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1. Description of the  multiscale dislocation dynamics plasticity 

“MDDP02”     and the Discrete Dislocation Dynamics Model  

“micro3d” 

micro3d: 

The physical model is based on a large number of discrete dislocation segments situated 

into a computational cell representing a continuum of 3D single crystal, Fig. 1. The cell is further 

divided into sub-cells, or link cells, for more efficient calculation of long range interactions (Hirth 

et al., 1996 and Zbib et al., 1997). Each cell contains a number of dislocation loops and lines of 

arbitrary shapes lying on slip systems, as illustrated in Fig.1. The model has been developed for 

both fcc and bcc single crystals. Typical dislocation density ranges from very low, 810 2m  

(annealed) to very high 1510 2m  (highly strained). In micro3d, arbitrarily curved dislocations 

are decomposed into piecewise continuous arrays of mixed segments in a continuum 

crystal. Depending on the local curvature, the spacing between two dislocation nodes   varies 

from 3b to 100b (adaptive re-meshing) (Zbib et al., 1997), resulting into N segments. Table 1 lists 

typical values for N. This implies that large computational requirements are, indeed, needed to 

solve this problem, especially since the interaction problem is of the order 2N . 

 

 

 

 

Figure 1: a) Computational cell of a bcc single crystal, b) random distribution of dislocation 

lines in bcc crystal with initial density of 9.91x10
11

m
-2

 
NOTES: 

a) Coordinate System: Reference global coordinate system is located at the center of 

the cell with the axes coinciding with the crystal axes. ―Rotated‖ axes can be defined 

in the file ―data‖ 

b) Non-dimensional space: Space is non-dimensionalized by the magnitude of the 

Burgers vector, b; 
L=L/b 

X [100] Y [010] 

Z [001] 
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Table 1: Typical number of dislocation segments in relation to dislocation density and cell 

size 

Cell size, m  Dislocation density, m
-2 

Number of segments, N 

( bb 1000100  ) 

10 10
10

 – 10
15 

10
2
 – 10

6 

50 10
10

 – 10
15 

10
3
 –10

7 

 

a. Computation of The Dislocation Stress Field  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Dislocations curves: Meshing and dislocation nodes 
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2. Problem Statement 

MDDP02 combines ―micro3d‖ with finite element codes ―fea3d” (solid mechanics) and ht3d 

(heat transfer). It has been constructed within a generalized enough framework so that many 

classes of dislocation problems can be investigated, including: 

a) Simple dislocation mechanisms, such as Frank-Read sources. 

b) Stability of dislocation cell structures, such as cell walls and dislocation boundaries. 

c) Evolution of random distribution of dislocations. 

d) Interaction among dislocations and point defects and particles, SFT‘s, loops, etc. 
 
In this respect, users subroutines to include effects of other defects can be easily incorporated into 

micro3d, e.g. a subroutine to include the effect of prismatic dislocation loops to deal with the 

radiation-induced hardening problem, a subroutine to deal with dislocations interacting with 

microcracks, etc. 

 Therefore, the main issue is to predict the spatio-temporal evolution of the dynamical and self-

organizing system consisting of N dislocation segments, and the manner in which they interact 

with each other and other defects and surfaces to determine the overall strength of the metal under 

various loading conditions. The fundamental aspects of the model are built from the basic 

physical laws that govern: 

a) the mobility of an individual dislocation,  

b) short range interactions between two dislocations on core level, and  

c) long-range interactions associated with elastic distortions.  
 
The main governing equation for the dynamics of each dislocation segment is given by (Hirth and 

Lothe, 1982; Indenbom and Lothe, 1992; Hirth, Zbib and Lothe, 1997) 

 
componentglide

selfiii

N

j

aD

jji

i

ii Fbvv







 




    .)(
p)(T,M

1
m ,

*
1

1
1

                       (3) 

Here Fi(v) is the inertial force, vi is the dislocation segment velocity, Mg is the mobility, 
a

F is the 

force produced by applied stresses, and 
int

Fi is the internal force arising from interactions with 

other defects and dislocations and from the Peierls barrier if present (see Appendix A). 

Calculation of the long range interaction is most expensive (order 2N ). Therefore, we developed 

a method (superdislocation method) to reduce the order of interaction (to NlogN) with high 

accuracy (Hirth et al., 1996; Zbib et al., 1997) (the analog of the 2D multipolar expansion 

method). 

Determination of the mobility and interaction forces (long range elastic stress fields, and short 

range) constitutes the core of the model. Generally, Mg is a function of the angle between the 

Burgers vector and the dislocation line sense, especially at low temperatures. In bcc single 

crystals, at low temperatures a pure screw dislocation has a rather complex three-dimensional 

core structure, resulting in a high Peirels stress which is overcome by stress-assisted thermal 

activation (Hirth and Lothe, 1982). This leads to a relatively low mobility for screw dislocations 

while the mobility of mixed dislocations is very high (Urabe and Weertman, 1975). The kinetics 

of a screw dislocation is characterized by the mechanism of the succession of kink nucleation and 

lateral double kink migration, which are edge dislocations. This theory leads to a temperature-
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dependent mobility with activation enthalpy associated with kink nucleation. Basic relations are 

given in Hirth and Lothe (1982) and constitute the core of the model for mobility. 

3.  micro3d – fea3d : MDDP02 

The Coupled continuum mechanics – discrete dislocation dynamics approach (multi-scale approach) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Quasi-continuum finite elements with discrete dislocations 

The total stress S
T
 in the RVE element arises from: 1) applied loads on the surface of the computational 

cell, and 2) stress S
D
 from the elastic distortion of the dislocations in the whole solid, which also include 

dislocation image stresses arising from free boundaries (if any). 

 

Here we give a brief summary of the continuum mechanics framework that we have developed 

and the manner in which we coupled it with the DD code. Generally, the basic governing 

equations of the material response in continuum mechanics are developed based on a 

representative volume element (RVE) over which the deformation field is assumed to be 

homogeneous. Typically, in this approach the effect of internal defects, such as dislocations, 

voids, microcracks etc., on material behavior and the manner they influence material properties is 

modeled through a set of internal variables and corresponding phenomenological evolution 

equations. The material response is measured in terms a macroscopic strain rate tensor D and its 

relation to the Cauchy stress tensor S. Furthermore, for elasto-viscoplastic behavior, the strain 

tensor D is decomposed into the sum of an elastic and plastic, D
e
 and D

p
, respectively. For most 

metals the elastic response is linear and is expressed by the incremental form of Hooke's law for 

large deformation and material rotation, i.e. ee
o

D ][L=  S ,   S+  S  -SS
o

 , p
W -W=   , where L

e
 

is a fourth order tensor,   is the spin of the substructure and is given as the difference between 

the material spin W  and plastic spin p
W . The main issue here is to evaluate p

D  and p
W and 

relate them to the underlying defect structure, mainly dislocations. Independent of the nature 

of plastic strain tensor, we can use standard variational principal and cast the FE problem, for 

quasi-static case, into the standard form (after re-writing the equations in total form as opposed to 

the incremental form): 

                                             PBa
ffffUKUCUM                (2)     

                    

S
T
, D 

Computational cell 

Element with 
dislocations Homogeneous 

element  

B 
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where      dvNNM
T

V

   is the mass matrix,       dvBCBK
eT

V

  is the stiffness matrix, 

   
s

aa
Ntf ds  is the applied force vector,    

 
s

Ntf ds  is the force vector from 

dislocation image stresses,    
v

DB
dvBSf  is the  body force vector from dislocations long-

range interaction and      
v

PeP
dvBCf   is force vector from plastic strain caused by 

dislocations, with [N] being the shape function vector, [B]=grad[N], {u}=[N]{U}, and 

  UB . Dislocations are sorted out in each element and they contribute to the plastic strain 

based on equation (13). 

Numerical solution- explicit integration: Both the DD system of equations and the dynamic 

finite element model are solved using a forward explicit integration scheme. This scheme is 

chosen since the time step in the DD analysis (for high strain rates) is of the same order of 

magnitude of the time required for stable explicit FE dynamic analysis (FEA). In this analysis, the 

critical time tc and the time step for both the DD and the FEA, which yield a stable solution, are 

given by                                                         
20

t
t,

C
t cc

c  



                                                     

where c  is the characteristic length scale which is the shortest dimension in the finite element 

mesh. 

Coupling with the discrete-dislocation dynamics code micro3d: MDDP The “assumed‖ 

constitutive nature of the plastic deformation tensor 
pD  and flow stress and their dependence 

upon internal variables and gradients of internal variables is very critical, since they dictate, 

among other things, the length scale of the problem and the phenomena that the model can 

capture. However, the discrete dislocation dynamics model (micro3d) provides the most rigorous 

and physically based approach for computing the plastic strain and strain hardening in metals 

through an explicit evaluation of the motion and evolution of all individual discrete dislocations 

in the crystal. Therefore, fea3d is made as an integral part of micro3d as depicted below (Fig.4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:Coupling micro3d with fea3d: MDDP02 
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4. Computational Cell and Boundary Conditions 

The computational cell could be a representation of one of the two: 

1) A representative cell in an infinite domain. 

2) The whole test specimen: Finite domain. 

 

Figure 5: Computational cell 

 

a. Infinite Domain 

Dislocations in computational cell are reflected across the cell boundaries: 

 Maintains continuity of dislocation lines 

 Reflected cells 

 Multiple-time step: DT for updating far stress field > dt 

 
Computation of the 1/r Stress Field: 

Dislocations in CC are divided into ―M‖ sub-cells. Then the computational strategy is as follows: 

 Direct interaction with immediate neighbor subcells 

 stress from far dislocations is computed at center of subcell 
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 Stresses from reflected cells is computed using the  

―Superdislocation Method‖ )(2 NNLogN   

 

Figure 6: Infinite Domain: Computational cell and reflected cells 
The dislocations in the reflected cells are combined into superdislocations for long range 

interaction. 
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b. Finite Domain: Coupled FEA –DD 

(Image stresses) 

 

 

 

 

 

 

 

 

 

 
Figure 7: Finite domain: Free boundaries 

The computational cell in this case has free boundaries 

 
The simulation cell may represent: 

 Test specimen (micrometer size), Thin film, etc. 

 

Boundary conditions: 

 Free and/or rigid surfaces:  

 Free surfaces: Zero traction, image stresses from dislocations within the cells 

 Rigid surfaces: Zero displacement(relative), image displacements   

   (Heterogeneous fields) 

 Applied stresses: 

Tension, compression, nano-indentor, etc. 

      (homogeneous or heterogeneous)  

 

Finite Element Framework (fea3d):  

Stress at any point in the cell =  

   stresses from dislocations and internal defects 

+ applied stress  

+ stresses from image forces  

 

 The Computational cell is divided into finite elements. 

 Stress field arising from Image stresses is computed using the finite element method 

(auxiliary problem). Boundary value problem of a linear elastic continuum  

 

Shape changes (finite plastic deformation):  

Coupling of DD with FE viscoplastic formulation. 
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5. The Contents of the Computational Cell 

a. Dislocations 

Frank-Read Sources, Random distribution of dislocation curves, etc. 

b. Point defects 

Stacking-Fault Tetrahedron  

Frank-sessile loops 

(millions of defects) 

 

 

 

 

 

 

 

 

 

 

c. Dislocation boundaries 

 Cell walls 

 

 

 

 

 

 

 

 

*Or Combination of all of the above 

d. Pre-processors for data generation 

a) GendataBCC.F 

b) GendataFCC.F 
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6. Description of Dislocation Geometry and Constraints 

Each dislocation node (defining a segment) is described by the following:  

a) Nodal coordinates  

b) Slip plane  

c) Burgers vectors index (for cross-slip Data ) 

d) Magnitude of Burgers vector 

e) Nodal constraints 

f) Junction and Jog index 

 

a. Discretization and Description of Nodal Coordinates 

 
 

 

 
Figure 8: Junction node 

 

cx(i), cy(i), cz(i) Nodal coordinates 

bx(i), by(i), bz(i) Burgers vector in Cartesian coordinates 

nbr(i,1)   backward neighbor of node ―i‖  (relative to line sense)  

nbr(i,2)   forward neighbor of node ―i‖ (relative to line sense) 

nbr(i,3)   If ―i‖ is a junction node then it has a third neighbor nbr(i,3) =k and  

 segment i-k is the junction, otherwise nbr(i,3)=0  
 

cx(i) 

cy(i) 

cz(i) 

cx(j) 

cy(j) 

cz(j) 

Node i Node j 
Segment i 

Segment ―j‖ 

nbr (i,1) 

nbr (i,3) 
nbr (i,2) 

Junction node i 
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b. Type of Nodal Constraints and Corresponding Index icn(i) 

 

Table 2: Nodal constraints 

Constraint Type icn(i) index 

Free node 0 

Surface node: 

On yz plane 

On xz plane 

On xy plane 

 

1 

2 

3 

Node at corner 4 

Cross-slip node 5 

Pinned node 7 

Jog node 9 

Junction node 10 

 
Table 3: Vectors assigned to each dislocation node 

Main Vector 

 

cx(i), cy(i), cz(i) 

nbr(i,1), nbr(i,2), nbr(i,3) 

 glbx(i), glby(i), glbz(i) 

bjuncx(i), bjuncy(i),bjuncz(i) 

 

iplane(i) 

ixbtype(i) 

ixpltyp(i,j) 

 

 

icn(i) 

glveL(i) 

pchx(i), pchy(i), pchz(i) 

fglide(i) 

jndx(i) 

 

           jogndx(i) 

For Each Node 

 

x, y, z coordinates 

defines neighbors 

x, y, z components of Burgers vector 

x, y, z components of Burgers vector of junction 

 

index defining slip plane 

index defining Burgers vector 

index defining common planes ―j‖ for each Burgers 

vector ―i‖  

(e.g. for fcc, j=1,2 ixpltyp(1,1)=3 ixpltyp(1,2)=4) 

constraint index defining motion of node  

glide velocity of segments 

x, y, z components of Peach Koehler force 

glide force 

junction index = 0  node not a junction node, 

                    or = junction number 

jog index = 0  node not a jog 

            or = jog number  

 



 17 

c. Slip Planes and Corresponding Indices 

BCC System 

 
The slip planes {110} and {112} are considered. There are 18 possible slip planes, and four 

Burgers vector. See Appendix A for all possible slip systems. A screw dislocation for a given 

Burgers vector could cross-slip on any of six planes defined by the index ixpltyp(i,j).  

Table 4: Indices for slips planes and Burgers vectors (bcc) 

Slip Planes   Data for cross-slip in BCC for planes {110} & {112} 

Index         Plane 

iplane(i) 

Burgers 

Vector Index 

ixbtyp(i) 

Burgers 

vector 

cross-slip 

index 

ixpltyp(i,j) 

Slip System  

    1         )101(  

   2         )101(  

   3         )110(  

   4         )101(  

   5         )110(  

   6         )011(  

   7         )112(  

   8         )121(  

   9         )112(  

  10        )211(  

  11        )211(  

  12        )211(  

  13        )211(  

  14        )211(  

  15        )121(  

  16        )211(  

  17        )121(  

  18        )121(  

 

 

1 

 

 

]111[  

 

1 ]111[ )101(  1 

3 ]111[ )110(  2 

6 ]111[ )011(  3 

9 ]111[ )112(  4 

12 ]111[ )211(  5 

15 ]111[ )121(  6 

 

 

2 

 

 

]111[  

2 ]111[ )101(  7 

3 ]111[ )110(  8 

5 ]111[ )110(  9 

8 ]111[ )121(  10 

16 ]111[ )211(  11 

13 ]111[ )211(  12 

 

 

3 

 

 

]111[  

2 ]111[ )101(  13 

4 ]111[ )101(  14 

6 ]111[ )011(  15 

7 ]111[ )112(  16 

11 ]111[ )211(  17 

18 ]111[ )121(  18 

 

 

4 

 

 

]111[  

1 ]111[ )101(  19 

4 ]111[ )101(  20 

5 ]111[ )110(  21 

10 ]111[ )211(  22 

14 ]111[ )211(  23 

 17 ]111[ )121(  24 
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FCC System 
 

The slip planes {111} are considered. There are 4 possible slip planes, and six Burgers vector.  

See Appendix A for all possible slip systems. A screw dislocation for a given Burgers vector 

could cross-slip on any of two planes defined by the index ixpltyp(i,j).  

 

 

Table 5: Indices for slips planes and Burgers vectors (fcc) 

Slip planes              Data for cross-slip in FCC for planes {111} 

Index         Plane 

Iplane(i) 

 Burgers 

Vector Index 

ixbtyp(i) 

Burgers 

vector 

cross-slip 

index 

ixpltyp(i,j) 

     1   )111(  

      2   )111(  

      3   )111(  

      4   )111(  

(Using Thompson‘s 

Tetrahedron notation) 

 

AB     1 

 

]011[  

 

3 

4 

 

AC     2 

 

]110[  

 

2 

4 

 

AD     3 

 

]101[  

 

2 

3 

  

BC     4 

 

]101[  

 

1 

4 

 

BD     5 

 

]110[  

 

1 

3 

 

CD     6 

 

]011[  

 

1 

2 
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7. Stacking-fault Tetrahedron 

 

 

a. Stair Rods Dislocations 

 110
6

]211[
6

]121[
6

aaa
bbb AA    

 011
6

]121[
6

]112[
6

aaa
bbb BB    

 101
6

]112[
6

]211[
6

aaa
bbb CC    

 101
6

a
bbb    

 110
6

a
bbb    

 110
6

a
bbb    

 

 

b. Shockley partials 

 211
6

:
a

A    121
6

:
a

C  

 211
6

:
a

A    112
6

:
a

C  

 121
6

:
a

D    211
6

:
a

B  

 112
6

:
a

A    121
6

:
a

B  

 112
6

:
a

D    211
6

:
a

C  

 112
6

:
a

B   121
6

:
a

A  

 

2ba   

b: magnitude of perfect <110> dislocation  

A 

B 

C 

D 

 

 

    

 

 

 
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8. Program Description and Data Files 

a. Main Model Parameters 

 

a.1 Physical parameters 

Elastic properties:    ,E  

Mobility:     ,, Screwedge BB  

Jog strength-critical angle:   j  

Self force - core size: 

Junction strength - core size: 

 

a.2 Numerical Parameters 

Cell size      

Segment length (min and max) 

Number of cells (for infinite domain) 

Number of sub-cells (elements for FE) 

Initial time step stress control t  

(for constant strain rate: variable time step is controlled by the amount of plastic strain increment) 

Initial time step for DD  )( ttt  

Max flight distance: (variable time step t ) 

 

a.3 Control Parameters 

Max number of time steps:  maxstep (defined in ―data‖) 

Frequency of re-meshing 

Frequency of updating far stress fields and FE analysis (multiple time step) 
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b. Flow Chart of Program 

 

  

  

Initial conditions, sources, curves,   

cell walls, dislocation boundaries,  

etc.   

Establish/Update   

Sub - cells and Link Cells   

Distribute to  

processors   

Long range interaction    

(Isotropy and/or Anisotropy)   

Nearest sub - cell and its neighbors   

  
  
  

Add stress  

Boundary 

conditions   

Infinite Domain:   

Refelction BC   

Superdislocation   

Finite Domain: FEA   

Image stresses    

Applied stress (non - uniform)   

Shape changes , lattice rotation   

Heat - conduction   

  

Multiple time  
step   

Adaptive mesh   

Dynamic Calculations    

Equations of Motion   

et.   

Boundary  

constraints   

Adaptive re - meshing   

Update time step.   

Dynamic Load  

Balancing   

Interaction with  
point defects   

OR   

Interaction with  

micro - cracks   

Rigid surfaces,   
Free surfaces   

Short range  

interactions   
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c. Execution and Run Options 

 

1. Dislocations Dynamics ONLY ―micro3d‖: Infinite domain problems with periodic, or 

reflected or rigid boundary condition. 
 

Option in data: 

  Line 6:  0  0  (DO not execute fea3d!!) 
 

2. Couple finite element analysis with dislocations Dynamics ―micro3d+fea3d‖ 

Finite domain; boundary value problems. 

fea3d can be executed with either static or dynamics options. 
 

  Line 6:  1  1 (1 static or 2 dynamic)  

 

d. micro3d Input Data Files Required 

micro3d reads from two files: 

data 

DDinput 

 

e. fea3d Input Data Files Required 

Option IndexFE=1(static) or 2(dynamic), the following ONE data file must be provided: 

FEAconditions 

 

Most of the data is read in the module ―initio02.F‖. A description of each of these files is 

presented in following pages. 

 

f. Pre-processing: Input Data Files Generation 

A number of Modules are available to generate data for: 

a) Random distribution of dislocations and Frank-Read sources in bcc and fcc materials on 

all slip systems, 

b) Random distribution of prismatic loops, 

c) Dislocation boundaries (Cell Walls). 
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g. Output Files: Results and Post-processing 

 

The output data is formatted for use with either Techplot or Gnuplot 

 

g.1 Techplot Format 

Data generated in DDout0.F------>> 

sgtecplot.out contains history of dislocation coordinates it can be used 

to view dislocation motion and to make movies in 

tecplot. 

DDtimeResults.out Contains time dependent results like density, stress, 

strain etc.; only created if indexFE = 0.  

DDsubcellResults.out  Contains results for each subcell; only created if 

indexFE = 0. 

Data is generated in  FEA3d.F---->> 

FEAresult.out contains the FEA nodal variables data: mesh 

coordinates, displacement, stress, strain, and plastic 

strain tensors. 

Other data can be extracted: see also FEAtimedisp.out 

 

h. Specification of Loading Condition Options 

h.1 Micro3d ONLY 

The following lines must be specified: 

In data 

 Line 4.    e.g. Specify type of boundary  

0: rigid boundary  

1: free or reflection boundary and .   

3: Periodic 

  Line 5.     number of sub-cells  

  Line 6.    0 0 

 

Then two types of loads can be specified: 

a. Constant stress (creep.F): The stress is homogenous 

In input     

Line 2.    specify all, and loadtype=1  

Line 4    specify stress components  

xx, yy,zz, yz,zx,xy 

b. Constant strain rate (constrain.F) 

In input 
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Line 1. erate =  the strain rate and indexrate = direction of 

loading (1,2…6) 

Line 2.    specify all, and loadtype=0 

h.2 Couple micro3d-fea3d 

 

User subroutines: For use with fea3d to specify loading and boundary conditions. 

 

Static analysis (IndexFE=1): Displacement control  

Specify Displacement Boundary Condition (hasan1=1)at nodes with kfix=2 

 

 

if(hasan1.eq.1.and.IndexFE.eq.1)then in fea3d.F call: 

      subroutine FEAdispStatic(ffext,neeq,kffix,ttt,dttt) 

        ! neq     = total number of degrees of freedom 

        ! kfix(i) = fixity data 

        ! fext(i) = displacement vector 

        ! ttt       = current time 

        ! dttt     = time increment 

       dimension ffext(neeq), kffix(neeq) 

         velocity=10e6    

         dd=ttt*velocity 

        do i=1,neeq 

          if(kffix(i).eq.2)then 

          ffext(i)=dd 

        else 

          ffext(i)=0.0 

        endif 

        enddo 
        return 

 

Dynamic analysis(IndexFE=2): Velocity control 

For velocity of nodes of type kfix=2  

 

if(kfix(i).eq.2) then (called in dynamic.f in fea3d.F) 

           subroutine FEAdispDynamic(kf,dt,du)            !dt=time step !kf=node fixity  

           common /time1/nstep,timenow,dtc,deltt 

            velocity = 10e08 

            du       = dt*velocity 

            return 

            end 

 

i. Restart File 

During execution, dislocation data for micro3d is continuously written to: 

RESTART.FILE 

This file could be used to restart simulation from a previous run. 
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j. Description of Input Data Files 

j.1 Control Data 

File: “data” (read in the routine initio02.F) 

data 

1.-crystal------maxstep------sidex,   sidey,     sidez 

    'BCC'        

               1000000      35000.0   35000.0    35000.0 

2.-denisty(kg/m3)---shr(Pa)(MO)--pois--mobility(1/pa.s)--ba(m) 

      2700.0       12.3e10      0.309      1.e3        2.725e-10 

3.-temper--stkfe(J/m^2)--ismobil--amfactor--thermk(W/m K)-heatc(J/Kg K) 

   300.0     0.04     1          0.025      390.       385. 

4.-npolorder---ncell-----ifree(0,1,3)----nsface1(3)-----nsface2(3) 

     2            0         1        1  1  1       1  1 0 

5.-nscx,y,z(nscx.nscy.nscz = number of subcells) 

   5  5  5 

6.--FiniteElement(IndexFE=0,1,2),indexFE1=0:GenerateData,1:Read, NFEA 

    1 0 100 

7.—Prismatic-SFT Loops data (0=no defects, 1=Yes),(ndz=1(loops) 

                                            =2(SFT’s), 3=square) 

      0  1 

8.—Define Coordinate system (w.r.t. crystal axis) 

        1.  0.  0. 

        0.  1.  0. 

        0.  0.  1. 

9.--Index for output of results: Every N steps (nndx),  

                  gnuformat, tecplotformat (0=NO, 1=Yes) 

     50       0       1 

10.--IntegOption(IDTdd=0 Const dt,1 Varible), imeshdd(0=cons, 1=auto) 

    0 0 

Block 1: --crystal------maxstep------side 

crystal:  FCC or BCC (followed by a separate line) 

 maxstep:  maximum number of steps 

 sidex, y, z: cell size (normalized by the magnitude of the Burgers vector) 

Block 2: --density(kg/m
3
)---shr(Pa)(MO)--pois--mobility(1/pa.s)--ba(m) 

 density(rho): material density (kg/m
3
) 

 shr:  shear modulus (Pa) 

 pois:  Poisson‘s ratio 

 mobility(amg): dislocation mobility (of edge and mixed)   (1/pa.s) 

 ba(brgmgal) magnitude of burger‘s vector (m)  

Block 3:-- temper--stkfe--ismobil--amfactor----thermk---heatc 

 temper:  Temperature (K) 

 stkfe:  Stacking Fault Energy (J/m
2
) 

 ismobil: 0 or 1, 0: mobility of edge = mobility of screw, 

    1: mobility of screw = mobility of edge/mixed * amfactor 

 amfactor: = (mobility of screw)/(mobility of edge/mixed) 

thermk:  thermal conductivity (W/m K) 

heatc:  Specific heat capacity (J/Kg K) 

Block 4: .--npolorder----ncell---------ifree-------nsface1(3)------nsface2(3) 

 npolorder: order of ―superdislocation‖ expansion,  =2 

 ncell:  number of reflected cells (0=finite domain) 

 ifree:  0: rigid boundary, 1: free or reflection boundary, and 3: periodic 

 nsface1(3)  = 1 or 0 (1=Yes free face x, y, z) 
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 nsface2(3)  = 1 or 0 (1=yes reflection boundary, x, y, z) 

Block 5: .—nscx, y, z (nscx,nscy.nscz=number of subcells for long range stresses) 

 nscx,y,z 3,4,5..10 (not less than 3!) 

Block 6:-- Finite element data 

 IndexFE  = 0 no FEA, =1 Static FEA, =2 Dynamic FEA 

IndexFE1  = 0 Generate FE data, = 1 Read FE data 

Nfea  Number of DD steps per one FEA step 

Block 7:—Index for point defect  

 Loopfile: 0=no loops, 1=read loops 

ndz:  1= loops, 2= SFT‘s, 3=square 

Block 8:—Define Coordinate system (w.r.t. crystal axis) 

1.  0.  0.  (direction of x-axis) 

0.  1.  0.  (direction of y-axis) 

0.  0.  1.  (direction of z-axis) 

(in this example the cell axes are in the same direction of the crystal axes.) 

Block 9:   How often the results is printed out and written to RESTART.FILE (nndx) 

  Gnuformat (=1, if gnuplot format output is required), 

techplotformat(=1, if techplot format output is required) 

50     0       1 

Block10.—Integration Option (IDTdd=0 constant time step deltt: =1 variable time step) 

     Meshing Option (imeshDD=0 constant remeshing,=1 auto remeshing) 
 

 

j.2 Initial Input Data (geometry, connectivity, etc.) 

File: “DDinput” (read in the routine initio02.F) 

DDinput 

Restart: Input could also be restart data from a previous run: micro3d frequently writes a file 

called ―RESTART.FILE‖ containing restart data. For starting from a previous run, rename 

RESTART.FILE to input and run micro3d. 

2002  

 1: node       fixed  erate indxerate  jn  jogn  nstep ntotal 

      4         10.0  10.0      4      0    0    0     0 

 2: timenow  strn stress deltt << dbt  loadtyp 0=constntStrainRate   

                                                  1=creep, 2,3..=No DD) 

     0.       0.   0.   1.E-11   1.E-07     1 

 3: strain increment 6 components 

     0. 0. 0. 0. 0. 0. 

 4: external stress 6 components  (For Homogenous load, and DD ONLY) 

     5.e7   0.   0.   0.   0.   0. 

 5: coordinates      and        Burgers vectors, bx, by, bz  

  1000.  -5000.  -10000.       -0.5773503   0.5773503   0.5773503      

  1000.  -5000.   10000.       -0.5773503   0.5773503   0.5773503       

  1000.   5000.   10000.       -0.5773503  -0.5773503   0.5773503     

  1000.   5000.  -10000.       -0.5773503  -0.5773503   0.5773503    

6: nbr(i,1)     nbr(i,2)  nbr(i,3) PlaneType Constraint ixbtype 

     0  2  0 5  7  4 

     1  0  0 5  7  4 

     0  4  0 6  7  3 

     3            0  0 6  7  3 

7:Defect Data(#of Defects; followed by Defect size, plane & Coordinate) 

  1 

  10.  1    2000.   1000.   3500.    
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Line 0: The year the file DDinput was created  

Line 1:  node       fixed    erate  indxerate   jn  jogn  nstep  ntotal 

node:  the initial total number of nodes 

fixed:  the initial value of average segment length (in Burgers vector) 

erate:  strain rate (1/s) 

indxerate: strain (or stress) component with strain rate erate 

indxerate = 1,    2,    3,    4,    5,     6 

             121323332211          

jn:  initial number of junction nodes 

jogn:  initial number of jogs (nodes) 

nstep:  number of steps already executed (if restarting form an earlier run) 

ntotal:  number of iterations already executed (if restarting form an earlier run) 

Line 2:   timenow    totalstrn  totalstress deltt    dbt        loadtyp (0 or 1) 

timenow:  

totalstrn: total strain at nstep  

totalstress  total stress at nstep 

deltt:  time step during iteration 

dbt:  time step (made up the sum of deltt) 

loadtyp: =0 for constant strain rate 

   =1 for constant stress (creep). 

Line 3:    strain increment 6 components 

Line 4:   external stress 6 components  

Line 5:  coordinates       and Burgers vector for each node 

         coordinates: x, y, z for each node 

 Burgers vecto: x,y,z components for wach node 

Line 6: list neighbors of each node, plane type , constraint ,   Burgers Vector Index (ixbtyp(i)) 

 plane type (iplane(i)):  For each node 

 constraint (icn(i)):  For each node (0,1,…) 

 Burgers Vector index:  For each node (1,2,..) 
Line 7: Number of defects (if any). followed by Defect size, plane &  

Coordinates)for each defect. 
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j.3 Finite Element Data (Special Case! For parallelepiped geometry)  

If  ―IndexFE = 1‖, the following FEAinput data file should be provided:  

FEAconditions 

Values for “hasan” and “hasan1” (Type of Displacement BC) 

1 0   

Values for “Khan” and “Khan1” (Type of Each Boundary)if Hasan=1 

0 0 0 0 0 0 Khan(i),  i=1,..6 

0 0 0 0 0 0 Khan1(i), i=1,..6 

Nall= '0' or 1. 0: Tractions on entire surface. 1: Specify elements 

1    

DISLOCATIONs image stress "y" or “n”.  “y” or “n” Inanoindentation  

y    

n   

Nall=1: Surface (1-6) & '0' for traction-free or '1' to input traction. 

1               0      0.                      0.               0 

2          0   0.                      0.                 0 
3      1  0.        0.      100000000 

4      0 0.        0.      0 

5      1 0.        0.      100000000 

6      1 0.        0.      100000000 

Nanoindentation: Pmn, Pmx, DP, Delta unloading #of creep time steps 

0.0 1000e-6 500e-7 500e-7 2 

 

 

 

END of FEAconditions************************ 

If Nall=0: These lines should Replace line Nall=1 and 6 lines below it 

4        !number of loaded elements   

1    3   !element number…..number of loaded surfaces  

   1    16524  0.   0. !surface number followed by traction 

   4    89773  0.   0.  

   5   -18974  0.   0. 

2    2 

   1   90834   0.   0. 

   5   87634   0.   0. 

3    1 

   5   -3847   0.   0. 

13    1 

   6   0998    0.   0. 

If Hasan=0: These lines should follow after Khan1 

7  !No. of constrained nodes.  

1 0 0 1 

11 0 0 1 

16 1 1 1 

36 1 0 0 

40 1 0 0 

63 0 1 0  

64 1 1 0 

****************** 

*Block line: Hasan, Hasan1 

    Hasan=0 1 or 2 ; 

         0 >> Line 4: input the total number of the constrained nodes 

              followed by node number and its fixity. 

         1 >> Line 2: Free/Symmetric/Rigid according to Khan(i),i =1..6 

x 

y 

Face 2 

1 

3 
6 

5 
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         2 >> Line 3: four corner nodes of the base are fixed 

    Hasan1=0 or 1 

           0 >> no displacement BC  

           1 >> Line3: Non-zero displ. BC according to khan1(i) 

                   and user subroutine FEAdispStatic.F(see above) 

Block 2: 

 Khan(1)..Khan(6)  6 surfaces 0:free, 1:symmetric, 2:rigid 

Khan1(1)..Khan1(6) 6 surfaces 0:free, 1:non-zero NORMAL disp., 

                              2:non-zero disp. in all DOF 

 

 Note: Both khan(i) and khan1(i) cannot have a non-zero value! 
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9. Appendix A: Data Generation Codes 

There are two data generation codes available both for fcc and bcc materials. These can 

generate the data file (input) for various dislocation structures such as Frank-Read source, planar 

boundary, dislocation walls, point defects etc. 

 

User Interface:  PreMs MDDP02.exe 

 

A-1. Data generation for fcc materials: GendataFCC 

 

GendataFCC is a code that generates the initial input data for MDDP02 for fcc materials, for 

different arrangements of dislocations, including: 

1  = Frank-Read Sources  

2  = Array of Frank-Read Sources 

5  = Cell walls (Modified Mughrabi Model; need file walldata) 

6  = Carpets  (need file carpetdata) 

7  = Planar Boundary (need file planardata) 

10 = Frank-Read Sources decorated with loops 

11 = Frank-Sessile loops (circular) 

 

The file datain is required for all the data types, however 1, 2, 10, and 11 require console input 

for data generation. 5, 6, and 7 require additional data files. The description of all data files is 

given in the following section. 

Description of Input Data Files 

Control Data 
File: “datain” 

datain 

1. Cell Size (Simulation cell size in x-, y-, and z- axes, in units of b) 

5000. 5000. 5000. 

2. The coordinate axis coincides with the crystal axis(=0): =1: If you want to 

      rotate 

0 

3. Enter the directions of the x-axis and y-axis? (z-axis is determined by 

     software.) 

1. 0. 0. 

0. 1. 0. 

Line 1: --Define Cell size in x-, y-, and z- direction (units of Burgers vector) 

Line 2: --Define if you want to rotate the coordinate axes 

 0: don‘t rotate 

1: rotate the axes (to the axes given in Line 3) 

Line 3: --Define your coordinate axes (only used if 1 is given in Line 2) 

 z-axis is determined by the code 

Note: The parameters in the file data (in MDDP) should be consistent with the file datain. 

 

Initial Input Data 
File: “walldata” required for generating data of type ‗c‘ 

walldata 
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1. Number of Columns (One Col. is two set of +ve & -ve disls) 

5 

2. Number of rows (one column and one row is a dipole) 

3    

3. Z-Separation distance between dislocations(1000b) 

1000       

4. y-eparation distance between dislocations(500b) 

500    

5. Slip plane index (1,2,3, or 4)? 

3 

6. Burgers Vector index (1,..6), should coincide with plane! 

5 

Line 1: --Define number of colums 

Line 2: --Define number of rows 

Line 3: --Define separation distance in z-axis 

Line 4: --Define separation distance in y-axis 

Line 5: --Define slip vector (index using Table 4) 

Line 6: --Define Burgers vector (index using Table 4) 

 

File: “carpetdata” required for generating data of type ‗d‘ 

carpetdata 

1. Number of Columns (One Col. is two set of +&- disls) 

4 

2. Number of rows (one column and one row is a dipole' 

3    

3. Z-Separation distance between dislocations(1000b)' 

1000       

4. y-eparation distance between dislocations(500b)' 

500    

5. Slip plane index (1,2,3, or 4)? 

1 

6. Burgers Vector index (1,..6), should coincide with plane! 

4 

Description is same as for walldata. 

 

File: “planardata” required for generating data of type ‗e‘ 

planardata 

1. How many sets of dislocations? 

2 

2. For this set: How many dislocations? 

10 

3. What is the separation distance between two dislocations?  

700 

4. What slip Plane (index) 

5 

5. What Burgers vector (index) 

2 -1 

6. Where do I start (y) 

-2200 

7. What is the line direction? 

-0.825 0.351 0.0 

2a. For this set: How many dislocations? 

7 

3a. What is the separation distance between two dislocations?  

900 

4a. What slip Plane (index) 

4 

5a. What Burgers vector (index) 
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4  1  

6.a Where do I start (y) 

-2400 

7a. What is the line direction? 

0.625 -0.105 0.0 

Line 1: --Define sets of dislocations you want on the boundary 

Line 2: --Define number of dislocations lines 

Line 3: --Define separation distance between dislocation lines 

Line 4: --Define slip plane (index using Table 4) 

Line 5: --Define Burgers vector (index using Table 4) 

Line 6: --Define starting point for first dislocation (x- and z- starting points are fixed) 

Line 7: --Define dislocation line sense 

Note: Repeat Line 2-7 for number of dislocation sets you mentioned in Line 1. 

 

Output Files 

The output data is formatted for use with either Tecplot® or Gnuplot® 

sg.out can be used to view dislocations as generated using 

Gnuplot®. 

sgtecplot.out can be used to view dislocations as generated using 

Tecplot®. 

input can be used as input to MDDP02. 

loopfile.data this file is created if you are using Point Defects 

(copy this file to MDDP02 folder along with input, and 

make sure that line 7 in the file data is changed 

accordingly) 

 

 

A-2. Data generation for bcc materials: GendataBCC 

 

GendataBCC is a code that generates the initial input data for micro3d for bcc materials, for 

different arrangements of dislocations, including: 

1  = Frank-Read Sources 

5  = cell walls (Modified Mughrabi Model; need file walldata) 

6  = planar Boundary (need file planardata) 

10 = Frank-Read Sources decorated with loops 

11 = Frank-Sessile loops (circular) 

12 = Lassila‘s  Case 

 

The file datain is required for all the data types, however 1, 10, 11, and 12 require console input 

for data generation. 5 and 6 require additional data files. The description of all data files is the 

same given in GendataFCC section (Please use Table 3, where Table 4 is mentioned in the 

description of GendataFCC). 
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10. Appendix B 

 

B-1 Slip Systems in FCC Metals 

 

Figure B-1: Slip planes in fcc (Thompson Tetrahedron)  

The most closed packed planes for the FCC crystal structure is the {111} family. Slip occurs 

along <110> type directions within the {111} planes. Table A-1 lists all the possible slip systems 

in FCC metals. 

Table B-1: Slip systems for fcc metals 

 

 

 

      Planes           (111)   (111)  (111)   ( 111) 

 

                           [110]   [110]   [110]    [110]  

   Directions       [101]   [101]    [101]   [011]    

   [011]   [011]   [011]   [101] 



 34 

B-2 Slip Systems in BCC Metals 

 

For BCC metals, {110} and {112} are the most closed packed planes. Less closed packed planes 

are the {123} type family. 

Table B-2: Slip systems for bcc metals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Planes                      (110)   (110)   (101)   (101)   (011)   (011) 

 

                                 [111]    [111]   [111]   [111]    [111]    [111]  

Directions 

                                 [111]    [111]   [111]   [111]   [111]   [111] 
                                                                         

      Planes           (112)   (11 2 )    (112)   (112)  (121)     (1 2 1) 

    Directions      [111]    [111]    [111]   [111]   [111]    [111]  

 

      Planes           (121)   (121)   (211)   ( 2 11)   (211)   (211) 

    Directions       [111]  [111]   [111]   [111]   [111]   [111] 

            

Planes                   (123)   (123)   (1 2 3)   (123 )   (132)   (132)   (13 2)   (13 2 ) 

Directions             [111]   [111]   [111]   [111]   [111]   [111]   [111]    [111] 

 

Planes                    (312)   ( 3 12)   (312)   (31 2 )   (321)   (3 21)   (3 2 1)   (321) 

Directions               [111]   [111]   [111]   [111]   [111]   [111]   [111]   [111] 

 

Planes                    (213)   ( 2 13)   (213)   (213 )   (231)   ( 2 31)   (23 1)   (231) 

Directions              [111]   [111]   [111]   [111]    [111]   [111]    [111]   [111] 
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11. Appendix C 

Table C-1: Calculated values for the critical stress for the bowout of a single dislocation 

Spacing 

(b) 

Segment Length 

(b) 

S (compound) 

(MPa) 

Tilt-Wall 

(MPa) 

Orowan 

(MPa) 

100 30 246.0 203.2 272.0 

500 50 65.0 63.9 54.4 

900 50 39.0 40.3 30.2 

1000 40 

50 

100 

180 

36.0 

37.0 

37.0 

37.0 

 

 

 

37.0 

 

 

 

27.2 

2000 100 20.0 22.5 13.6 

5000 100 9.5 9.7 5.4 

10000 500 

1000 

5.5 

5.4 

 

5.7 

 

2.7 

15000 500 

1000 

4.5 

4.5 

 

4.0 

 

1.8 

20000 500 

1000 

3.5 

3.5 

 

3.2 

 

1.4 
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12. Appendix D 

 

Description of Rules and Numerical Implementation 

 

The objective of this appendix is to give a brief description of some of the major issues associated 

with the computer implementation of basic rules. The code is constructed as a set of subroutines. 

Each subroutine is modulized so that one needs to make only minor changes, if needed, in order 

to study for specific applications. The data structure of the main program is discussed along with 

flow charts associated with major subroutines. 

D-1: Non-dimensionalization 

The stress components for a curved dislocation are given in closed line integral form. 

Numerically it is quite expensive to handle the complex nature of the integral. To reduce this 

complexity we employ a simple approximation method where a curved dislocation is 

approximated by a set of straight line segments as discussed in Chapter 4. The equations are 

simple algebraic equations (given in Appendix I) and hence much easier to handle numerically. 

For the code development, we use a non-dimensionalized approach. For example, the space 

coordinates are normalized by the magnitude of the Burgers vector b with each unit distance 

being the magnitude of the Burgers Vector as χ = r/b, where r is the vector from dislocation 

segment to a point of interest. For example, the stress field is inversely proportional to r as  

   
r

b
  (D-1) 

where µ is the shear modulus. With x̂  = r/b, equation (C-1) becomes 

   = 
r̂


 (D-2) 

Similarly, the net driving force per unit length 

  
b

F
Fb ˆF  (D-3) 

with a unit of force per unit length per Burgers vector. Also, let the non-dimensional velocity v̂ = 

v/b then we have 

  FBv
b

F
Bv ˆˆˆ 








  (D-4) 

with the time increment of Δt we obtain the glide distance as 

  tvx  ˆˆ  (D-5) 

using equations (C-1)-(C-4), although it is a small gain in the computational aspect, there is no 

need for the magnitude of b. For the actual values of velocity and net force, b should be 

multiplied. 
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D-2: Data Structure 

Identification of Basic Geometry: To identify a dislocation segment in 3D space, we need the 

following: 

a) coordinates of two end points of a dislocation segment 

b) neighboring nodes 

c) line sense vector 

d) Burgers vector 

e) plane index 

f) cross-slip index 

g) constraints 

 

Figure D-1: Dislocation segments and nodes 

 

For example, consider a set of dislocation segments as shown in Figure C-1. In the figure, the 

segment number is represented by the node from which dislocation line begins; i.e. segment i is 

represented by node i. The line sense vector is determined using the neighboring nodes. For each 

node number it has two neighboring node numbers, i.e., 

nbr(i,1), nbr(i,2), 

where i is the node number and index 1 and 2 represents the backward and forward node, 

respectively. The forwarding neighbor of segment i (in the direction of the line sense) in the 

figure is j, i.e.  

jinbr ),( 2  

and the backward neighbor of segment i is m as 

.),( kinbr 1  

To specify a junction node as shown in the figure, we use its third neighbor node as nbr(i,3). 

Initially, the value of nbr(i,3) is set zero. When a junction is formed the value of nbr(i,3) becomes 

the node number of the segment whose end node is attached to the junction node. For example, 

the junction node of node i is nbr(i,3) = k as shown in the figure. The line sense vector is simply 

obtained by considering the two end nodes for a given segment. The plane index is introduced to 

specify the type of plane in which the dislocation segment can glide. The plane index for different 

slip planes is given in Chapter 6. Due to the geometrical constraint, we specify a number of 

different constraint types since there are many constraints associated with the behavior of 

dislocation motion. Table 2 lists the type of each constraints and corresponding index values of an 

array icn(inode). 

nbr (i,1) 

k = nbr (i,3) 

nbr (i,2) 

Junction

ode 

i 
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For free boundary conditions, segments reaching boundaries must disappear. This introduces 

another block of statements that must account for the node elimination on the crystal surface. 

Nodes on the surface are constrained to move along its crystallographic directions. In bcc metals, 

for example, since the unit vectors specifying the six (110) and twelve (112) planes are stored in 

the beginning of the program, one can simply use this information to treat the motion of nodes on 

the surfaces of the crystal. For example, Figure C-2 shows nodes on the boundary along its 

crystallographic directions. In the figure the dislocation line is in (110) plane which has the plane 

index of 5. There are two end nodes on the (010) and (001) surface, xy and xz planes, 

respectively. The node on the xy plane is constrained to move along the line  x = y, which has the 

constraint type 3. i.e. icn(inode)=3. If a node on the (110) plane has the constraint type 2, it is 

constrained to move in the z direction on the xz plane as shown in the figure. For rigid boundary 

condition, dislocation segments pile-up at the boundary. 

 

Figure D-2: Boundary nodes 

 

D-3: Main Features 

The program is called micro3d which consists of one main program and a number of subroutines 

as shown in Figure C-3. First, the main program reads the material property parameters from the 

input file for the initial condition such as the type of crystal (bcc or fcc), material constants, cross 

slip data structures. Then it determines, based on the flag value, whether to perform constant 

strain rate test or creep test. Once all information is gathered, it calls the subroutine that calculates 

the Peach-Koehler force, including interaction from remote segments, adjacent segment force 

calculation including line tension, and long range interaction using superdislocations. The 

velocities are based on different values for the mobilities of screw and edge character, giving an 

option for the same and different mobility. The net force acting on each segment is stored in a 

vector array. The values of velocities are also stored for a later usage when nodes are moved 

according to the product of average amount of velocities of two segments and the time increment. 

Then, the features of short-range interactions are checked followed by the calculation of the 

plastic strain increment and movement of nodes. This is summarized in a flow chart in Figure C-

4. 
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Figure D-3: micro3d.f code control 

 

Figure D-4: Short-range interactions 
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D-4: Cross-slip 

Cross-slip is an important mechanism in recovery processes in both fcc and bcc metals. Screw 

dislocations may cross slip to reduce internal stresses and to circumvent internal obstacles, 

consequently, providing a mechanism for the production of Frank-Read sources through double 

cross-slip. The process is very prolific in bcc materials due to the availability of many secondary 

slip systems; a <111> screw dislocation could cross-slip on three {110} planes, three {112} 

planes and six {123} planes. The ease of a screw dislocation to cross-slip has been observed in 

stage I in the form of ―composite slip‖ or wavy slip lines (Mitchell and Spitzig, 1975). This 

mechanism was first proposed by Taylor and Elam (1926) and was referred to as ―pencil glide‖ to 

explain the wavy slip traces in iron. They suggested that although the slip plane was not clearly 

defined the slip direction was clearly <111>. Subsequent investigations have suggested that the 

observed wavy glide is the result of cooperative cross-slip occurring in increments of a few to a 

thousand Burgers vector units on appropriate {110} and {112} planes.  

For the <111>{110} and <111>{112} slip systems in bcc, e.g., a <111> screw dislocation is 

common to six different planes. Within the present framework of discrete dislocation segments, if 

a screw dislocation segment cross-slip to a secondary plane it would have to bow-out to form a 

―Super-kink‖ configuration as shown in Figure C-5.  

Figure D-5: Model for cross-slip mechanism  

 

Thus, for cross-slip to take place the segment would have to overcome a barrier whose strength is 

determined by the elastic activation energy for that configuration. However, cross-slip is a 

thermally activated process and is determined numerically using a Monte-Carlo type simulation 

as explained below. The probability of a segment to jump into a secondary plane is determined by 

the probability P as 

  

L
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
 (D-6) 

where 1 is the fundamental frequency of a vibrating dislocation segment of length L, Ct is the transverse 

sound velocity, t is the time increment,  is a numerical parameter controlling the frequency of cross slip, 
*

W  is the double kink activation energy,   is the resolved shear stress, A is the area swept by the 

dislocation segment, k is the Boltzmann constant , and T is the absolute temperature.  The activation energy 

based on the double kink as shown in Figure C-5 is given in [14], and 
* is the corresponding critical stress 

to form the critical configuration.  This configuration (with a=L/2) corresponds to the (approximate) 

critical configuration to bow out a pinned dislocation to a semi-circle configuration. With this condition, 

once the dislocation segment is moved into this configuration it will continue to bow out. Otherwise if the 
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segment is moved a small fraction of L/2 it may retreat due to a large back force from line tension. 

Moreover, it is argued that since the process is thermally activated, once the barrier is overcome the 

dislocation would jump to this configuration over a time scale much smaller than that of the simulation 

time scale.  

The for a given segment length, 
* is found by minimizing the total free energy G  of the bow-

out shown in Figure 3, where bAWG  , 22
/LA  being the area swept by the 

dislocation segment as it forms the kink shown in Figure C-5, for which the W is given by 

(Hirth and Lothe, 1982, p. 243).  
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Upon minimizing G  with respect to L, we obtain the critical stress 
* for a given segment 

length L. For Ta, the result is given in Figure C-6 

Figure D-6: Critical stress versus segment length for cross-slip. 

 

The Monte-Carlo simulation to determine cross--slip is developed as follows. At a given stress 

state the shear stress  is determined for each plane and the probability is evaluated using 

equation (10) for each of the planes. Then a random number between 0 to 1 is selected to 

determine which plane the probability falls into. An actual simulation of cross-slip and composite 

slip is given in Figure C-7. In this simulation, a Frank-Read source is situated on the (011) plane 

with [ 111 ] Burgers vector as shown in the figure. Then an axial stress  is applied in the [010] 

direction. This orientation results into the same resolved shear stress for both (011) and (110) 

planes. Initially, the dislocation line is oriented such that the dislocation is pure edge. The 

dislocation bows out around the source and dislocation segments on the far right and far left of 

the loop become pure screws. In this orientation, the glide force acting on the screw dislocation 

on each of the possible six glide planes (110), (011), ( 110 ), ( 121 ), ( 121 ) and (121) is 
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6/b , 6/b , 0, 65 /b , 65 /b , and 23/b , respectively. Therefore, the largest 

glide force is in the (110) and (011) planes. Moreover, the planes ( 121 ) and ( 121 ) experience 

86% of this largest glide force. Therefore, the screw dislocation under consideration would have a 

high probability to cross on any of these four planes. For a relatively high applied stress (200 

MPa) cross slip takes place as can be seen in Figure C-7. In this example, the mobility of screw 

dislocation was assumed be equal to that of the edge dislocation for high temperatures 

[
410 gsge MM (Pa.s)

-1
]. 

Figure D-7: Simulation of cross-slip 

 

D-5: Annihilation:  

Two attractive parallel dislocations in the same plane can annihilate if the force criterion 

mentioned in Chapter 3 is satisfied. For the actual implementation the following conditions are 

checked. First, 1b  must be parallel to 2b , i.e. .021  bb  Second, the line sense vector 1  

and 2  have to be force parallel ( 021  ). Once these two conditions are met, the quantity of 

net force between two segments is evaluated to determine whether the interaction between them 

is attractive or repulsive. Consider two attractive dislocation segments as shown in Figure C-8(a). 

For annihilation, node i should be the forwarding node of node m. Also, node j becomes the 

forward node on node k, where now k becomes the backward node of j node as shown in Figure 

C-8 (b). In the program this is implemented as  

nbr(i,2) = m 

nbr(m,1) = i 

nbr(j,1) = k 

nbr(k,2) = j 

Once annihilation has occurred as shown in the figures, the interaction force between the two 

segments joined by the sharp corner is very high it is a nearly instantaneous process they become 

attracted and annihilated. For this purpose, we simply check the angle between the two segments 

as shown in Figure C-9. If it is smaller than a critical angle we remove the node and rearrange the 

arrays as  

nbr(i,2) = k 

nbr(k,1) = i 

call remove(j), 
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where subroutine remove is used to re-shuffle the memory space of empty array addresses, where 

we move the content in the last node into the node just removed since the total number of nodes 

after the step mentioned above becomes on node less.  

 

Figure D-8: Annihilations of two segments  Figure D-9: Reducing sharp corners 

 

Another case that needs to be dealt with is the case where two long dislocations annihilated 

producing a configuration as shown in Figure C-10(a)-(b). The loop created by annihilation of 

two attractive segments gets annihilated naturally with a few subsequent iterations.  

 

Figure D-10: Annihilation of loops 

 

D-6: Jog 

Jogs are formed when the angle between two attractive dislocations in different planes becomes 

less than a critical angle as discussed in Section 5.5 can form jogs. When the two dislocations are 

repulsive but one is highly mobile due to other external sources, jogs can be also formed. Figure 

C-11 (a)-(b) illustrates jog formation of two attractive dislocations. In Figure C-11(a), segment i 

and segment m are to react to form jogs. When jogs are formed as shown in Figure C-11(b), 

segment i (nodes i and j) is placed on the other side of segment m (nodes m and n) making the 

constraint type of node i a jog constraint type, i.e. 

icn(i) = 9 
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Segment m is also placed over the segment i with icn(m) = 9. Due to the length scale of our 

discretization approach, the actual jog creation is not very desirable, although possible. The jog 

nodes are treated in a special way by their constraint type. They become immobile until the two 

adjacent segments reach a critical value. Jogs approaching the crystal surface are annihilated at 

the boundaries if free boundary conditions are used. At every iteration, we need to check whether 

if this condition is met. We can simply scan, rather than checking all nodes, only up to the 

number of jogs in stead of checking all the segments with the constraint type of jogs, i.e. icn(i) = 

9 by introducing arrays as   

 

jog(1) = i                 jogpoint(i) = 1 

jog(2) = m              jogpoint(m) = 2 

                                        

The index of jog vector above is the number of jogs. For jog(2) = m, it implies that the second jog 

index (2) has node number m. The vector jogpoint contains the value of jog indices. For example, 

the expression jogpoint(i) = 1 indicates that node i has the jog number 1. 

Figure D-11: Formation of jogs 

 

Jogs can move by creating vacancies or interstitials. This strength is balanced by the total line 

tension of two adjacent segments around the jog node. When the line tension force exceeds the 

jog strength, the jog moves by the following scheme. (See Rhee et al., (1998) for detailed analysis 

for this critical jog-motion-angle criterion). When the angle reaches a critical value the jog node 

is advanced according to the average velocity of two adjacent segments.  

 

D-7: Junction 

For the junction formation mechanism, consider two dislocation segments shown in Figure C-12 

(a). When Rule 3 in Section 5.4 is satisfied, a junction is formed with the Burgers vector being 

the sum of those of the two segments as shown in Figure C-12(b). Before junction reaction, node 

i has its forward neighboring node j with the Burgers vector 1b . Node m has the forward 

neighboring node n as shown in Figure C-12(a). When a junction is formed the vectors of the 

neighbors become 



 45 

nbr(i,2) = nbr(n,2) 

nbr(i,3) = j 

nbr(nbr(n,2),1) = i 

nbr(j,1) = nbr(m,1) 

nbr(nbr(m,1),2) = j 

nbr(j,3) = i 

call remove (m) 

call remove (n) 

 

For non-coplanar junction, one must find the line of two intersecting planes since junction can 

only form along the common lone of intersectionJunction nodes formed by dislocations in 

different planes move, by further reactions between the two adjacent segments around a junction 

node when energetically favorable, only in the direction of the common line of two intersecting 

planes. 

 

 

Figure D-12: Junction formation 

 

Two new vectors are introduced to deal with interaction between the junction segment and remote 

segments. For example, there are example junction nodes created in the figure. These arrays are 

necessary to avoid any redundant steps for the interaction calculation, i.e. rather than going 

through the entire segments, only up to the total number of junction nodes can be checked. The 

two arrays are  

jnpoint(1) = i                      jnindex(i) = 1 

jnpoint(2) = j                     jnindex(j) = 2 

The interaction forcer on the three segments around a junction node is treated using above vector 

array. 
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D-8: Strain Calculation 

For the incremental plastic strain calculation, the old position of all segments need to be stored 

because information of how much each dislocation has moved should be available to calculate the 

strain increment. The calculation is based on the relation 
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where iA  is the area swept by a dislocation segment, in  is the unit vector normal to the slip 

plane, ib  is the Burgers vector and V is the cell volume. Similarly, the rotation tensor is given by  
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For more realistic simulations, this feature should be included to account for rotation of slip 

planes towards the loading axis. In our simulation the rotation effects are not included. 

D-9:Parallel Processing 

Parallel processing requires an interface daemon across workstations to transport job control and 

data messages, and for process management. There are two major packages for parallel 

processing that have been developed and standardized depending on its optimality, portability and 

communication time. One is the PVM (Parallel Virtual Machine), where its use is intended for a 

network of heterogeneous workstations. The other is the MPI (Message Passing Interface). The 

intention of the development of MPE is to provide a standard message passing specification for a 

specific MPP (Massively Parallel Processor) machines. One major difference between PVM and 

MPI is that MPI does not include features such as job control and machine configuration etc., but 

it provides a complete set of functions for message passing. A parallel version of micro3d is 

available using both interfaces. For a heterogeneous network of system architectures, PVM is 

more favorable due to its portability for different computer architecture. For massively parallel 

machines, MPI is more commonly used mainly due to its high capability of communication time 

between processors. 

Domain Decomposition Method 

Two major methods are commonly used for parallel computing. One is the domain decomposition 

method, where each processor is responsible for the interaction calculation of dislocations in each 

sub-space. One disadvantage of this method is that dislocations may form localized dense 

regions, causing one processor to be responsible for more dislocation segments is its assigned 

domain than others that have less number of dislocations in their domain. To minimize the 

waiting time of CPU‘s, methods which would yield a better computational efficiency, such as 

dynamic load balancing, adaptive meshing and link cell method may be required for more 

efficient distribution of computation tasks to all processors. 

Dislocation Family Decomposition Method 

The other method is the dislocation family decomposition method. In this method equal number 

of dislocation segments are sent to each processor as illustrated in Figure C-13. This method is 

rather simple that it can be implemented without much effort. The parallel code is implemented 

using the MPI software on the IBM RS/6000 system, which has 168 nodes, of which each node 

has 4 CPU‘s with the clock speed of 333 MHz. In principle, we can distribute the work load for 

every do-loop in the program if no data dependence exists inside the loop (although we can re-

order the data dependent do-loops for parallel computation, but this exercise has not been 
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extensively studied). The approach we take is based on the simple master-slave scheme, where 

the master processor sends tasks to slave processors and gathers information from slave 

processors upon finishing work. A parallel flow chart for our code is given in Figure C-14. The 

major contribution of CPU usage in the figure is from the long-range interaction calculations, 

yielding an order of 
2N computations. To illustrate how much time is saved using parallel 

processing, the calculation of the bowout example shown in Figure C-15 was performed with 

about 2200 segments. At each time increment, each processor was assigned the task of calculating 

interactions, driving forces, velocities and new configuration for an equal fraction of the total 

segments. This information is thin relayed to the master machine. The calculation is continued 

until several loops are generated. The speed-up versus the number of processor is given in Figure 

C-15. The gain in the CPU time slows down as the number of processor used reaches 100. This is 

due to the combination of the reduction in the work load of each processor and more frequent 

data communication between the master and slave processors. As the number of dislocation 

segments increases this saturation will occur at higher number of processors. However, it can be 

deduced from the figure that significant amount in CPU time can be achieved. 

 

 

Figure D-13: Family decomposition  Figure D-14: Parallelization scheme 
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Figure D-15: Speed-up versus number of processors 
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13. Appendix E 

 

Two equivalent formulae are implemented in the code, the Hirth and Lothe formulae and the de 

Wit formulae. The de Wit Formulation is more numerically more efficient since the equations are 

expresses in terms a global reference frame and, therefore, does not require matrix 

transformation. 

 

E-1. Stress Field About a Finite Segment (Hirth and Lothe Formulae) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure E-1: Stress field around a segment 
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where ,
)1(4 v
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Two other equivalent forms are: 
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In Eq. (D-3), the 
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Upon substituting, the first part of xx  term, for example, can be written as  
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The constant term 
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where 222 yxp  . 

 

 

E-2: Stress Field About a Semi-Infinite Dislocation 
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Figure E-2: Stress field around a semi-infinite segment 
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 The stress field P

ij  at point P due to the semi-infinite dislocation AB is given by  
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