered ™ ¢ th ditional and the Mallat/zh |
signal andW()\) is the result of the MallatZhong wavelet | "€ Outputs of the traditional and the Mallat/Zhong wavelet-

algorithm. Note that if the two signals are identical except fcprased ”_‘ethOdS were compared to ensure that the_ fast’ glgo-
a linear shift byr samples/’(\) = W(A + 1), theng(r) = 1 rithms did not cause any major errors in the spectral fingerprints.

At each scale, the entire cross correlation is computed, alﬁr m this, we see that the average scalar normalized cross cor-
the maximum value and its shiftis recorded. The Euclidean© ation was 0.9935, and the average normalized Euclidean dis-

distance is also measured for each scale. Furthermore, ifqgce was 0.0157. While rqutwer little error was induced by
computed for various linear shifts iW. Thus, it is similar using the Mallat/Zhong algorithm, the computational expense

to the normalized cross correlation, except that the Euclide9RS greatly reduced.

distance is minimized to zero when the two methods produce©One shortcoming of the Mallat/Zhong wavelet algorithm,
identical results. however, is that it does not utilize a continuum of scales.
The database of 100 HYDICE signatures, as described!fh fact, it utilizes dyadic scales, i.es = 2’. Traditional
Section V-B, was used for the output comparison analysis. TRéthods do have the advantage that any rational scale may
normalized cross-correlation and the normalized EuclideR& analyzed and included in the scale-space image or spectral
distance were applied to the scalar decompositions resultfiiggerprint. The usefulness of nondyadic scales to remote
from all 100 hyperspectral signatures. For each error meas@nsing applications, such as automated signature anomaly
the meary and variances2 of the 100 errors were computed detection or signature classification, is unclear. However, other
The resulting means and variances are listed in Table IV, whé¥avelet-based algorithms do exist where nondyadic scales
ficor and o2, .. refer to the normalized cross correlatiorf@n be utilized. For example, Unser al. have developed an
mean and variance, respectively. Likewigeg,. and o2, algorithm for computing wavelet decompositions over integer

refer to the normalized Euclidean distance mean and variangg2les [15]. Their algorithm has been shown to have a order
respectively. of complexity of O(N) per scale, similar to the Mallat/Zhong

algorithm [15], [16]. Their algorithm requires that the wavelet
function, (1), be represented as a polynomial spline function.
However, spline functions could easily be used to approximate
From the experimental assessment of the two methodsthie Gaussian derivative filters. This is just one alternative to
was clear that the computational expense of the Mallat/Zhotige Mallat/Zhong algorithm if the need arises to use nondyadic
wavelet algorithm was much less than that of the traditionstales.
direct convolution with Gaussian derivative filters. Utilizing It should be noted that by using wavelet-based algorithms,
the Mallat/Zhong wavelet-based method, the computatiormie gains the mathematical tractability that is one of the
expense was reduced by a factor of about 26. This coincidgidengths of wavelet methods. Moreover, the use of wavelets for
with the result of the analytical assessment, where the reductammalyzing and processing hyperspectral data provides access to

\/Z |T()\)|QZ W ()2 number of utilized scales would increase. With an increase
A A
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many existing methods for signal denoising, estimation, and[4] P.Gong, R. Pu, and B. Yu, “Conifer species recognition: An exploratory

compression [14], which are all highly applicable to hyper- analysis ofin situ hyperspectral dataRemote Sens. Envirgrvol. 62,
pp. 189-200, Nov. 1997.

spectral (:!atg processing. Th_e following is one example of the[5] W. D. Philpot, “The derivative ratio algorithm: Avoiding atmospheric
use of existing knowledge with regards to wavelet transforms effects in remote sensinglEEE Trans. Geosci. Remote Sensiug|.
for analyzing hyperspectral data. When using the smoothing[e] 29, pp. 350-357, May 1991.

foll d bv derivati Vsi fh tral si t R. L. Huguenin and J. L. Jones, “Intelligent information extraction from
ollowe y derivatve analysis or hyperspectral signatures, reflectance spectra: Absorption band positiods,Geophys. Resvol.

one important question is “How much smoothing can be 19, no. B9, pp. 9585-9598, Aug. 1986.

data,” Appl. Opt, vol. 26, no. 18, pp. 4018-4026, Sept. 1987.

Signature?” The_ answer to this questipn erends on the type 0[%] ——, “Hyperspectral interactions: Invariance and scaliniggpl. Opt,
hyperspectral signature and the application at hand. However,  vol. 28, no. 3, pp. 481-489, Feb. 1989.
Bruce showed that with the use of the wavelet mod-max[® —— “Fingerprints and fractal terrain,Math. Geol, vol. 22, pp.

. di | h hich | 457-485, May 1990.
representation, one can predict exactly when (at which scale)@y; £ Tsai and W. Philpot, “Derivative analysis of hyperspectral ddta;”

spectral feature will disappear given the width of the spectral =~ mote Sens. Enviroyvol. 66, pp. 41-51, Oct. 1998.
feature in the original Signature is known [12]_ This is just onellll A. Witkin, “Scale space filtering,” inProc. Int. Joint Conf. Artificial

e . Intelligence 1983, pp. 1019-1022.
example of how the existing knowledge base regarding WaveIEfIZ] L. M. Bruce, “Isolation criteria for the wavelet transform mod-max

transforms can be easily applied to hyperspectral imaging. method,”IEEE Trans. Circuits Syst. Iivol. 45, pp. 1084-1087, Aug.
1998.
[13] S. Mallat and S. Zhong, “Characterization of signals from multiscale
VIIl. CONCLUSIONS edges,”IEEE Trans. Patt. Anal. Machine Intellvol. 14, pp. 710-732,

. . July 1992.
The results of this study indicate that a wavelet-based methgga; s. mallat,A Wavelet Tour of Signal ProcessingNew York: Academic,

is feasible and practical for derivative analysis of hyperspectral  1998. ' o ' '
signatures, specifically for computing scale-space images arfl I Uheer A Ao, 200 ., Seni Fas emenatr of e
spectral fingerprints. Furthermore, the results indicate that  processingvol. 42, pp. 3519-3523, Dec. 1994

wavelet-based methods can be computationally efficient aig6] L. M. Bruce and J. Li, “Fast wavelet-based algorithms for multireso-
compared o traditional methods of smoothing followed by -~ 1%, Seeeposton and ety exseter o perspectal s
derivative analysis, including Gaussian derivative filtering

methods. The use of the Mallat/Zhong wavelet algorithm along

with the computation of the mod-max representation offers a

generalized method where hyperspectral signatures may
analyzed across many scales, i.e., smoothing prefilter widtl
in a computationally efficient manner. Once a scale-spa
image or spectral fingerprint is produced, the appropriate sci
(or combination of scales) may be more easily identifiabl:
and its selection may be automated. Thus, the wavelet-ba
method accomplishes three goals that have been set fort from 1996 to 2000, she was an Assistant Professor
hyperspectral derivative analysis: 1) develop procedures in the Electrical and Computer Engineering Depart-
selecting appropriate width smoothing prefilters; 2) formalizaent, Howard R. Hughes College of Engineering, University of Nevada, Las

L Vegas. Currently, she is an Assistant Professor in the Department of Electrical
and extend the SpECtral decomposmon procedure for m%ﬁ% Computer Engineering, Mississippi State University, Mississippi State. Her

general applications; and 3) improve the algorithms to speedearch interests include wavelet transforms and automated pattern recognition

up computation for handling large hyperspectral images.  in hyperspectral remote sensing and mammography. _
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