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Discrete dislocation dynamics is a numerical tool developed to model the plasticity of
crystalline materials at an intermediate length scale, between the atomistic modeling and
the crystal plasticity theory. In this review we show, using examples from the literature,
how a discrete dislocation model can be used either in a hierarchical or a concurrent
multiscale framework. In the last section of this review, we show through the uniaxial
compression of microcrystal application, how a concurrent multiscale model involving a
discrete dislocation framework can be used for predictive purposes.
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Introduction
Almost all problems in science and engineering are multiscale

n nature. Things are made up of electrons and atoms at the atomic
cale, while at the same time they are characterized by their own
eometric dimensions, which are usually several orders of magni-
ude larger. Therefore, to model the plasticity of a material, sev-
ral length scales are involved. We need to find the scale of �i� the
rystal lattice, �ii� the dislocation core, �iii� the mean distance
etween dislocations, and �iv� the grain size. The first two scales
an be studied by either first principle calculations or molecular
tatics/dynamics calculations. However, when molecular statics/
ynamics are considered, the interaction forces between neighbor-
ng atoms are calculated based on a semi-empirical potential. As
rst principle calculations are limited to a few hundred atoms,
hich give too small a representative volume element to study the
lasticity, the semi-empirical potential constitutes the first bridge
f a hierarchical multiscale framework. Depending on the accu-
acy of the potential �1�, it can be used to model the mechanical
ehavior of a system containing several million atoms. For more
nformation on semi-empirical potentials, the reader is referred to
he review of Kim et al. �2� who presented a comparison between
wo potential frameworks: the embedded atoms method and the

odified embedded atoms method. However, as the characteristic
ength �the smallest distance of the simulation cell� that is acces-
ible using molecular statics/dynamics modeling is smaller than
he mean free path of the dislocations �distance proportional to the
nverse of dislocation density square root�, the yield stress and
ardening are not controlled by the dislocation interactions but by
he nucleation of dislocations, and therefore a strong size effect is
sually observed �3,4�. To model the mechanical behavior of a
aterial at a length scale, where the hardening is controlled by the

islocation interactions �i.e., when the mean free path of the dis-
ocations is smaller than the geometrical characteristic length
cale�, dislocations are modeled by lines of singularity in an elas-
ic continuum and their dynamics are solved using a discrete dis-
ocation framework �5,6�. Although other mechanisms, such as
winning deformation or grain boundary sliding, can accommo-
ate the deformation, only dislocation motion and interaction are
aken into account into the discrete dislocation framework. As it
ill be explained later, deformation twinning should be imple-
ented in the framework for metals that crystallize in a

exagonal-close packed crystal structure, but the plasticity of a
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single-crystal crystallized with a cubic symmetry �fcc or bcc�, can
be investigated using only the notion of dislocation interactions.
Therefore, the discrete dislocation framework was developed to
model the plastic deformation of single crystals with dimensions
in the order of micronmeter. Discrete dislocation simulations give
access to the evolution of dislocation density per slip systems and
to the strain-strain curves. However, dislocation nucleation is not
taking into account the framework, and the increase in dislocation
density is a result of the multiplication of the initial dislocation
microstructure. Another approach is to integrate the discrete dis-
location dynamics within the viscoplasticity continuum mechanics
framework. In this framework, typically one needs to develop a
phenomenological constitutive equation for the plastic strain-rate
tensor. However, Zbib and Diaz de la Rubia �7� proposed that the
evolution of the plastic strain rate in the continuum theory could
be determined explicitly from the discrete dislocation dynamics,
thus coupling the continuum response directly to underlying dis-
crete events. An alternative approach is to rely on the continuous
field of eigenstrain, in which regions of high strain gradients re-
veal the locations of the dislocation lines. This representation
leads to the phase field approach methods �8–10�.

With respect to all other simulations, the discrete dislocation
phase field method presents the enormous advantage of being able
to treat the coupled evolution of concentration fields and elastic
fields �11�. However, considering its present early stage of devel-
opment, a few years will be needed before this method fully real-
izes its potential in the domain of plasticity. Crystal plasticity
modeling �12,13� is the next scale level in investigating the plas-
ticity of polycrystalline materials. The dislocation density, the
hardening evolution, and the flow rule are described using func-
tional forms, where parameters are characterized using experi-
mental data �14,15� and/or numerical results from a lower length
scale �16�. Finally, the design of structural components usually
occurs at the macroscale using internal state variable model �see,
for example, Ref. �17��. Shenoy et al. �18� proposed a hierarchical
multiscale framework to link a crystal plasticity model to a mac-
roscopic internal state variable model. With their approach, the
microstructure dependence of the macroscale model parameters is
identified at the crystal plasticity level.

Several surveys of the literature on multiscale modeling have
been published, with our focus being on the particular articles of
Liu et al. �19� and Curtin and Miller �20�. In the review of Liu et
al. �19�, it is asserted that multiscale methods can be naturally
grouped into two categories: concurrent and hierarchical. Concur-
rent methods simultaneously solve a fine scale model in some
local region of interest and a coarser scale model in the remainder

of the domain. Hierarchical or serial coupling methods �21� use
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esults of a fine scale model simulation to acquire data for a
oarser scale model that is used globally, e.g., to determine pa-
ameters for constitutive equations.

The aim of this review is to summarize the different multiscale
rameworks involving 3D discrete dislocation dynamics. The gen-
ral framework of the discrete dislocation simulations is recalled
n Sec. 2.1. Hierarchical and concurrent frameworks involving
iscrete dislocations, available in the literature, are reviewed in
ecs. 2.2 and 2.3, respectively. As an example of the robustness of

he concurrent multiscale methods involving discrete dislocation
ynamics, a review on the size-dependent flow stress in uniform
oaded pillars is given in Sec. 3. Concluding remarks are given in
ec. 4.

Methodology
In this section, a description of the discrete dislocation frame-

ork is presented in Sec. 2.1. How a discrete dislocation model
an be used in a hierarchical or concurrent multiscale framework
s presented in Secs. 2.2 and 2.3, respectively.

2.1 Discrete Dislocation. Brown �22�, Bacon �23�, and Fore-
an �24� gave the main idea for discrete dislocation simulations

n the mid-1960s. These authors proposed the framework to char-
cterize the curvature of a line of dislocation under an applied
tress. In the beginning of the 1990s, Amadeo and Ghoniem �25�
nd Canova and Kubin �5� presented the first numerical tool based
n linear elasticity that links the properties of a single dislocation
o the collective behavior of dislocations �hardening�. In 1992,
ubin et al. �26� presented the first numerical implementation of a
D discrete dislocations �DD� simulations.

Discrete dislocation is a numerical technique where the plastic
roperties of a crystal are determined using the elastic theory of
islocations. Physically, plastic deformation in crystalline materi-
ls results from the collective interaction, motion, and reaction of
high density of dislocations. Since a dislocation is typically

epresented by a line singularity in an elastic solid �27,28�, the
volution of the dislocation microstructure is governed by the
lastic interactions between dislocations �29�. To model such evo-
ution, the dislocation lines need to be represented and their dy-
amics solved. The methodology developed for three-dimensional
islocation dynamics can be categorized into two groups, accord-
ng to the line discretization scheme and representation of a gen-
ral curved dislocation segment. The first method is based on an
dge-screw �26� or edge-mixed-screw �30,31� discretization of the
islocation lines. The basic idea of the approach is that the dis-
rete segments move on a discrete lattice superimposed to the
rystallographic lattice, but on the orders of a larger magnitude.
he second category of methods simulates dislocations as smooth
exible lines discretized either by linear splines �6,32–34�, cubic
plines �35,36�, or circular arcs �37,38�. It should be noted that in
ll of the aforementioned models, dislocation dynamics codes
ere developed for dislocations in isotropic media. This is mainly
ue to the fact that exact solutions for the strain field are readily
vailable for this case. The effect elastic anisotropy was investi-
ated by Rhee et al. �39�, who developed a methodology for
mplementing strain fields, which are given in relatively complex
ntegral forms, in their DD code �MICRO3D�.

Once the dislocation lines are discretized, the formulation of the
D approach assumes that the dynamics of each dislocation seg-
ent is governed by a Newtonian-type equation of motion con-

isting of an inertia term, a drag term, and a driving force F �40�,
uch that,

m�v̇ + Bv = F� �1�

n the above equation, v is the dislocation velocity, m� is the
ffective mass density, and B is the drag coefficient. The driving
orce itself consists of various components: dislocation-
islocation interaction force, self-force �or line tension�, external

orce, osmotic force, dislocation-obstacle interaction force, and
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thermal force �see, e.g., Ref. �41��, which can all be lumped to-
gether into one term F��. In addition, there is a Peirels force FP.
This latter force acts like friction, and therefore if the magnitude
of F�� is less than Fp, the right-hand side of Eq. �1� is set to zero.
In most cases the inertia term can be neglected and the equation of
motion can be rewritten in the following form �42�:

v = 0 if �� � 0

v = sign�����
��b

B
if �� � 0

�� = ����� − �p �2�

where ��, ���, and �p are the resolved shear stresses corresponding
to F�, F��, and Fp, respectively. Note that the linear dependence of
the dislocation velocity on the resolved shear stress given by Eq.
�2� represents the velocity of a single gliding dislocation and not
the average velocity calculated for the overall dislocation gliding
on one slip system. Also, the above equation for viscous glide
applies to dislocation motion in pure fcc crystals when no inter-
action of the gliding dislocation with localized obstacles, e.g.,
forest dislocations, is considered. Then, depending on the tem-
perature, the coefficient B accounts for electron and phonon drag.
This is either the case of the free flight dislocation mobility be-
tween the obstacles at “quasistatic” strain rates or the case of
dislocation dynamics at high strain rates �43,44�. Physically, as the
dislocation velocity cannot exceed the terminal velocity �i.e., the
velocity of a transverse shear wave�, a resolved shear stress cutoff
value needs to be specified unless a complete dynamic analysis is
used, which includes an inertia term, as in Eq. �1�. When the
resolved shear stress becomes larger than the cutoff value, the
dislocation velocity saturates at the terminal speed.

Once the velocity of the dislocation i is known, a search algo-
rithm is applied to check if there are any possible interactions with
other dislocations within a virtual area of the gliding dislocation i.
The length of the dislocation segment and the free flight distance
define the virtual area gliding. The relation between the Burgers
vector and the slip systems of the two intersecting dislocation
segments define the type of interaction. When two dislocations
intersect each other, one of the following interactions occurs.

• Annihilation. If the two dislocations have opposite Burgers
vectors and glide in the same slip plane.

• Collinear annihilation. If the two dislocations have collinear
Burgers vectors and glide in intersecting slip planes, each
plane being the cross-slip plane of the other.

• Hirth lock. If the two dislocations have perpendicular Bur-
gers vector and glide on different slip planes.

• Glissile junction. If the resulting Burgers vector is glissile
on either of the planes.

• Lomer Lock. If the resulting Burgers vector is sessile on
either of the planes.

Finally, cross slipping of screw dislocations can relax internal
stresses. A Monte Carlo method is used to check whether cross-
slip is activated or not. The probability law of cross-slip is given
by

P = �
L

L0

�t

�t0
exp�− V

�III − �

kT
� �3�

where � is a coefficient that ensures that the probability does not
exceed 1.0; �III=5 MPa is the critical resolved shear stress at the
onset of stage III work hardening for Al; Va=300b3 is the activa-
tion volume; T is set to room temperature; L0=1 �m and �t0
=1 s are reference values of length and time, respectively; L is
the length for cross-slip of the screw dislocation segment; �t is the

simulation time step; and � is the resolved shear stress on the

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



c

q
i

w
t
s
s

w
t
t
c
u
t
e
t
p

t
e
b
a
“
j
t
o
m
h
a
r
i
i
s
m
e
c
i

o
s
fi
O
m
n
i
a
b
p
a
V
t
t
t

D
a
T
r
d
c
c

J

Downlo
ross-slip plane �26,45�.
On the other hand, the increment of plastic shear is a conse-

uence of the gliding of dislocation i of Burgers vector bi, and it
s given by Orowan’s law.

��i
p =

bi�Ai

V
�4�

here �Ai is the area swept during gliding, and V is the volume of
he sheared body. Knowing the increment of plastic shear on slip
ystem k, one can then compute the components of the plastic
train-rate tensor ��ij using

��ij
ṗ = �

k=1

12
1

2
�ni

�k�lj
�k� + nj

�k�li
�k����̇p�k� �5�

here ni
�k� and li

�k� are the components of the unit vectors parallel
o the slip plane normal and parallel to the Burgers vector, respec-
ively. This framework associated with a set of periodic boundary
onditions to equilibrate the flux of dislocations �46,47� can be
sed to model the hardening response of a representative cell ex-
racted from a single crystal. Note that some authors �e.g., Bulatov
t al. �46�� showed that even with heterogeneous dislocation mo-
ion, periodic boundary conditions can appropriately represent the
hysical phenomena.

Over the last decade, the previous framework has been applied
o model different crystal structures. Moulin et al. �48� and Tang
t al. �49� extended the edge-screw model to diamond cubic and
cc crystal structure, respectively. Kubin et al. �50� and Madec
nd Kubin �51� implemented the bcc crystal structure in the
edge-screw-mixed” model and investigated the strength of the
unction in fcc and bcc crystal structures. Monnet et al. �52� ex-
ended the edge-mixed-screw model to hcp crystal structure with
nly 	a
 dislocations. Additional work will be necessary to imple-
ent 	c+a
 dislocations in the hcp crystal structure in order to

ave enough slip systems to accommodate the plastic deformation
long the c-axis �53�. Durinck et al. �54� implemented the ortho-
hombic symmetry for olivine in a 3D discrete dislocation dynam-
cs. They demonstrated that no junction formation results from the
nteraction between �55� and �001� dislocations in this crystal
tructure. Moreover, the collinear interaction �56� is thus the only
echanism for forest hardening in olivine. The linear spline mod-

ls were developed for fcc crystal structure �32,57� and for bcc
rystal structures �33�. The fcc crystal structure was implemented
n the cubic splines models �35,37,38�.

One of the main disadvantages of the discrete dislocation meth-
dology arises from the long-range character of the dislocation
tress field. Therefore, the computation of the dislocation elastic
eld and the treatment of dislocation core reactions increases like
�N2�, where N represents the number of segments. Contrary to
olecular dynamics where the number of atoms is constant, the

umber of segments used in the discrete dislocation methodology
ncreases with plastic strain. To speedup the calculations, Hirth et
l. �58� and Zbib et al. �6,32� developed a numerical technique
ased on the multipolar expansion method. They showed that this
rocedure leads to an efficient order N algorithm with 0.1% error
nd one order of magnitude reduction in CPU time. Later on,
erdier et al. �59� proposed to use the Greengard algorithm to

ransform the O�N2� in an O�N� dependency. However, even with
he Greengard algorithm, the calculations were still limited to less
han 0.5% of plastic deformation �31,60�.

The numerical limitations associated with three-dimensional
D may be overcome by the use of parallel algorithms. Rhee et

l. �45� developed a parallel version of the DD code MICRO3D.
hey showed that speedup in CPU usage can be significant, but

eaches a limit with an increasing number of processors. This is
ue mainly to short-range reactions, which necessitate communi-
ation among processors. Nevertheless, by using this parallel

ode, large-scale dislocation problems and dislocations-defect

ournal of Engineering Materials and Technology
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problems were analyzed �see, e.g., Refs. �61,62��. Recently, Shin
et al. �63� proposed a parallel algorithm to speedup the “edge-
screw” model, while Wang et al. �64� and Arsenlis et al. �33�
proposed a parallel algorithm to speedup the cubic and linear
spline models, respectively. Using the parallel version of the DD
code, Arsenlis et al. �33� was able to reach 1.7% of plastic defor-
mation during the tensile test of a bcc molybdenum at an elevated
temperature. The investigation of the cell organization and the
similitude principle �65,66� are at the cost of a parallel discrete
dislocation code. On the other hand, trends can be obtained using
two-dimensional discrete dislocations framework where only edge
dislocations are modeled. However, as our focus is mainly on
three-dimensional DD, readers are referred to the studies of
Needleman and co-workers �67–74� and Gomez-Garcia et al. �75�.

2.2 Hierarchical Framework. To understand how a discrete
dislocation code can be used in a hierarchical multiscale frame-
work, the inputs as well as the outputs of the simulation are sum-
marized in Table 1.

In a hierarchical multiscale framework, the lengths and time
scales are not coupled. The input of the DD might be obtained by
either first principle calculations or/and molecular dynamics/
statics calculations. The outputs, on the other hand, are used to
characterize material parameters at a higher length scale, such as
the material parameters used in the hardening rule of a crystal
plasticity model. Groh et al. �16� showed the feasibility of predict-
ing numerically the mechanical behavior of an aluminum single
crystal using a hierarchical multiscale framework, as illustrated in
Fig. 1. The mobility properties of an individual dislocation were
characterized at the atomistic scale and used as an input at the
discrete dislocation level to model the hardening evolution of an
aluminum single crystal under uniaxial compression. The harden-
ing parameters of a Palm–Voce functional form �76,77� were cor-
related with the DD predictions and used at the crystal plasticity
level to model the mechanical behavior and the change in shape of
an aluminum single crystal under compression. However, such a
method generates uncertainties related to scale bridging. A study
to quantify the uncertainties related to scale bridging is currently
under investigation.

2.2.1 From a Lower Length Scale to DD. Molecular dynamics
calculations provide information concerning the mechanisms
and/or the mobility of the dislocations that need to be imple-
mented in the DD models. Bulatov et al. �78� used large-scale
molecular dynamics calculations to establish the local rules for
DD simulations. They characterized the force required to destroy
a Lomer–Cottrell lock at the atomistic scale and then used this

Table 1 Summary of the input and output to use the DD meth-
odology in a hierarchical multiscale modeling

Input

• Elastic properties
• Crystallographic properties
• Reaction between dislocations
• Dislocation mobility
• Cross-slip properties
• Dislocation sources
• Defects �SFTs, loops, particles, etc.�
• Loading conditions

Output

• Stress-strain curve
• Total dislocation density
• Dislocation density per slip systems
• Dislocation reactions: junction, jogs, dipoles
• Mobile dislocation
• Forest dislocation
information to formulate the critical condition for junction de-
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truction in a dislocation dynamics simulations. Madec et al. �56�
easured the interaction coefficients corresponding to the three

unctions and their value, which agreed with the hierarchy of
trength deduced from a latent hardening experiment. In addition,
hey performed molecular dynamics calculation to confirm their
iscrete dislocation calculations, showing that the collinear inter-
ction was far from the strongest interaction in the fcc crystal
tructure. Marian at al. �79� presented a mechanism of dislocation
otion in iron using atomistic calculations. In 2005, Olmsted et

l. �80� calculated the drag coefficient of screw and edge disloca-
ions in Al–Mg alloys using atomistic calculations, and the drag
oefficient is needed in Eq. �2� to predict the dislocation velocity
n the discrete dislocation framework. In 2006, Bulatov et al. �81�
redicted the existence of multijunctions in bcc crystal structure
sing discrete dislocations and atomistic calculations before con-
rming their existence by transmission electron microscopy ex-
eriments. Martinez et al. �82� recently carried out large-scale
hree-dimensional molecular static and molecular dynamics calcu-
ations for Cu to calculate the value of the dislocation core ener-
ies and the value of the drag coefficient, respectively. Groh et al.
16� presented a hierarchical multiscale application from the ato-
istic up to the crystal plasticity to predict the mechanical behav-

or of an aluminum single crystal. The first bridge was the dislo-
ation velocity calculated at the atomistic scale and was used as
n input in the DD framework. Groh et al. �83� performed mo-
ecular statics and molecular dynamics simulations to characterize
he anisotropy between slip systems in Mg single crystal.

2.2.2 From DD to a Higher Length Scale. Discrete dislocation
imulations are usually used in a hierarchical multiscale modeling
o measure the material parameters of the hardening rule used in
he crystal plasticity modeling. Kocks and Mecking �84� intro-
uced a dislocation-based hardening model, derived from the
torage-recovery framework developed in scalar form by Mecking
nd co-workers �84–86�. This model assumes that all the slip
ystems harden at the same rate and, therefore, the interactions
etween different slip systems are averaged in a Taylor sense.
eodosiu et al. �87�, or Kocks and Mecking �85�, extended the
calar model to account for slip system interactions �matrix form�.

ithin this extended storage-recovery framework, the hardening
aw was modified to predict the three stage behavior of a single
rystal initially stretched in single slip �88,89�. The extended
odel predicted the main characteristics of single-crystal and

olycrystal deformations during monotonic and sequential loading
ests. Within the extended model, the interactions among the dif-
erent slip systems were explicitly represented using an interaction
oefficient matrix �90� and the value of the interaction coefficients
ere extracted using DD simulations. Such extractions have been
erformed for fcc materials by Fivel �91�, Madec et al. �56�, and

ig. 1 Hierarchical multiscale modeling of the plasticity in-
olving three characteristic length scales
evincre et al. �92�, while for bcc materials in the athermal re-
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aded 15 Sep 2009 to 130.18.90.221. Redistribution subject to ASME
gime extractions have been performed by Queyreau et al. �93�.
Preußner et al. �94� proposed a physics-based constitutive law,
which allows the describing of the creep behavior of single-crystal
alloys by mutual interaction of dislocations on different slip sys-
tems, with an emphasis on the evolution of the dislocation density.
Their model described well the first two stages of creep. A study
related to the multiscale modeling of metals is presented by
Ohashi et al. �95�, who used a multiscale modeling approach to
model the scale-dependent characteristics of mechanical proper-
ties of metallic polycrystals. These authors proposed to modify the
hardening law of a dislocation-based crystal plasticity model �96�,
according to the minimum shear stress needed to emit a disloca-
tion loop into a confined system calculated by DD simulations
�97�. Using such a multiscale approach, Ohashi et al. �95� was
able to reproduce a variation in the macroscopic yield stress as a
function of the grain size. Using DD predictions on Al single
crystal, Groh et al. �16� measured the hardening parameters of the
model of Kocks and Mecking �84� and then simulated the me-
chanical response of an Al single crystal under compression.
These authors found a good agreement with the experimental data.

2.3 Concurrent Framework. To study the plasticity of struc-
tural materials made of interfaces and free surfaces, the conven-
tional DD framework presented above needs to be extended to
solve a heterogeneous stress field. Most of the solutions proposed
in the literature are based on the superposition method proposed
by Van der Giessen and Needleman �67�. The solutions are ob-
tained as the sum of two contributions. The first represents the
solution for dislocations in an unbounded crystal and the other is
the complementary elastic solution needed to satisfy equilibrium
at external and internal boundaries. The second solution can be
solved in a continuum mechanics way, such as finite element
methods �FEM� �55,97–100� or boundary element method �BEM�
�101,102�. Although this approach works well when all disloca-
tion segments are away from the internal or/and external bound-
aries, it becomes inefficient when one or more dislocation seg-
ments intersect the surface. When standard FEM is applied to
solve the image stress due to such singular traction forces, the
result is found to strongly depend on the mesh size �100�. A pos-
sible solution is to use adaptive meshes with multiple resolutions
that follow the intersection points �103�. However, adaptive mesh-
ing is a cumbersome and challenging problem in itself, especially
for massive DD simulations where many dislocations intersect the
surfaces. Another solution is to remove the singularity from the
FEM calculations.

Khraishi and Zbib �104,105� developed a rigorous method to
handle the issue of image stresses. The method is semi-analytical/
numerical in nature, in which they enforce either traction or dis-
placement boundary conditions at collocation points on a surface.
In their method, the image stress field of a subsurface dislocation
segment near a free surface is obtained by an image segment and
by a distribution of prismatic rectangular dislocation loops pad-
ding the surface. The method derives from crack theory and falls
under “generalized image stress analysis,” whereby a distribution
of dislocation geometries or entities and not just simple mirror
images, are used to satisfy the problem’s boundary conditions. For
the special case of a dislocation interesting the surface, Tang et al.
�106� developed a method to treat the singularity at the point of
intersection by superimposing two solutions: �i� image stress field
of a semi-infinite straight dislocation intersecting the free surface
of a half-space, for which analytic expressions exist, and �ii� the
difference between these two image stress fields. By construction,
the difference between the two image stress fields is a nonsingular
function of space and is solved numerically, such as by FEM. A
faster convergence than the conventional superposition method
and the possibility to use a coarser mesh are the two advantages of
this decomposition, compared with the conventional superposition
method proposed by van der Giessen and Needleman �107�. Di-
verse applications were solved with the model developed based on

the superposition methods. Depres et al. �108,109� analyzed the
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arly stages of the formation of persistent slip markings in fatigue
nd the authors proposed a detailed scheme for persistent slip
arking formation and morphology in relation to the persistent

lip-band dislocation arrangements present within the grain. Shin
t al. �110,111� investigated the interaction between dislocation of
ifferent characters and particles. In the case of spherical particle,
hese authors found that an increase in the particle elastic modulus
avored the cross-slip mechanism, leading to a possible bypass of
he particle by double cross-slip �110�. The shape of the particle
ppeared to be a critical parameter in the design of new materials
nd Shin et al. �111� concluded that a cubic particle is more resis-
ant to dislocation climb than a spherical or cylindrical particle.

In addition to addressing issues related to image stress when
islocations are in finite volumes, the multiscale model developed
y Zbib et al. �7,97� also integrates dislocation dynamics with
ontinuum plasticity in such a way that the dislocation dynamics
art replaces the “constitutive equations,” which are typically pos-
ulated in the continuum theory. In this approach, the coupling is
ased on a framework in which the material obeys the basic laws
f continuum mechanics, i.e., the linear momentum balance.

	ij,j = ñv̇i �6�
nd the energy equation,

ñcvṪ = k�2T + 	ijaij
P �7�

here v= u̇ is the particle velocity, and u, 
, cv, and k are the
isplacement vector field, mass density, specific heat, and thermal
onductivity, respectively. In DD, the representative volume cell is
urther discretized into subcells or finite elements, each represent-
ng a representative volume element �RVE�. Then the internal
tresses field induced by the dislocations �and other defects� and

able 2 Summary of additional inputs and outputs in a con-
urrent DD-FEA multiscale modeling

Input

Finite element data
Boundary conditions

Output

Stress, strain, and temperature fields
Deformed configuration
Lattice rotation

Fig. 2 Multiscale dislocation dynam

cation dynamics with continuum elasto
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the plastic strain field within each RVE can be calculated at any
point within each element. Furthermore, the plastic strain incre-
ment results from only the mobile dislocations that exit the RVE
�or subcell� and is computed as in Eq. �5�, but with V being the
volume of the element �or subcell�. The dislocations that are im-
mobile �zero velocity� do not contribute to the plastic strain incre-
ment. Therefore, the dislocations within an element induce an
internal stress due to their elastic distortion. When some of these
dislocations �or all� move and exit the element, they leave behind
plastic distortion in the element and the internal stress field should
be recomputed by summing the stress from the remaining dislo-
cations in the element. With this homogenization procedure the
rate Hooke’s law for the RVE becomes

	̇ij = Cijkl
e ��̇kl − �̇kl

P� �8�

where Cijkl
e is the fourth-order elastic tensor. In the continuum

plasticity theory, one would need to develop a phenomenological
constitutive law for plastic stress-strain behavior. Zbib and co-
workers avoid this ambiguity by using the explicit expressions
given by Eq. �5� for the plastic strain-rate tensor, as computed in
the dislocation dynamics. So in addition to the inputs and outputs
one gets from DD, as summarized in Table 1, one also now has a
second set of inputs and outputs, as summarized in Table 2, when
a concurrent multiscale modeling involving discrete dislocations
and finite elements analysis.

The way the two scales, the DD scale and the continuum scale,
communicate and pass information to one another is illustrated in
Fig. 2.

With the multiscale method described above, Zbib and co-
workers were able to address a number of boundary value prob-
lems in small-scale crystal plasticity with a wide range of loading
and boundary conditions and internal dislocation structures. Here
we give only a few examples. Hughes et al. �112� and Khan et al.
�113� examined the role of the various dislocation structures, such
as geometrically necessary boundaries in hardening phenomena.
They showed that by correctly modeling the boundary conditions
of dislocations in a finite domain, such as grain, the finite dislo-
cation walls are stabilized, but still result into long-range stress,
yielding hardening as well as size effects. Shehadeh et al. �114�
studied shock wave propagation and interaction with dislocations
in copper single crystals. These authors have shown that ava-
lanche of dislocation density is a natural consequence of shock
wave dislocations interaction and the dislocation density followed
power law dependence on the pressure. Moreover, the inclusion of
pressure-dependent elastic properties for isotropic media leads to

plasticity model: coupling of dislo-
ics

visoplasticty
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aster wave propagation speed and incorporating the effect of
rystal anisotropy in the elastic properties results in an orientation
ependent wave speed and peak pressure. Moreover, Shehadeh et
l. �115� also studied shock-induced dislocation nucleation in
ingle-crystal copper. They developed a model for homogenous
ucleation of dislocation based on large-scale molecular dynamics
MD� simulations and nucleation theory and implemented the
odel in the multiscale dislocation dynamics model described

bove. They showed that at extremely high pressures, plastic de-
ormation is driven by dislocation nucleation, resulting in a pro-
igious rate of dislocation production that takes the uniaxially
ompressed material to a hydrostatically compressed state after a
ew tens of picoseconds. Akasheh et al. �116,117� used a concur-
ent multiscale method involving a discrete dislocation model to
tudy the strength of nanoscale metallic multilayered composites.
ike in the bulk material, interactions between dislocations �be-

ween the threading dislocations and the intersecting interfacial
islocations� predict strength in agreement with experimental
rends, which are higher than the predictions obtained with a
imple capped layer model. Yashiro et al. �118� used the multi-
cale model to simulate dislocations cutting into a �� precipitate
nd interfacial dislocation network in Ni-based superalloys. They
howed that a superdislocation nucleates after two dislocations
ile up at the interface and that the width of dislocations is bal-
nced by the antiphase boundary �APB� energy and repulsion of
islocations.

Lemarchand et al. �119� proposed an alternative framework to
he superposition method. With this approach, the DD code serves
s a material constitutive model and the dislocations are repre-
ented in the continuum by continuous fields of eigenstrain. The
lastic strains induced by the slip propagating dislocation are cal-
ulated by the discrete dislocation method, instead of phenomeno-
ogical equations used in conventional crystal plasticity. The dis-
rete dislocation methodology was implemented in a finite
lement code as a material constitutive model using the small
train formulation. The superposition method and the framework
sed by Lemarchand et al. solve the same system of equations as
resented by Devincre et al. �120�. Using the framework of
emarchand et al., Groh et al. �121� studied the influence of the
lastic anisotropy on the critical thickness for the plastic relax-
tion of thin films. They found that elastic anisotropy induces a
ignificant increase in the critical thickness, with respect to the
alues predicted by a classical isotropic model. In addition, as the
odel of Lemarchand et al. includes two lengths scales, the mean

istance between dislocations and the geometrical distance, this
odel is well adapted to study size effect in structural compo-

ents. With this regards, Groh et al. �122,123� investigated the
echanical properties of a metal matrix composite reinforced by

ong and unidirectional fibers, Al /Al2O3, with dimensions in the
icron-meters range. They concluded that the variations in the

ield stress, as a function of fiber volume fraction, might be pre-
icted from Orowan’s law. Moreover, the dependence of internal
tresses on fiber volume fraction leads to a size effect resulting
rom a virtual decrease in the channel width between fibers. Re-
ently, Liu et al. �124� extended the work of Lemarchand et al.
119�, based on the finite deformation theory of crystal plasticity.
he major improvement proposed by Liu et al. �124�, compared
ith the original work of Lemarchand et al., is concerning the
re-existing stationary dislocations. To be visible in the con-
inuum, dislocations have to be introduced from the free surfaces
n the formulation of Lemarchand et al., while Liu et al. repre-
ented pre-existing stationary dislocations by an internal stress
eld. With the new formation, discrete dislocation plasticity is
ompletely handled under a continuum mechanics framework. Liu
t al. applied this new framework to uniaxial compression test for
icropillars of Cu to investigate the dislocation starvation hard-

ning observed experimentally. The main results of their compres-
ion tests are reviewed in Sec. 3.
As describe above, implementing a dislocation dynamics model
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to either a FEM or BEM codes has been proposed many times
over the last decade. On the other hand, coupling a 3D discrete
dislocations model with a lower length scale is still missing in the
literature. However, Shilkrot et al. �125,126� proposed a compu-
tational method for multiscale modeling of plasticity, wherein
each dislocation is treated as either an atomistic or continuum
entity within a single computational framework. The method di-
vides space into atomistic and continuum regions that communi-
cate across a coherent boundary, detects dislocations as they ap-
proach the boundary, and seamlessly converts them from one
description to another. The method permits the study of problems
that are too large for fully atomistic simulation, while preserving
accurate atomistic details where necessary, but is currently limited
to a 2D implementation.

3 Multiscale Modeling of Micropillars Under
Compression

The origin of the length scale effect observed in metals depends
on the distribution of the macroscopic deformation. If the macro-
scopic deformation is not uniform, storage of geometrically nec-
essary dislocations to accommodate the plastic strain gradient is
usually considered to explain the origin of the length scale effect
�127�. On the other hand, if uniform macroscopic deformation is
considered, the storage of dislocation is not significant in a mate-
rial free of internal interfaces, and length scale effects can be
attributed to �i� dislocation cells, �ii� dislocation structures, or �iii�
dislocation-obstacle distribution �107�.

Uchic et al. �128,129�, Greer et al. �130,131�, and Shan et al.
�132� conducted uniaxial compression tests using a nano-indenter
with a flat-ended tip on focused-ion-beam fabricated Ni, Ni3Al,
and Au micropillars. These authors reported two main observa-
tions from such compression tests: �i� a dependency in strength
scaling with the inverse of the square root of the sample and �ii�
the plastic deformation proceeds intermittently as serial bursts. To
explain the increase in the yield strength when the size of the
pillars is decreased, Parthasarathy et al. �133� proposed a model
considering only the statistical variation in the dislocation source
length imposed by finite dimensions of the pillars. They have
shown that such a model was accurate enough to rationalize the
experimental trend. Greer et al. �130,131� proposed a dislocation
starvation model to explain the strain bursts.

This problem of size effect in micropillars is well adapted to
multiscale discrete dislocations modeling �124,134–137�, because
�i� the presence of large strain gradients is limited �138� and �ii�
the effect of the free surfaces is crucial when the diameter of the
sample decreases to the submicron range �102�. Tang et al. �134�
performed 3D discrete dislocation simulations to model the me-
chanical properties of the micropillars orientated for multislips,
without solving the boundary value problems �103�. Based on
their results, these authors demonstrated that the escape of mobile
dislocations in smaller pillars is faster than in larger ones. The
decrease in the mobile dislocation density in decreasing the speci-
men size leads to an increase in the resistance to the plastic flow,
and therefore, the scale-dependency yield strength effect was re-
lated to the escape of the dislocation through the surfaces. Starting
with an initial dislocation Frank net structure, Tang et al. �139�
showed that the observed plastic deformation from their simula-
tion is caused by the operation of single junction-stabilized spiral
sources and is followed by intervals of purely elastic straining
when the sources are shut down. Although the initial dislocation
density used by Tang et al. �139� are two orders of magnitude
higher than the experimental value �130,140�, their simulation re-
sults are in qualitative agreement with the experimentally ob-
served behavior with that of Dimiduk et al. �140� and Greer et al.
�130�. Using superposition method with the FEM, Weygand et al.
�136� used their simulation results to fit the exponent of a power
law linking the flow stress to the diameter of the pillar. They
found an exponent in the order of �0.6, which is in the range of

the experimental findings �140,141�. Senger et al. �137� found
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imilar results than Weygand et al. �136� by using more statistics.
ote that the size effect modeled by Weygand et al. and by Senger

t al. is weaker than the size effect reported experimentally by
reer et al. �130,131�, who oriented their single crystals for mul-

islips, while it was oriented for single slip for the numerical ex-
eriment of Senger et al. �137� and Weygand et al. �136�. El-
wady et al. �102� investigated the mechanical behavior of a
ylindrical microcrystal oriented for single slip under compression
sing the superposition method implemented with the BEM. In
ddition to presenting data in agreement with experiments, these
uthors concluded, in agreement with the theoretical model of
arthasarathy et al. �133�, which the mean length of dislocations

rapped at the surface, was the dominant factor in determining the
ize effects on hardening of single crystals. Using a micropillar
riented for multislips, El-Awady et al. �137� tested a number of
arameters and mechanisms, such as the micropillar size, the av-
rage length of activated single-pinned dislocation, and the cross-
lip properties, in an effort to identify the size scaling aspects of
lastic flow and work hardening. Although the flow stress versus
he diameter of the pillars followed a power law with an exponent
f �0.69, in good agreement with the data of Dimiduk et al. �140�
nd Volkert and Lilleodden �141�, a stronger size effect was ob-
erved between the flow stress and the average length of the acti-
ated dislocations �flow stress versus the average length of the
ctivated dislocations followed a power law with an exponent of
0.85�. Moreover, the activation of the cross-slip leads to an in-

rease in the dislocation density as well as a reduction in the
verage length of activated dislocations. Such a reduction in the
verage length of the activated dislocation leads to an increase in
he yield strength. This result is in agreement with the effect of
islocation cross-slip in bulk material �142,143�. Liu et al. �144�
tudied the stress-strain response of Cu single-crystal micropillars
ontaining initial dislocation networks. They showed that when
uch networks were loaded, the stress-strain curve can be divided
nto three distinct stages: �i� a linear elastic stage, �ii� a normal
train hardening stage, and �iii� a “dislocation starvation harden-
ng” stage accompanying a rather high stress level.

More recently, Akarupa et al. �145� and Zbib et al. �146� re-
xamined the results obtained for micropillars and noted that in all
he aforementioned DD simulations of the micropillar experiment,
he stress and strain fields were assumed to be homogeneous and
o surface effects were accounted for. They noted, however, that
he deformation field in submicron scale specimens is far from
eing homogenous and becomes highly heterogeneous and local-
zed with increased strain as all experiments have shown. More-
ver, surface effects in such small dimensions are very important
nd cannot be neglected. To capture the heterogeneity of the mac-
oscopic deformation and its influence on the microscopic mecha-
isms, Akarupa et al. �145� and Zbib et al. �145� employed the
ultiscale model described in Fig. 2. They investigated the defor-
ation of micropillars under compression with constrained load-

ng axis. They showed that the yield stress has strong inverse-
ower relationship with specimen size when the dimensions are in
he submicrometer range. Dislocation arm operation on different
lide planes were identified as the primary mechanism for plastic
eformation in these microsize specimens. The jerky behavior in
he plastic deformation was attributed to the intermittent operation
f the dislocation arms. Due to the absence of storage of disloca-
ions, it was concluded that the observed hardening is not because
f the conventional work hardening, but because of pinning of
islocation segments due to the formation of junctions and en-
angled dislocation structures, as well as due to surface effects
uch as formation of ledges and stress concentration sites. Their
esults led to the hypotheses that jerky flow and hardening is
ainly caused by dislocation stagnation �also noted in the litera-

ure as exhaustion�, due to the formation of pinning sites resulting
n an effective reduction in the mean free length of dislocation and
ot from a starvation and renucleation mechanism. These predic-

ions were made possible by the use of a multiscale technique,
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which enables the rigorous analysis of nonuniform deformation of
small-scale specimens with realistic treatment of loading and
boundary conditions.

4 Concluding Remarks
In this article, we discussed, using examples from the literature,

how a discrete dislocation model can be used either in a hierar-
chical or a concurrent multiscale modeling framework and intro-
duced newcomers to the essential features and limitations of such
approaches. As a summary of the methodologies, concurrent tech-
niques were developed to solve a rigorous boundary value prob-
lem under complex loading conditions for specimens in the sub-
micron range, while hierarchical techniques were developed to
solve problems under homogeneous deformation with periodic
boundary conditions.

However, in order to be useable as a predictive tool for the
design of engineering materials and structural components, sev-
eral breakthroughs on multiscale modeling techniques based on
discrete dislocation simulations are needed. For example, since
the first three-dimensional study on crack growth using homoge-
neous deformation discrete dislocation model carried out by
Devincre and Roberts �147�, most of the studies on crack growth
were performed at two dimensions using the superposition frame-
work �69,148,149�. Two-dimensional methodology can be used as
a qualitative tool to characterize a trend, but cannot be used as a
quantitative tool for predictive design. How can a two-
dimensional methodology developed to keep track of the crack
growth be implemented efficiently to a three-dimensional method-
ology? In addition, deformation twinning �150,151� is another
mode of deformation that complements slip deformation. This
mode of deformation is particularly important to model the me-
chanical behavior of magnesium alloys. Twinning deformation is
usually taken into account through an internal state variable in a
crystal plasticity model based on a Taylor assumption �152�. Is
there a way to implement such a mode of deformation in a con-
current multiscale methodology in order to quantify the interac-
tion between twin systems and dislocation slip systems? Further-
more, Shan et al. �132� reported inhomogeneous dislocation
nucleation under the surface during compressive testing of Ni mi-
cropillar. Such a question of dislocation nucleation is of extreme
importance for engineering materials where void growth occurs
by nucleation of dislocation loops at the void surfaces �153–156�.
The model developed by Shehadeh et al. �115� for the nucleation
of dislocation glide loops provides a pathway to treat dislocation
nucleation in a concurrent multiscale modeling technique based
on discrete dislocations simulations.
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