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Abstract—Smoothing followed by a derivative operation is
often used in the analysis of hyperspectral signatures. The width
of the smoothing and/or derivative operator can greatly affect
the utility of the method. If one is unsure of the appropriate
width or would like to conduct analysis for several widths,
scale-space images can be used. This paper shows how the wavelet
transform modulus-maxima method can be used to formalize
and generalize the smoothing followed by derivative analysis
and how the wavelet transform can be used to greatly decrease
computational costs of the analysis. The Mallat/Zhong wavelet
algorithm is compared to the traditional method, convolution with
Gaussian derivative filters, for computing scale-space images.
Both methods are compared on two points: 1) computational
expense and 2) resulting scalar decompositions. The results show
that the wavelet algorithm can greatly reduce the computational
expense while practically no differences exist in the subsequent
scalar decompositions. The analysis is conducted on a database
of hyperspectral signatures, namely, hyperspectral digital image
collection experiment (HYDICE) signatures. The reduction in
computational expense is by a factor of about 30, and the average
Euclidean distance between resulting scale-space images is on the
order of 0.02.

Index Terms—Computation time, computer-aided analysis, re-
mote sensing, signal processing, wavelet transforms.

I. INTRODUCTION

DERIVATIVES play an important role in the analysis of
spectral signatures. For many years, derivative analysis

has been successfully applied to spectroscopy in analytical
chemistry. More recently, derivatives have been applied to
remotely sensed hyperspectral signatures. However, differ-
ences arise due to the fact that the remotely sensed data is
not collected under controlled laboratory conditions. Viewing
geometry, illumination, atmospheric effects, and spatial resolu-
tion are a few of the conditions that cause degradation of the
remotely sensed data. One result of the degradation can be an
additive high-frequency noise in the signature. This particularly
causes havoc with derivative analysis since derivatives act as
high-pass filters in the frequency domain. In order to overcome
the high-frequency noise problem, many researchers have used
smoothing prefilters, or other lowpass filters, before applying
the derivative-based methods to the spectral signatures. When
utilizing these types of methods, the widths of the derivative
window and the smoothing window are critical. Typically,
these widths have been selected experimentally and have been
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application dependent. If one is unsure of the appropriate
choice of window width or would like to conduct analysis for
several window widths, a tool known as scale-space imaging
can be used. Scale-space imaging is intimately related to
wavelet transforms. This paper shows how the wavelet trans-
form modulus-maxima method can be used to formalize and
generalize the smoothing followed by derivative analysis and
how the wavelet transform can be used to greatly decrease
computational costs of said analysis.

Section II describes the use of derivative-based analysis in
hyperspectral data. Section III describes the scale-space image
and spectral fingerprint and how they are traditionally imple-
mented. In Section IV, the authors describe the corresponding
wavelet decomposition and the modulus-maxima representation
and how the Mallat/Zhong algorithm can be used as an efficient
implementation. Section V compares the traditional implemen-
tation of the scale-space image and the Mallat/Zhong wavelet
algorithm in terms of their orders of complexity and experi-
mental benchmarking. In Section VI, the authors compare the
scale-space images produced by the two methods to determine
how much error is introduced by using the less computation-
ally expensive wavelet algorithm. Sections VII and VIII, respec-
tively, provide a discussion of the results and conclusions drawn
from this study.

II. DERIVATIVE-BASED ANALYSIS

In remotely sensed multispectral/hyperspectral signatures,
first, second, and higher order derivatives have been used for
analysis and recognition of vegetation, soil, minerals, etc.
Campbell and Esaias used second-order derivatives of remotely
sensed spectral signatures for estimating oceanic chlorophyll
concentrations [1]. Demetriades-Shahet al. used first deriva-
tives to detect the “red edge” in spectral signatures and to
decorrelate soil background from vegetation spectra [2]. They
also used second derivatives of canopy reflectance spectral
signatures as measurements for estimating the concentration
of leaf chlorophyll. Blackburn also utilized derivatives of
remotely sensed spectra for quantification of plant chlorophyll
[3]. He showed that the first and second derivatives of a
pseudo-absorbance spectral signature (log, where is the
reflectance spectrum) are well correlated to the concentrations
of chlorophyll a, chlorophyll b, and carotenoids at canopy and
leaf scales. Gonget al.used first derivatives of remotely sensed
hyperspectral signatures as input features for a neural network
system [4]. The system was used to classify six conifer tree
species.

Derivatives of spectral signatures have also been used in
methods that are less application dependent. For example,
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Philpot developed the derivative ratio algorithm (DRA) [5].
DRA is a method that uses the ratio of theth derivative at
a particular wavelength to the th derivative at a second
particular wavelength of a measured spectral signature. He
showed that under certain conditions, the above ratio is equiva-
lent to the ratio of the th derivatives at the same wavelengths
of the true reflected radiance of the target. Thus, under certain
conditions, the DRA can be used to analyze spectral signatures
without the need for careful atmospheric correction algorithms.
Another important utilization of spectral derivatives is for the
deconvolution of constituent absorption/reflectance bands in a
spectral signature. In particular, Huguenin and Jones showed
that if the second derivative were less than zero, if the fourth
derivative were greater than zero, and if the fifth derivative
were equal to zero for a particular wavelength, then the
spectral signature contained a constituent reflectance band
centered at [6]. They used a smoothing prefilter to reduce
high frequency noise.

Consider the first derivative of a hyperspectral signature

(1)

The term is referred to as the derivative window. In the appli-
cations of derivative analysis described above, the width of the
derivative window must be determined and can greatly affect the
results. By increasing the derivative window, the effects of high
frequency components in the signal are decreased. A similar ef-
fect is achieved by applying a lowpass prefilter, typically an av-
eraging or smoothing prefilter, followed by the derivative anal-
ysis. However, the challenge is to appropriately select the width
of the derivative window and/or the width of the smoothing pre-
filter.

In Huguenin and Jones’s work in hyperspectral signature un-
mixing, they used a smoothing prefilter to reduce the effects of
high frequency noise [6]. They determined the width of their
smoothing prefilter by optimizing the tradeoff between noise
and signal attenuation. However, their approach required an esti-
mate or prediction of the full-width-half-maximums of the con-
stituent reflectance bands contained in the hyperspectral signa-
ture. In Demetriades-Shahet al.’s use of derivatives to detect
the red edge and to decorrelate soil background from vegetation
spectra, they used the Savitsky–Golay method for determining
the derivative spectra [2]. They experimentally determined the
width of the smoothing operation by maximizing the SNR of the
smoothed signature. However, their approach required an esti-
mate for the signal and the noise components of the signature.
They estimated the signal component as the mean of 40 scans.
They estimated the noise component as the difference between
the signature being analyzed and the estimate of the signal com-
ponent.

Piech and Piech have conducted extensive investigations
into the use of scale-space images for analyzing hyperspectral
signatures [7]–[9]. Scale-space images are produced by con-
volving the hyperspectral signature with Gaussian derivative
filters, which have been scaled, or stretched, to have increasing
variances. The Gaussian function smooths the signature and
the derivative operator computes the derivative of the signature.

Thus, it is a systematic means for analyzing the hyperspectral
signature with varying widths of the presmoothing filter.
Piech and Piech have utilized the scale-space image for auto-
mated analysis of hyperspectral signatures to determine soil
moisture content [7]. They have also extracted features from
scale-space images to assess atmospheric absorption features
in hyperspectral signatures [8]. Piech and Piech have also
used scale-space images to discriminate between terrains in
topographic/elevation images [9]. They used the method for
automated discrimination between shale and granite, as well as
between humid and arid shale.

Tsai and Philpot explored the use of several algorithms for
smoothing hyperspectral signatures and calculating their deriva-
tives: 1) Savitzky–Golay smoothing and derivative method; 2)
Kawata–Minami’s linear least mean square smoothing with
finite approximation of derivative; and 3) mean filter smoothing
with finite approximation of derivative [10]. They examined the
effects of changing the width of the smoothing operation and
the tradeoff between noise removal and ability to resolve fine
spectral details. They discussed three effects of increasing the
smoothing width: the magnitude of the spectral details in the
derivative spectra decrease, the details in the derivative spectra
are displaced from the location of the corresponding feature in
the signature, and the range over which the derivatives can be
computed is decreased due to the proximity of the endpoints
of the finite length signature. Their conclusion was that the
smoothing width should be as large as possible but remain less
than the width of the spectral feature of interest. They utilized
the second, fourth, and fifth derivatives to locate constituent
band centers in the smoothed spectra. They stated that a key
issue of the method is to allow users to adapt the smoothing
width to match the scale of the spectral features of interest.
Furthermore, they provided suggestions for future work: 1)
develop procedures for selecting appropriate width smoothing
prefilters; 2) formalize and extend the spectral decomposition
procedure for more general applications; and 3) improve
the algorithms to speed up computation for handling large
hyperspectral images. Scale-space images can accomplish sug-
gestions 1) and 2) but not suggestion 3). In this paper, however,
the authors show how wavelet transform algorithms can be
used to compute scale-space images in a cost-efficient manner,
thus demonstrating how wavelet algorithms can accomplish all
three suggestions.

III. SCALE-SPACE IMAGES

The computation of a scale-space image requires multiple
convolutions with Gaussian derivative filters [11]. This can be
represented mathematically by letting denote a hyperspec-
tral signature and denote a first-derivative zero-mean
Gaussian filter with standard deviation

(2)

and the convolution

(3)
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Fig. 1. (a) Example hyperspectral signature, (b) scale-space image using first-derivative Gaussian filter, and (c) spectral fingerprint.

produces the smoothing of . Smoothing progresses asin-
creases. The symbol is called the scale, and is the
scale-space image. Typically, when using scale-space images,
a spectral feature refers to a hill or valley contained between
two adjacent inflection points. A scale-space contour refers to
an image of the inflection points of the filtered curve for varying
scales. As the scale increases, the number of inflection points
decreases. As a result, contours usually appear as an assemblage
of closed arches, each corresponding to a spectral feature of the
curve [7], [12]. When this technique is applied to a hyperspec-
tral curve, the characteristic shape of the contours leads to the
nickname of “spectral fingerprint.” The exact locations of the
arch closures and the rate at which they close can provide im-
portant information about the spectral features.

In order to locate the inflection points, it is typical to use first-
derivative or second-derivative of Gaussian filters. This stems
from the fact that when one convolves a first-derivative Gaussian
filter with a hyperspectral signature, inflection points will pro-
duce extrema in the output curve (or spectral fingerprint). The
extrema are tracked across the varying scales, and a plot of the
extrema forms the spectral fingerprint . If a second-
derivative Gaussian filter is used, the inflection points will pro-
duce zero-crossings in the output curve. Either way, the resulting
spectral fingerprints are theoretically identical. Fig. 1 provides
a typical hyperspectral signature, its corresponding scale-space
image, when using first derivative Gaussian filters, and the cor-
responding spectral fingerprint.

IV. WAVELET-BASED ALGORITHMS

The scale-space image can be easily computed using wavelet
transforms [12]–[14]. The continuous wavelet transform can be
defined as the following convolution:

(4)

where is the hyperspectral signature,is the scale, and
is the scaled or dilated wavelet function. It is easy to

see that if the wavelet function is the first-derivative Gaussian
function, this equation is identical to the traditional scale-space
image implementation described above. When the mother
wavelet (scale ) has a variance of , the scale factor is
equivalent to the standard deviation of the Gaussian function.
Note that certain mathematical restrictions apply to the choice
of the wavelet function, and the first-derivative Gaussian
function satisfies those restrictions [14].

Fast algorithms can be used for the computation of the
wavelet transform in order to avoid the computational expense
of direct convolution. One such algorithm is described by Mallat
and Zhong [13]. It can be used for computing a discrete wavelet
transform which utilizes dyadic scales, i.e., .
For this algorithm, the wavelet function is characterized by two
discrete filters: a lowpass filter and a highpass filter . The
notation and denote the upsampling of filters and

by the factor of . The following algorithm computes the
discrete wavelet transform, , at scale of
the input signature :

while

end of while.

The computation of the wavelet transform is an iterative
process, where the input signature is decomposed into approxi-
mation and detail signals. At each iteration, the approximation
is then further decomposed into coarser approximation and
detail signals. For example, at each scale, the current
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TABLE I
FINITE IMULSE RESPONSE OF THEFILTERSH AND G FOR USE IN THE

MALLAT /ZHONG WAVELET ALGORITHM

TABLE II
NORMALIZATION COEFFICIENTS TOCOMPENSATE FORDISCRETIZATION EFFECT

IN THE MALLAT /ZHONG WAVELET ALGORITHM

approximation signal is decomposed into the next
higher scale approximation signal and a detail
signal . Due to discretization, the wavelet extrema
corresponding to an inflection point in the original spectral
curve do not have the same amplitude at all scales as they
should in the continuous model. The coefficient compen-
sates for this discrete effect and corresponds to the choice of
filters and . The filters and are lowpass and highpass
filters. They can be appropriately selected such that the detail
signals correspond to the output of equation (3). For scale,

. That is, each iteration of the algo-
rithm produces a dyadic level of the scale-space image. Table I
provides the finite impulse response of filters and such
that the wavelet decomposition is equivalent to a scale-space
image, and Table II provides the normalization coefficients
that are used to compensate for the discretization effect [13].

Just as the scale-space image can be used to produce a spectral
fingerprint, so can a wavelet decomposition. In fact, in wavelet
terminology the spectral fingerprint could be referred to as a
special case of the wavelet modulus-maximus (mod-max) rep-
resentation. Let the wavelet decomposition of a hyperspectral
signature be denoted as the following sequence of signals:

(5)

including a final approximation signal at scaleand detail sig-
nals from scale 1 to . The wavelet mod-max representation is
then obtained by detecting the local extrema of the wavelet de-
composition at each scale. The values of the wavelet decompo-
sition are then set to zero if the locations do not coincide with
local extrema. Thus, the mod-max representation is defined as

(6)

where

where
is a local maxima
otherwise

(7)

and
where
is a local maxima
otherwise.

(8)

Note that the wavelet mod-max representation is a more
generalized signal decomposition than the spectral fingerprint.
However, by choosing the wavelet decomposition’s lowpass
and highpass filters ( and ) appropriately, the two represen-
tations are virtually the same. The only difference, theoretically,
is that the wavelet mod-max representation takes into account
only those scales that are a power of 2, where the spectral
fingerprint is typically computed over a continuum of scales.
This point is discussed in more detail later in the paper.

V. COMPUTATIONAL EXPENSEANALYSIS

The “traditional” means of computing the scale-space image,
via convolution with Gaussian derivative filters as in (3) is com-
putationally expensive when compared to the Mallat–Zhong al-
gorithm for computing the wavelet mod-max representation.
The computational costs of these two methods were analyzed
and compared in two manners: 1) analytical assessment and 2)
experimental benchmarking.

A. Analytical Assessment

The traditional method of computing a scale-space image re-
quires multiple convolutions with dilated, or scaled, Gaussian
filters. That is, at each scale, a direct convolution must be
performed. Let be the number of bands in the hyperspec-
tral signature and be the length of the original first-derivative
Gaussian filter. At the first scale, the operations required are
multiplies per band of the spectral curve and additions per
band of the spectral curve. Therefore, for the first scale, a con-
stant of operations must be performed per band.
At each scale, the filters are dilated by the scaling factoror .
Thus, the length of the Gaussian filter becomes. At scale ,
the number of operations per band is , which becomes

for very large scales. Thus, the total number of operations
per scale is . For a total of scales, the number of oper-
ations must be summed, and the number of operations becomes

(9)

The term is a constant that is dependent on the type of
Gaussian filter selected and not dependent on the length of the
hyperspectral signature being analyzed. Thus, the order of com-
plexity for direct convolution can be simplified to the following:

(10)

where is the number of bands in the original spectral curve,
and is the total number of scales utilized.

For a standard continuous wavelet transform (CWT) without
the use of fast algorithms, the order of complexity is the same
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as for the traditional method of direct convolution. That is, the
order of complexity for the CWT is the following:

(11)

This stems from the discussion in Section IV about the similar-
ities between the direct convolution and the continuous wavelet
transform.

Multiple convolutions are also required for the Mallat/Zhong
algorithm for computing the wavelet mod-max representation.
At each scale, a direct convolution must be performed to com-
pute the detail signal and a direct convolution must
be performed to compute the approximation signal .
Let the length of the original spectral curve be, the length
the original highpass filter be , and the length of the orig-
inal lowpass filter be . At the first scale, the operations
required are multiplies per band of the spectral curve
and additions per band of the spectral curve.
Therefore, for the first scale, a constant of
operations must be performed per band. At each scale, the fil-
ters are upsampled by a factor of. This introduces zeros
between each sample of the filters. Theoretically, this would in-
crease the lengths of the filtersand to and . How-
ever, the algorithm can be implemented in an intelligent way as
to avoid the multiplies and additions with the zero-samples of
the filters. For example, when implementing this algorithm on a
DSP chip, one would use an indirect addressing mode indexed
by the amount of upsampling at each scale. In this way, the order
of complexity is independent of the scale. Thus for each scale,
the order of complexity is , or . That is, the order of
complexity is constant across scales. Once this is summed for
all scales being utilized, the order of complexity becomes the
following:

(12)

Since this method uses dyadic scales, the total number of uti-
lized scales is . As a result, the total order of com-
plexity is

(13)

where is the total number of bands in the hyperspectral sig-
nature.

B. Experimental Benchmarking

The experimental assessment of the computational expense
of the two methods was completed by computing the number of
floating-point operations during the computation of the scalar
decompositions, i.e., scale-space images or wavelet mod-max
representations. The assessment was conducted using hyper-
spectral digital image collection experiment (HYDICE) signa-
tures. The authors constructed a database of 100 hyperspectral
signatures. The signatures were extracted from a set of four HY-
DICE data cubes. Each data cube was of the size (320 pixels)

(320 pixels) (210 spectral channels). The four HYDICE
data cubes included a mixture of vegetative and urban scenes.

TABLE III
EXPERIMENTAL BENCHMARKING RESULTS

For each of the four data cubes, 25 signatures were randomly se-
lected, and their coordinates were determined by using the fol-
lowing two-dimensional (2-D) uniform distribution:

for
otherwise.

(14)

These signatures have a length of . The following
dyadic scales were used: . First derivative
Gaussian filters were used, and the original length of the filters
were and .

For the traditional method of direct convolution with
Gaussian derivative filters, the total number of addition op-
erations per signature was approximately 386 325, and the
total number of multiply operations per signature was 390 144.
Similarly, for the Mallat/Zhong algorithm, there were approxi-
mately a total of 10 901 addition operations and 18 776 multiply
operations per signature. For a practical view of the difference
of the computational expense between the traditional method
and the Mallat/Zhong wavelet method, typical microprocessor
chips were chosen to evaluate the computational efficiency
based on the criteria of time costs. For a Texas Instruments
TMS320C30 chip, it takes 60 ns to implement a floating-point
addition or a floating-point multiply. For a 333 MHz Pentium
II chip, it takes 3 ns to finish a floating-point addition or a
floating-point multiply. Table III shows experimental results
of the computational expense and illustrates the contrast of
the computational efficiency. Note that for the TMS320C30
processor, many features related to the DSP chip were not
used, such as direct memory access and parallel multiply-add
instructions. These types of operations could greatly further
reduce the time requirements.

VI. OUTPUT COMPARISONANALYSIS

The outputs of the two methods, traditional direct convolu-
tion with Gaussian derivative filters and the Mallat/Zhong algo-
rithm were compared to determine if any differences existed in
the scalar decompositions. The measurements used to compare
the two methods’ outputs included normalized cross correlation
and normalized Euclidean distance measures. The comparison
was performed at each level or scale of the decompositions. The
comparison analysis was not conducted on the actual spectral
fingerprint or mod-max representation. In order to create a spec-
tral fingerprint from the scalar decompositions, the extrema (or
zero-crossings) of the image must be tracked across the varying
scales. The technique used to go from the scalar decomposition
to the spectral fingerprint is the same regardless of the method
used to obtain the scalar decomposition. Furthermore, in the
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spectral fingerprints and wavelet mod-max representations, only
the extrema (or zero-crossings) are retained, i.e., the fingerprint
is simply a plot of the extrema (or zero-crossing) locations. If
the comparison were made between the spectral fingerprint and
the wavelet mod-max representation, errors in locations that did
not correspond to extrema (or zero-crossings) would not be ac-
counted for. Thus, comparing the outputs of the two methods
before converting them to spectral fingerprints results in a more
conservative measurement of the errors.

The normalized cross correlation and normalized Euclidean
distance at each scale is defined as

(15)

and

(16)

respectively, where is the traditional Gaussian filtered
signal and is the result of the Mallat/Zhong wavelet
algorithm. Note that if the two signals are identical except for
a linear shift by samples , then .
At each scale, the entire cross correlation is computed, and
the maximum value and its shift is recorded. The Euclidean
distance is also measured for each scale. Furthermore, it is
computed for various linear shifts in . Thus, it is similar
to the normalized cross correlation, except that the Euclidean
distance is minimized to zero when the two methods produce
identical results.

The database of 100 HYDICE signatures, as described in
Section V-B, was used for the output comparison analysis. The
normalized cross-correlation and the normalized Euclidean
distance were applied to the scalar decompositions resulting
from all 100 hyperspectral signatures. For each error measure,
the mean and variance of the 100 errors were computed.
The resulting means and variances are listed in Table IV, where

and refer to the normalized cross correlation
mean and variance, respectively. Likewise, and
refer to the normalized Euclidean distance mean and variance,
respectively.

VII. D ISCUSSION

From the experimental assessment of the two methods, it
was clear that the computational expense of the Mallat/Zhong
wavelet algorithm was much less than that of the traditional
direct convolution with Gaussian derivative filters. Utilizing
the Mallat/Zhong wavelet-based method, the computational
expense was reduced by a factor of about 26. This coincided
with the result of the analytical assessment, where the reduction

TABLE IV
ERROR ANALYSIS RESULTS FOR100 RANDOMLY SELECTED

HYDICE SIGNATURES

was by a factor of about 30. In this study, the number of
sampling points of each hyperspectral signature was 210, since
HYDICE data was used. When using dyadic scales for the
wavelet-based method, the total number of utilized scales was
eight. If the signatures were longer (more spectral bands), the
number of utilized scales would increase. With an increase
in signature length and number of scales, the computational
efficiency gained from using the wavelet-based algorithms
would also increase.

The outputs of the traditional and the Mallat/Zhong wavelet-
based methods were compared to ensure that the “fast” algo-
rithms did not cause any major errors in the spectral fingerprints.
From this, we see that the average scalar normalized cross cor-
relation was 0.9935, and the average normalized Euclidean dis-
tance was 0.0157. While relatively little error was induced by
using the Mallat/Zhong algorithm, the computational expense
was greatly reduced.

One shortcoming of the Mallat/Zhong wavelet algorithm,
however, is that it does not utilize a continuum of scales.
In fact, it utilizes dyadic scales, i.e., . Traditional
methods do have the advantage that any rational scale may
be analyzed and included in the scale-space image or spectral
fingerprint. The usefulness of nondyadic scales to remote
sensing applications, such as automated signature anomaly
detection or signature classification, is unclear. However, other
wavelet-based algorithms do exist where nondyadic scales
can be utilized. For example, Unseret al. have developed an
algorithm for computing wavelet decompositions over integer
scales [15]. Their algorithm has been shown to have a order
of complexity of per scale, similar to the Mallat/Zhong
algorithm [15], [16]. Their algorithm requires that the wavelet
function, , be represented as a polynomial spline function.
However, spline functions could easily be used to approximate
the Gaussian derivative filters. This is just one alternative to
the Mallat/Zhong algorithm if the need arises to use nondyadic
scales.

It should be noted that by using wavelet-based algorithms,
one gains the mathematical tractability that is one of the
strengths of wavelet methods. Moreover, the use of wavelets for
analyzing and processing hyperspectral data provides access to
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many existing methods for signal denoising, estimation, and
compression [14], which are all highly applicable to hyper-
spectral data processing. The following is one example of the
use of existing knowledge with regards to wavelet transforms
for analyzing hyperspectral data. When using the smoothing
followed by derivative analysis of hyperspectral signatures,
one important question is “How much smoothing can be
applied before pertinent spectral features disappear from the
signature?” The answer to this question depends on the type of
hyperspectral signature and the application at hand. However,
Bruce showed that with the use of the wavelet mod-max
representation, one can predict exactly when (at which scale) a
spectral feature will disappear given the width of the spectral
feature in the original signature is known [12]. This is just one
example of how the existing knowledge base regarding wavelet
transforms can be easily applied to hyperspectral imaging.

VIII. C ONCLUSIONS

The results of this study indicate that a wavelet-based method
is feasible and practical for derivative analysis of hyperspectral
signatures, specifically for computing scale-space images and
spectral fingerprints. Furthermore, the results indicate that
wavelet-based methods can be computationally efficient as
compared to traditional methods of smoothing followed by
derivative analysis, including Gaussian derivative filtering
methods. The use of the Mallat/Zhong wavelet algorithm along
with the computation of the mod-max representation offers a
generalized method where hyperspectral signatures may be
analyzed across many scales, i.e., smoothing prefilter widths,
in a computationally efficient manner. Once a scale-space
image or spectral fingerprint is produced, the appropriate scale
(or combination of scales) may be more easily identifiable,
and its selection may be automated. Thus, the wavelet-based
method accomplishes three goals that have been set forth in
hyperspectral derivative analysis: 1) develop procedures for
selecting appropriate width smoothing prefilters; 2) formalize
and extend the spectral decomposition procedure for more
general applications; and 3) improve the algorithms to speed
up computation for handling large hyperspectral images.
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