Integrated Computational Materials Engineering (ICME)

Nanoscale

Overview

The nanoscale material models are molecular dynamics codes and tools used to ascertain properties at the atomistic scale. These simulations generally use interatomic potentials, or force fields, developed using properties obtained from both electronic scale) calculations and experiments, and feed these results into higher scale models, such as dislocation dynamics at the microscale, or continuum models at the macroscale. To date, much of the research at the atomistic scale has focused on informing continuum models for multiscale modeling of metal and polymer material systems.

This site contains production and research codes that have been developed both at CAVS and outside for performing and analyzing atomistic simulation results. The production codes have user's manuals and a theoretical manual and have been used in practice to solve complex atomistic problems at the nanoscale. The research codes have not enjoyed the wealth of application and might not have a user's manual or a theoretical manual. We caution the user that there is some risk in using the research version of the codes. Another resource for computational chemistry can be found at computational chemistry.

Finally, to garner more information about the information bridges between length scales go to the Education page.

Material Models

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is commonly used for many molecular dynamics simulations related to metal and polymer systems at CAVS. LAMMPS' Fortran predecessor WARP can also be used for parallel molecular dynamics simulations. Last, DYNAMO is commonly used for MEAM (modified embedded atom method) interatomic potential generation. More detailed information can be found here.