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Nonlinear explicit finite element (FE) simulations are used to study the axial collapse 

behavior of multi-corner. single- and multi-cell crush tubes under quasi-static and 

dynamic loading conditions. It is shown that the higher hardening modulus and yield 

stress increases the crush force and its resulting energy absorption. Moreover, the multi-

cell tubes are found to have complicated collapse modes because of the geometrical 

complexity of the corner region unlike single-cell tubes. it was also shown that the stress 

wave propagation has a significant effect on the formation of crush modes in the tubes 

without imperfections whereas this effect can be ignored in tubes with imperfection or 

trigger mechanism. An analytical formula for the prediction of mean crush force of multi-

corner multi-cell tubes is derived based on the super folding element theory. The 

analytical predictions for the mean crush force are found to be in good agreement with 

the FE solutions. Results also show a strong correlation between the cross-sectional 



geometry and the crash behavior with the method of connecting the inner to the outer 

walls having large influence on the energy absorption.
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CHAPTER I 

INTRODUCTION

Motivation 

Safety is one of the most important criteria in design of vehicle structures. In general, 

a crashworthy vehicle must meet the impact energy management criteria that require the 

passenger compartment structure to sustain crash loads without excessive deformation 

while absorbing and dissipating the kinetic energy of impact. Some automotive structural 

components such as the side rails (figure 1.1) play a vital role in absorbing the bulk of 

impact energy in the full- and offset-frontal crash conditions (Chung 1996). With the goal 

of minimizing injury to the vehicle occupants, as defined by the head injury criteria 

(Mahmood 2000), the design of side rails requires a proper balance between intrusion 

distance and peak acceleration. While the component has to be stiff enough to limit 

intrusion, it has to accommodate sufficient plastic deformation to attenuate the impulsive 

force and associated acceleration transferred to the occupants. In addition, the 

requirement for energy absorption must be balanced by other design criteria such as 

weight efficiency. 
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Literature review 

Over the past thirty years, numerous experimental, analytical, and numerical studies 

have been conducted to gain better understating of the crush mechanism of thin-walled 

tubular components and evaluation of their characteristics in terms of the buckling, mean 

crush force, folding deformation, and energy dissipation associated with progressive 

plastic collapse under static and dynamic axial compression. These studies have 

principally focused on prismatic tubes made of steel and aluminum alloys with some 

having foam-filled cavities (Chen 2001, Kim 2002, Abramowicz 2003, Karagiozova 

2008, Jones 2003, Reid 1996).

Analytical methods originated from the pioneering works of Alexander (Alexander 

1960) on cylindrical tubes and those of Wierzbicki, Abramovicz and Jones (Wierzbicki 

1983, Abramowicz 1989, Jones 1983) on multi-corner tubes. Experimental studies by 

Abramowicz and Jones (Abramowicz 1984) on square tubes made of mild steel showed 

the existence of various crush mode shapes including two symmetric and two asymmetric 

modes. Motivated by the kinematics of crush observed in experimental studies, the 

analytical methods consider the mechanics of progressive collapse associated with the 

bending and membrane deformation in the component. Through careful examination of 

the collapsing response, Wierzbicki and Abramowicz (Wierzbicki 1983, Abramowicz 

1989) proposed a super folding element (SFE) model whereby a corner portion of the 

cross-section is represented in terms of eighteen separate members whose characteristics 

are described in terms of the three principal folding mechanisms: inextensional, quasi-

inextensional, and extensional deformations. The key aspect of SFE is the recognition of 

the formation and propagation of various hinge lines that define the boundaries of the 
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constituent members. SFE was used to predict the mean crush force of multi-corner tubes 

and to show that there is no considerable difference between the crush force in 

asymmetric and symmetric collapse modes (Abramowicz 1984). Jones (Jones 1998) also 

concluded that because of the small difference between the two different classes of mode 

shapes, either mode could occur in physical experiments. It is worth mentioning that wall 

thickness can also affect the crush mode (Reid 1986), (Lu 2003). Because of the 

difference in deformation patterns, tubular tubes with medium side-to-thickness ratio 

show a compact crush mode whereas in the thin-walled tubes, the mode is non-compact

(Lu 2003). 

Although both static and dynamic tests have been used to measure the collapse 

response of multi-corner crush tubes, the effect of dynamic load on the material 

properties is often ignored in analytical solutions. In 1989, Abramovicz and Weirzbicki 

(Abramowicz 1989) modified the SFE model to capture the strain rate effect in strain rate 

sensitive materials through the work of Calladine and English (Calladine 1984), which 

explicitly showed the relation between the initial velocity of impact and strain rate based 

on some engineering assumptions. They used the empirical relationship that was 

previously proposed by Symonds (Symonds 1965) based on testing of steel tubes at 

various strain rates. This phenomenological relationship, which modifies the yield stress 

for different strain rates, has also been incorporated into many nonlinear finite element 

analysis (FEA) codes such as LS-DYNA for including the effect of strain rate on classical 

plasticity models. Langseth and Hopperstad (Langseth 1996) performed extensive 

experiments on different heat-treated square aluminum tubes under both static and 

dynamic loadings, and showed that in static testing, most of the mode shapes are 
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symmetric whereas in dynamic cases, the mode shape tends to vary during the crush 

deformation. They also observed that the mean crush force for dynamic cases are higher 

than the static ones, and concluded that by introducing imperfection, the ratio between 

dynamic and static mean crush force can be kept constant. Hansen et al. (Hanssen 2000) 

experimentally showed that the dynamic effect, causing an increase in the mean crush 

force of strain-rate-insensitive aluminum, is because of inertial force arising from the 

acceleration of tube walls introduced by dynamic loading. In 1998, Jones (Jones 1998) 

classified the crush behavior into static plastic buckling (which considers the post-

buckling of thin-walled tubes under static or quasi-static loads), dynamic progressive 

buckling (where all the crush progression is confined to one end of a dynamically crushed 

tube), and dynamic plastic buckling (where shell is wrinkled over the entire length). The 

last two classes of crush are distinguished by the initial impact velocity and the mass ratio 

between the impactor and the tube. Although the distinction between these two classes 

also depends on the material and geometric properties of the tube, the dynamic plastic 

buckling (Lindberg 1987) occurs for impact velocities higher than 100 m/s and mass ratio 

of 600. In most of the studies related to automotive crashworthiness, the behavior is in 

the range of dynamic progressive buckling due to the use of trigger mechanism. The 

problem is more complicated for tubes without trigger mechanism where there is 

interaction between elastic/plastic buckling, stress wave propagation and the folding 

initiation (Karagiozova 2004a,b).  

By the late 1980’s and the development of nonlinear FEA codes such as LS-DYNA 

and PAM-CRASH, it became possible to analyze the crash phenomenon (Abramowicz 

2003,
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 Otubushin 1998) as a non-smooth, highly nonlinear problem based on the explicit time 

integration technique (Belytschko 2000). Most of the element models used in these codes 

originally developed by Belytschko et al. (Belytschko 2000) and Hughes et al. (Hughes 

1981), (Hughes 2000) with subsequent modifications aimed at correcting the problem of 

zero energy (hourglass modes), enhancing the computational efficiency, and objectivity 

of stress rate, to pass a wide range of patch tests. In the case of contact-impact analysis 

for dynamic progressive buckling simulations, the penalty method is often used for rigid-

body and self-contact calculations (Belytschko 1991) (Wriggers 2002). To include 

material nonlinearity, many previous studies have used classical elastic-plastic models 

with kinematic and/or isotropic hardenings (Simo 1998). These methods can also include 

the Cowper-Symonds (Symonds 1965) model to account for strain rate sensitive 

materials (Halquist 1998, 2006).  

One way to control the crush zone and plastic deformation of tubes is through the 

design of multi-cell cross-sections. Component production using the extrusion process 

makes it possible to easily manufacture various prismatic components with multi-cell, 

multi-corner cross-sectional configurations. Previous studies by Santosa (Santosa 1997, 

1999), Chen and Wierzbicki (Chen 2001), Kim (Kim 2002), and Zhang, et al. (Zhang 

2006), (Zhang 2007) show that multi-cell rectangular profiles with more corners can 

enhance the energy absorption capacity of tubes. Chen and Wierzbicki (Chen 2001) 

modified the mean crush force formulation of simple multi-cell rectangular tubes to 

account for the addition of foam material used to fill the open spaces inside the tube. 

Their method resulted in an analytical equation for the mean crush force based on the 

division of the cross-section into a number of flange elements, the cross sectional area, 
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and the plastic flow stress. Their results indicated that the foam-filled tubes generally had 

(~30%) higher specific energy absorption (SEA) than the corresponding empty-cell tubes 

while the addition of interior walls (double and triple cell models) increased the SEA 

value by about 15% in comparison to the single cell model. Zhang et al. (Zhang 2006, 

2007) introduced a simple and efficient way for mean crush force calculations based on 

SFE deformation results obtained from FE simulations. They divided the multi-cell 

rectangular cross section into a number of 2-flange corners, 4-flange cruciform, and 3-

flange T-shaped elements, and estimated the combined contributions of these elements to 

the internal energy and the mean crush force. Zhang and Suzuki (Zhang 2005) studied the 

effect of different types of longitudinal and transverse stiffening of square tubes. They 

also developed an equation for mean crush force by accounting for stiffener effects and 

modifying the thickness parameters appearing in previous studies. 

Multi-cell tubes can serve as energy absorbing components in automotive structures. 

However, there have been very few studies on the energy absorption characteristics of 

multi-corner multi-cell tubes. In this research, the mechanics of crush in single-cell 

columns is investigated in detail. By increasing the demand of lightweight and 

crashworthy material in automotive industries, a detail understanding of the deformation 

and its effect on the energy absorption mechanism is investigated here. The effect of 

inelastic behavior is examined numerically. Both quasi-static and dynamic loading are 

considered in this investigation and the main differences are pointed out. In dynamic 

loading conditions, the relation between crush mode and basic mechanism of energy 

absorption in multi-cell tubes is investigated. Crush mode resulting from the imperfection 

or stress wave propagation and the resulting relation between folding modes and energy 
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absorption are described. Based on the observation of deformation mode in finite element 

analysis, analytical equation for multi-corner multi-cell tubes with acute and obtuse 

corner angles is developed and results are compared with finite element analysis.  

Terminology of crush response 

Figure 1.2 depicts the crush response of axially loaded prismatic energy absorbing 

components and the list of key parameters that will be used in the proceeding chapters. 

The energy absorption behavior of a crush tube can be represented by the plot of crush 

force (P) versus crush distance . As shown in the figure, the effective crush distance, 

 is the total crush distance such that any further deformation requires a substantial 

increase in the force as material behaves as a rigid bulk. The total energy absorbed in this 

process can be calculated by integration of the area under the load displacement 

curve up to . The mean value of crush force, can be calculated from the ratio of 

internal energy by effective crush distance.
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Figure 1.2

Axial crush response of thin-walled tubes 

Figure 1.3(a) shows a typical deformation pattern of an axially crushed square single-

cell thin-walled tube. Deformation mode can be identified by cutting a corner section as 

shown in figure 1.3(b). The deformation pattern can be explained by two major modes: 

asymmetric and symmetric as shown in figures 1.3(c) and 1.3(d). Asymmetric mode 

occurs when two webs joined at a corner collapse asymmetrically such that one web is 

deformed inward while the other is deformed outward. In symmetric mode, both webs are 

deformed outward and form a symmetric pattern with respect to the corner line. In some 

cases, these modes can be mixed and create a complex shape as will be described in 

subsequent chapters.

eff
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Asymmetric mode Symmetric mode 

Figure 1.3

General deformation pattern of axially compressed tube 

Scope of present study 

The objective of this thesis is to study the basic factors that can affect the energy 

absorption behavior of multi-corner crush tubes including cross-sectional geometry under 

both quasi-static and dynamic loading conditions. Both numerical and analytical study 

are performed, with the former conducted using explicit code LS-DYNA.

The content presented in this thesis includes: the description of a series of quasi-static 

FEA simulations in chapter 2 to analyze the influence of material behavior, failure, 

contact definition, element formulation, trigger mechanism, and crush force for a number 
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of simple square tubes. Since the performance of energy absorbing components is usually 

more crucial under dynamic loads, the effect of dynamic loads is also investigated based 

on two loading cases corresponding to a constant velocity and a time varying velocity 

condition.

In chapter 3, the effect of cross-sectional geometry on the crush characteristics of 

multi-corner, multi-cell tubes is discussed. In all of the previously cited investigations, 

the cross-sectional shapes considered were limited to either single cell (circular, 

rectangular, hexagonal, or rhomboidal) or multi-cell tubes with identical (rectangular or 

hexagonal) cell properties, whereas this study investigates multi-cell tubes with more 

complicated multi-corner shapes including the combination of acute, obtuse and right 

angles as well as multiple nonidentical flanges (Najafi 2008).

In chapter 4, SFE model of Abramowics and Wierzbicki (Abramowicz 1989) is 

extended and its extension (Jones 1983), Wierzbicki 1983, Hayduk 1984, Wierzbicki 

1994a, Wierzbicki 1994b) to investigate the crush characteristics of multi-cell tubes 

consisting of three different types of three-flange elements characterized by a 

combination of two-angle corners with either two obtuse or two acute angles separating 

the three flanges. A closed form equation for prediction of mean crush force is developed. 

The values of mean crush force based on different analytical equations as well as FEA 

simulations are compared.  

Chapter 5 contains thesis summary and conclusions along with some 

recommendations for future work. 
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CHAPTER II 

FINITE ELEMENT ANALYSIS OF SQUARE TUBES UNDER 

AXIAL COMPRESSION 

Progressive collapse of thin-wall structures is a complex problem with many physical 

interactions. Most of the experimental studies conducted previously have tried to find a 

way to decouple and simplify the collapse response and develop a theory to describe the 

physics of energy absorption (Hiermaier 2008). The complexities are mainly due to the 

dynamic properties of material, material failure behavior, buckling instability in thin-

walled structures, contact due to impact, contacts between adjacent folds, the boundary 

and initial condition of the problem and geometrical properties. Dynamic behavior of the 

material is a very complicated area of research which includes the physics of solids, 

atomistic structure and dislocation dynamics, grain size and orientation, and many other 

physical and microstructural based phenomena. Examination of a material from 

macroscopic point of view shows that most of the macroscopic properties such as 

hardening, recovery, strain rate sensitivity, yield point. are contributing to the overall 

behavior of energy absorption of structures. Computational implementation of even a 

basic phenomenological model can be very complicated when considering rate 
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sensitivity, temperature, yield mechanism and anisotropy. Buckling instability in the thin 

walled structures imposes additional difficulty, especially in dynamic cases due to the 

presence and interactions of the elastic and plastic waves (Karagiozova 2008). The 

purpose of this chapter is to review some key theoretical features in nonlinear FEA that 

are applicable to the analysis of energy absorbing components such as crush tubes. The 

FE simulation of square single-cell tubes using LS-DYNA is discussed below. 

2.1 Boundary value problem in structural mechanics 

The solution of a boundary/initial value problem requires a model of a structure with 

known material properties and behavior along with certain loading and boundary 

conditions. The transformation of the physical problem to a well defined mathematical 

problem requires rational assumptions and simplifications that lead to ordinary or partial 

differential equations governing the behavior of the idealized structure. The numerical 

approaches used to solve these differential equations in the context of finite element 

analysis involve numerical approximations that can result in numerical errors. Some of 

these errors can be minimized by using a more accurate element formulation, refining the 

mesh, and adjusting time steps, all of which tend to increase the simulation time. A 

common practice to check and verify the finite element results is to repeat the analysis 

with different mesh size and time step in the transient dynamic FEA in search of a model 

where all the results tend to converge. 

To solve a boundary value problem such as crushing of a thin-walled tube, kinematic 

and kinetic relations, thermodynamic principles, and constitutive equations needed as 

summarized below: 
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Kinematics, including the definition of deformation gradient and the relation 

between strain and displacement 

                                               (2.1) 

where F and I are deformation gradient and 2nd rank identity tensor respectively. 

Balance laws 

The conservation of mass states that the mass in a closed system stays constant and for 

the Lagrangian formulation (Holzapfel 2000) 

                                                      (2.2) 

where  and are density in reference and current configurations, respectively. 

The Eulerian balance of linear momentum and the balance of angular momentum are 

shown in equation 2.3 and 2.4, respectively 

                                                               (2.3) 

                                                            (2.4) 

where , b and v are stress, body force and velocity, respectively. Equation 2.4 shows 

that stress matrix is symmetric. 

Thermodynamic principles 

Because of the isothermal adiabatic assumption, the heat equation will be ignored in 

this study and, the fist law of thermodynamics in current configuration is written as 

(2.5)

where  is the rate of internal energy 

Due to the assumption above, the second law of thermodynamics can be written as 

                                                                       (2.6) 
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where  is the free energy that shows the energy available for work. In the isentropic 

process,

Constitutive equations 

In this study, the constitutive models are multi-linear isotropic hardening model with 

J2 plasticity. The linear form of the model is described below (Simo 2000) 

                                                      (2.7) 

                                              (2.8) 

                                                      (2.9) 

                                                                     (2.10) 

                                                        (2.11) 

where equation 2.7 shows the stress-strain relationship for elastic part, equation 2.8 

represents the yield surface with linear isotropic hardening variable K. Equations 2.9 and 

2.10 shows the flow rule and 2.11 is the Cowper-Symonds strain rate relations (Symonds 

1965).

These equations become 19 unknowns and 19 equations for a three dimensional elastic 

body; and for simple constitutive equation, as previously described, the number of 

unknowns and equations become more. This system of differential equations should be 

solved in conjunction with appropriate initial and boundary conditions. 

A single governing equation can be obtained by substituting the above equations into 

the momentum equations. The momentum equation cannot be discretized directly by 

finite element method. The finite element model representing the body contains a finite 

number of degrees of freedom, and the implication is that the requirement for equilibrium 
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cannot be satisfied exactly at every point in the continuum (in which is called the strong 

sense). In order to discretize this equation, a weak form or virtual form is needed. Weak 

formulation of equilibrium is used where global equilibrium for the body as a whole is 

imposed even though this does not necessarily ensure pointwise equilibrium (Dunne 

2005). The principle of virtual work or virtual displacement, which is equivalent to the 

momentum equation and traction boundary condition is used as the basis of the FEA in 

displacement based analysis of solids. The derivation of this equation and the detail 

descriptions appears in many finite element text books (Reddy 1993, Bathe 1995, Hughes 

2000).  The discrete equations are derived from the principle of virtual work by using 

finite element interpolation functions for the test and trial functions. Most of the problems 

in solid mechanics are based on Lagrangian mesh. The momentum equation resulting 

from this discretization can be written in the form  

                                                           (2.12) 

One way to solve this problem is through the explicit time integration method. The 

most widely used explicit method is the central difference method with a diagonal or 

lumped mass matrix (Belytschko 2000). Diagonal mass matrix helps to reduce the 

computational cost of inverting the mass matrix. Starting at time t=0, acceleration, 

velocity and displacement can be calculated based on this method. 

2.2 Explicit solver  

The selection of integration method depends on the type of partial differential equation 

(PDE), the smoothness of the data and the response of interest. For parabolic PDEs, 

implicit methods are generally preferred (Belytschko 2000). In the case of collapse 

problem, the equations of the shell elements, which are the main focus in our study, are 
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parabolic (Belytschko 2000). However, explicit methods are preferred here because of 

the noise introduced by contact-impact problems. Although explicit methods are 

guaranteed to converge, they are only conditionally stable which means that they are 

time-step dependent. (Hughes 2000). The stable time step in a parabolic system decreases 

by a factor of four each time the size of the smallest element is reduced by 50% 

(Belytschko 2000). Therefore, the element refinement in an explicit method makes the 

analysis very expensive. The time step size for shell element in LS-DYNA is calculated 

using equation (2.13) (Halquist 2006) 

                                                                     (2.13) 

where is the characteristic length, and c is the speed of sound given by 

                                                         (2.14) 

where E, , and represent the elastic modulus, material density and Poisson’s ratio, 

respectively.

In the default mode, the characteristic length  is given by 

                                        (2.15) 

where  is for quadrilateral and for triangular shell elements,  is the 

element area, and  is the length of the sides defining the shell elements with i varying 

from 1 to 4. 

2.3 Contact algorithm-constraint implementation 

Besides the system nonlinearity due to deformation, strain and material behavior, 

contact is another source of nonlinearity that can be observed in a boundary value 
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problem. In the axial collapse process, there are two main forms of contact, one between 

the striker (impactor) and the tube and another between one portion of the tube and 

another (self contact) due to extensive deformation. Contact interface basically is a 

motion constraint equation. There are four conventional methods for treating a constraint 

such as penalty function method, Lagrange multiplier, augmented Lagrangian, and 

perturbed Lagrangian methods, all of which originate from optimization theory. Most of 

the finite element codes including LS-DYNA use the penalty function method as their 

default contact formulation due to the simpler implementation. In penalty function 

method, a penalty term is added to the energy equation (Wriggers 2002). The energy 

equation for a simple mass-spring system in figure 2.1 is defined as below: 

                          (2.16) 

where K, m, u, g,  and c(u) are the actual spring stiffness matrix, mass, translational 

deformation of the system, gravitational acceleration, penalty stiffness parameter and 

constraint equation, respectively. This additional energy term treats contact as an active 

constraint and has been defined as the strain energy of fictitious springs between two 

contact boundaries. This penalty parameter is defined as the stiffness of the rigid wall in 

LS-DYNA (Halquist 2006).
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Figure 2.1

Point mass supported by a spring and a penalty spring due to the penalty term  
(Wriggers 2002). 

The key condition in contact calculation, which is the condition of impenetrability, 

cannot be expressed by simple equations. In explicit solvers, this condition is expressed 

in the rate form (Belytschko 2000). In the case of contact between a rigid surface and a 

flexible one, the contact force represents an important response for energy absorption 

analysis. In the penalty function method, the contact force for the spring-mass system 

shown in figure 2.1 is calculated as

                                   (2.17) 

where h is the initial distance between two contacting boundaries (figure (2.1)). 

Because the stiffness of rigid wall is assumed to be higher compare to spring stiffness, 

the penalty stiffness parameter reaches one of the extreme conditions  and contact 

force is not depend on the penalty stiffness parameter. Therefore, the contact force 

calculation is considered to be a proper measure for energy absorption characterization.  

Other important feature of contact algorithm is the condition of impenetrability 

between different folds in the tube that is called self contact. This feature can be 

implemented using single surface definition in LS-DYNA (Halquist 2006).  
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2.4 Quasi-static simulation of square tubes 

In the quasi-static loading simulation, a tube is held fixed at its base and a linear 

incremental displacement is applied at the other end as shown in figure 2.2. The contact 

friction coefficient between the rigid wall and tube is set at 0.3 to prevent slippage 

between two surfaces. A preliminary analysis showed that the friction coefficient 

between wall and tube does not influence the energy absorption behavior.

Figure 2.2

Quasi-static model setup 

To prevent element-element penetration due to excessive deformation, a frictionless 

self-contact condition is used all for the element surfaces. The crush tube material is 

selected to be aluminum with the physical properties of (E = 70 GPa, = 0.3, and  = 

2.7e-6 kg/mm3). The material behavior is expressed in terms of true stress-true strain 

curve, which is extracted from tension test up to ultimate stress. Since there is no failure 

and damage defined in this model, the material is assumed to be perfectly plastic after 
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ultimate stress. J2 plasticity linear/multi-linear isotropic hardening material model is used 

such that the stress-strain curve is divided into a number of linear isotropic hardening 

models.

Element density study is performed to obtain an optimum mesh density for the models 

investigated. Because of the high distortion in elements, zero energy deformation or 

hourglass energy [Belytschko 2000] is calculated for element performance check. Results 

show a very small non-physical hourglass energy which is less than 2% of the total 

internal energy.

The FE models used here are developed using the ANSYS-preprocessor with FEA 

simulations performed using transient dynamic nonlinear explicit FE code LS-DYNA. 

All simulations are conducted on 16 nodes of  RAPTOR, a 2048 processor cluster 

composed of 512 Sun Microsystems SunFire X2200 M2 servers, each with two dual-core 

AMD Opteron 2218 processors (2.6GHz) and 8 GB of memory (for a total of 4TB) at 

Mississippi State University. The post-processor LSPREPOST is used for visualization 

and data acquisition. To filter out noise in the simulation results, the SAE type filtering 

with the frequency of 60 Hz has been used. The termination time has been specified at 

400 ms for all the cases considered for quasi-static analysis which resulted in the 

1mm/ms constant velocity axial loading on the tube. 

Prior to establishing a baseline model for investigating the crush characteristics of 

multi-cell tubes, the effect of element type on collapse response of a simple square tube 

model needs to be investigated first. Based on these results an appropriate element 

formulation will be selected for all the subsequent simulations. 
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2.4.1 Effect of shell element formulation 

The square tube’s cross-sectional dimension is 80 mm with wall thickness of 2 mm 

and length of 400 mm. The rate sensitivity effect is totally ignored in this analysis as the 

material considered here (i.e. aluminum alloy) is almost rate insensitive. True stress-true 

strain curve for AA6060-T6 (de Kanter 2006) used in this analysis is shown in figure 2.3. 

The number of integration points through the thickness is set to three for all the shell 

element formulations. In order to obtain a stable crush pattern, a trigger mechanism, in 

the form of two small symmetric indentations is placed at 15mm from the free edge 

(impacted end) of the tube. The effect of trigger mechanism will be discussed later in this 

chapter. 

Figure 2.3

True stress-true strain curve for AA 6060-T6 (de Kanter 2006) 

The available shell elements in LS-DYNA as identified in table 2.1 are examined. 

However, only the plots of in this section, the result of those elements that produced 

converged throughout the simulations has been reported. Figure 2.4 shows crush force 

versus crush distance using different element formulations. The termination times for 

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4

Tr
ue

 st
re

ss
 (M

Pa
)

True strain 



23

these analyses are also reported in each plot. The crush behaviors of the EF1, EF2, and 

EF16 are fairly similar and follow the same pattern as that observed in experiments 

(Abramowicz 1984, Otubushin 1998, DiPaolo 2004, Dipaolo 2006). Other element 

formulations including EF7, EF8, EF10, and EF11 show the different patterns of crush 

behavior, which are not acceptable. Further analysis has shown that despite the accuracy 

of fully integrated element (EF16), it is computationally expensive and unstable in all the 

loading conditions considered here. Hence, for the purpose of quasi-static simulation, 

EF1 and EF2 have acceptable performance. 

Table 2.1

List of shell elements investigated in this study. 

LS-DYNA 
Element 

Formulation 
Name Properties 

EF1 Hughes-Liu Degeneration of 8-node brick, incrementally objective, uniformly reduced integration, nonplanar
geometry, one point quadrature 

EF2 Belytschko-Tsay (Lin) 
Computationally efficient, 5 through-the-thickness integration points, co-rotational coordinates 
and rate of deformation formulation, hourglass viscosity, nonplanar geometry, Hughes-Liu mass 
matrix 

EF6 S/R Hughes-Liu Selectively reduced integration near boundary and point loads to prevent hourglass, nonplanar
geometry  

EF7 S/R co-rotational 
Hughes-Liu Similar to EF6 using co-rotational coordinate system from Belytschko-Tsay  

EF8 Belytschko-Leviathan Modified Belytschko-Tsay for passing the patch test,  physical hourglass control 

EF10 Belytschko-Wong-
Chiang Perfectly planar geometry 

EF11 LS-DYNA  Fast co-rotational Hughes-Liu (EF1) 

EF16 LS-DYNA  Fully integrated shell 
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The Hughes-Lu shell element formulation (EF1) has four in-plane integration points. 

It uses the selectively reduced integration technique and has hourglass control for the 

mode of zero energy (Halquist 1998). Because of the severe bending in the model, the 

stress and strain variations through the thickness are important factors for energy 

absorption calculation. As a result of this investigation, EF1 is used for the subsequent 

simulations. 
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Figure 2.4

Crush force-crush distance variation for different shell element formulations in LS-
DYNA
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2.4.2 Effect of trigger mechanism  

Trigger mechanism is used to lower the initial peak crush force, induce a stable 

progressive failure, and avoid the global bending of the tube as it is crushed. In this study, 

a simple trigger mechanism in the form of small indentation on two opposite walls is 

used. This is referred to as an asymmetric trigger mechanism because it induces the 

asymmetric mode shape as will be discussed in chapter 4.  

Two integration points through the shell element thickness is used in this analysis. The 

stress-strain curve used here is illustrated in figure 2.6. The location of the indentation 

trigger relative to the impacted end of the tube is varied from 5 mm to 30 mm with the 

effect on the crush force dissipation shown in figure. 2.7. It is clear that the addition of 

indentation trigger reduces the initial peak force while stabilizing the deformation as 

indicated by the shapes of the curves and asymmetric mode shape. The trigger location 

offsets the load-displacement curve according to its position, but it does not change the 

mean crush force and the crush force fluctuation frequency considerably. However, it is 

important to note that the crush distance can be affected slightly when the trigger distance 

is reduced. For the trigger distances of 15mm and 30mm, the effective crush distance 

stays the same. Since the folding distance of 30mm is higher than the length of a crushed 

corner element (figure 1.3) of the tube, the number of peak loads through the crush 

process reduces. For the future simulations, the trigger distance of 15mm will be used. It 

is worth noting that in order to obtain a steady crush behavior, the location of trigger 

should be close to the stationary point of the buckling wave of the wall. In this case, the 

trigger distance of 15 mm is closer to the actual horizontal hinge lines appeared in the 

structure.
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Figure 2.6

Stress-strain curve for the study of trigger mechanism 

Figure 2.7

Effect of trigger distance on crush response 

2.4.3 Effect of tangent modulus 

The inelastic behavior of the material is represented by a rate-independent linear 

hardening law (figure 2.8). In order to keep the same toughness for different hardening 

slopes, a failure strain, f has been defined in the model (figure 2.8). Two integration 

points are used through the shell thickness for this analysis. Figure 2.9 shows the effect of 
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2.4.4 Effect of toughness 

The Hughes-Lu shell element formulation (EF1) has four in-plane integration points. 

It uses the selectively reduced integration technique and has hourglass control for the 

mode of zero energy (Halquist 1998). Because of the severe bending in the model, the 

stress and strain variations through the thickness are important factors for energy 

absorption calculation. As a result of this investigation, EF1 is used for the subsequent 

simulations. 

Figure 2.10

Stress-strain curves used for toughness study 

0
50

100
150
200
250
300
350
400
450

0 0.25 0.5 0.75 1

Tr
ue

 st
re

ss
 (M

Pa
)

True strain

Toughness= 323 J/mm2
Toughness= 315 J/mm2
Toughness= 291 J/mm2
Toughness= 226 J/mm2





32

Since the element with high strain values can be highly distorted, the simulation can halt 

prior to the assigned termination time for the solver. To remove this deficiency, the 

highly distorted shell elements are removed from the model. Because of this criterion and 

neglecting the fracture energy of the splitting process, the resulting of shell splitting does 

not accurately capture the energy absorption characteristics. However, this form of failure 

has been observed in some similar cases in literature experimentally (Lu 2003). In order 

to have a more accurate energy absorption study in this case, the failure should rigorously 

be taken into account. The result of the effect of failure strain as one parameter for failure 

also shows that with the failure strain of 30% and higher, the failure strain does not have 

any considerable effect on the energy absorption characteristics of the model. 

Figure 2.12

Effect of failure strain value on the energy absorption behavior 

One advantage of asymmetric mode shape is that in the case of failure and splitting the 

crush tube will be deformed in a way that can preserve its energy absorption properties. 

However, in some design cases, this failure is not desirable and should be avoided. Figure 

2.13 shows the deformation shape of the failed tube under compression. It can be seen 
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in figure 2.15, friction decreases the overall crush force as well as the mean crush force of 

the tube very slightly. This means that any surface imperfection such as surface corrosion 

can affect the mean crush force and reduce the energy absorption capacity. Although 

based on the simulation results these effects do not change the energy absorption capacity 

tremendously, they should be considered in design. To identify the importance of self-

contact, a crush tube model without self contact was analyised, with the result of crush 

force versus crush distance depicted in figure 2.15. For the sake of comparison, the effect 

of friction corresponding to two different friction coefficients is captured in figure 2.15. 

Looking at the result of the model without any self-contact, we note a fairly uniform 

crush pattern. The absence of self contact makes the crush process sequential such that 

the deformation in the tube will not be observed until the fold reaches the rigid wall. This 

can explain the steep increasing of load after each drop. As deformation reaches the end 

of the tube, there is no locking observed in this curve, which is analogous to assuming 

that the folds do not have any curvature and it is a complete fold. As mentioned above, 

the friction should be reduced in the surface, which can reduce the energy capacity of the 

tube.
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The increase in crush force can be attributed to the increase in the second moment of 

area of the cross-section, and since the thickness is increased from 2 mm to 4mm, the 

load is 4 times higher due to this relation 

                                                 (2.18) 

Figure 2.17 illustrates the crush mode of the square tube with two different 

thicknesses. It turns out that the crush effective fold distance between two ends of the 

fold,  shown in figure 2.17 can be identified in load-displacement curve (Figure 

2.16). The actual fold size is 2 . A relation between H and b can be derived. The 

effective folding height xeff is also shown in figure 2.17. The effective crush distance is 

calculated using this relation 

                                  (2.19) 

where is the number of folds. If there is no contact, xeff=0 and the effective crush 

distance becomes .

The radius of curvature of the inward lobe is approximately two times greater than the 

outward lobe in the single-cell tubes. This relation can be justified by investigating the 

crush mode in figure 2.17. This figure also shows that by increasing the tube thickness, 

the folding pattern becomes more stable and periodically repeats throughout the crush 

process. For the tube with thickness value t=4mm, the primary bending radius is of the 

order of the shell thickness where as in the thinner tube this relation does not hold. It is 

worth mentioning that the ratio of outward lobe radius to the inward lobe radius stays 

constant as the thickness increases.  
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of inclined hinge lines for a single cell tube with 4 mm thickness. As it is shown, the 

inclined hinge lines are not stationary in the crush process. The moving hinge line puts 

the material under bending, and while it proceeds further, material unbends to its flat 

state. This causes both loading and unloading of the material indicating that the tension, 

compression, shear and unloading properties of the material can have a strong effect on 

the energy absorption of the structure. 

2.4.8 Stress-Strain response of elements in localized plastic region  

Figure 2.19 shows the stress-strain response of a representative element in a horizontal 

hinge-line region. The normal stress in YY direction is plotted versus normal strain in 

element coordinate system. Both stress and strain are calculated in the upper surface of 

the shell element containing three integration points through the shell thickness. As 

expected, the largest stress occurs in YY direction that is perpendicular to the horizontal 

bending axis. Since the values are calculated in the upper surface, the stress is mainly 

tensile. Similar compressive behavior can be captured by calculating the stress and strain 

on the lower surface.
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Figure 2.21 shows the stress and strain response of an element which is located in the 

“moving” inclined hinge line. As discussed earlier in this chapter, the material 

experiences both loading and unloading in different regions. Because of this property, the 

material with the Baushinger (Wierzbicki 1999) effect should be modeled using a model 

that has kinematic hardening or anisotropic texture behavior.

The stress-strain response affected by the material behavior has a huge effect on the 

energy absorption prediction of the tube. One of the major issues in this respect is the 

effect of anisotropic texture which shows that the behavior of an isotropic material can be 

anisotropic and vary in different directions. This property can be expected from thin-

walled structures manufactured by any kind of forming or extrusion process. Having this 

property and also damage properties in the model can improve and extend the 

computational capability to explore the energy absorbing capacity of different tube 

designs. It is worth mentioning that capturing all of these features in large-scale problems 

is very expensive as it would require the use of a large number of elements. 
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depend on the value of strain rate. For instance, in mild steel, representing a rate-sensitive 

material, the value of yield stress in dynamic case is almost 2 times higher than the quasi-

static case. The second factor is due to the inertia developed in the structure due to the 

rapid acceleration. This can be explained in terms of the effect of stress wave propagation 

as well. In this section, the strain rate effect is captured through Cowper-Symond 

phenomenological model. Two cases of dynamic loading are considered, one is a 

constant velocity loading and the other is an impact loading with an initial velocity. 

2.5.1 Model description 

The two dynamic loading cases considered are shown in figure 2.22, and identified as 

Case I and Case II. In Case I, dynamic loading simulation, a tube is held fixed at its base 

while it is struck at the other end by a 300-kg rigid block (hammer) traveling at an initial 

speed of V0 m/s as shown in figure 2.22. In Case II, the constant velocity is applied as a 

fast enforced displacement similar to the quasi-static analysis but using a higher velocity 

(figure 2.22).
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Case I 
Case II 

Figure 2.22

Description of the dynamic loading cases 

The contact friction coefficient between the rigid wall and tube is set at 0.3. To 

prevent element-element penetration due to excessive deformation, a frictionless self-

contact condition has been specified for the element surfaces. The material used in this 

simulation is aluminum alloy AA6060-T6 (E = 70 GPa, v = 0.3, and  = 2.7e-6 kg/mm3)

with tensile true stress-true strain curve shown in figure. 2.3. 

2.5.2  Effect of shell element formulation 

An element study, similar to that in quasi-static case, is performed using the dynamic 

loading condition and without introducing any trigger mechanism (Najafi 2008). The 

collapse responses are shown in figure 2.23 with the top end representing the impact side 

of the tube. Figure 2.23 shows that the predicted collapse mode shapes are different. 

Based on quasi-static and dynamic simulations, the element formulation EF1 (Hughes-Lu 

shell element) has been chosen for the simulations in this study. 
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EF1 EF2 EF6 EF7 EF8 EF10 EF11 EF16
Figure 2.23

Crush responses under dynamic load for different shell element formulations in LS-
DYNA (Najafi 2008) 

2.5.3 Effect of initial velocity 

One important feature of the tubes without a trigger mechanism under dynamic load is 

the effect of velocity on the symmetric folding formation at the bottom (supported) end of 

tubes, which is called bottom-out deformation (Jones 1998) (Karagiozova 2004). This 

effect is investigated in figures 2.24 and 2.25 for the tubes with no rate sensitivity and 

wall thickness t=2 mm. Although the main deformation pattern is easier to develop at the 

contact point, the elastic/plastic wave propagation causes the tube to bottom out. This 

forces the structure to experience an instability, which may result into global bending of 

the tube, not desirable for axial crush. The amplitude of this deformation varies with the 

impact velocity. Figure 2.24 also shows that the deformation near the fixed end is 

changing with velocity. The deformation reaches the maximum at V0=15 m/s while 

disappears for the initial velocity of V0=40 m/s.
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can be eliminated as shown in figure 2.26. For thickness t=4mm, the whole deformation 

process appears as a pure symmetric mode shape. The main consequence of increasing 

the wall thickness is the weight penalty. Using sandwich walls can improve the energy 

absorption and keep the weight as low as possible. The quasi-static response of tubes 

with sandwich walls was also considered by (Mohr 2003, 2004, Santosa 1999) through 

experimental and numerical investigations. They observed the symmetric and mixed 

deformation modes in their studies. 

Figure 2.26

Effect of thickness on the folding pattern of a square single-cell tube without trigger 
mechanism 

2.5.5 Effect of trigger mechanism 

The effect of trigger mechanism on the crush mode under dynamic loading Case I is 

shown in figure 2.27. The deformed shape is magnified by the factor of 0.8 to reveal the 

folding pattern more clearly. Figure 2.27 (a) depicts a tube without trigger where the out-

of-plane deformation pattern started from both ends of the tube with symmetric 
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deformation mode shape. The response of tubes with trigger located at 5mm, 15mm, and 

30mm are shown in figure 2.27(b),(c), and (d), respectively. As shown in figure 2.28, the 

trigger mechanism affects the initial crush force very dominantly. Crush force in the tube 

with trigger stays higher than the cases without trigger mechanism due to the difference 

between initial folding patterns up to a point which the crush mode changes from 

symmetric to asymmetric mode. Tubes without trigger need much higher load to deform 

the sidewalls in order to initiate the folding process. Although the crush load is higher in 

this case, it is very sensitive to any possible flaw or imperfection in the tube. The effect 

of trigger distance on the crush behavior is also shown in figure 2.28. As pointed out in 

quasi-static analysis, the major contribution of trigger mechanism is to stabilize the 

folding pattern. Due to the axial load, the tube is very susceptible to any non-symmetric 

perturbation, which may result global bending as opposed to axial collapse. Axial 

collapse can be achieved by trigger mechanism due to the indentation load offsets that 

causes a bending moment in the structure. The location of this indentation (trigger 

distance) forms the first folding pattern because of increasing the imposed bending 

moment.  
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2.5.7 Effect of striking mass 

Two different values for impactor mass are considered to study the effect of striking 

mass on the energy absorption characteristics of the tube with trigger distance of 15mm. 

Figure 2.31 shows the crush behavior plot for two different mass values. It was shown 

that the energy absorption behavior of crush tubes is not influenced by the mass of 

striker. This finding is consistent with the results found by Krogiozova (Karagiozova 

2004a).

Figure 2.31

Crush behavior of tube for striking mass of M=300kg and 600 kg 

2.5.8 Effect of rate sensitivity 

Rate sensitivity effect is represented by Cowper-Symonds phenomenological relation 

in L-DYNA. This model has two parameters in equation 2.11. These constants are 

calculated for aluminum and magnesium alloys (D=1288000 s-1,p=4) (de Kanter 2006) 

and (D=570 s-1, p=3), respectively. The dynamic response of tubes with different strain 
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rate sensitivity parameters is illustrated in figure 2.32. It was seen that the strain rate 

sensitivity can have a considerable impact on the crush behavior.

Figure 2.32

Influence of rate sensitivity on the crush behavior 

2.6 Summary 

The explicit nonlinear finite element analysis is found to be suitable solution of non-

smooth problems involving highly nonlinear characteristics. The main drawback of this 

solver is that it is conditionally stable and the stability of the solution depends upon the 

time step size. The different shell element formulations available in LS-DYNA were 

considered and their performance in crush analysis of thin-walled tubes was investigated. 

It was found that Hughes-Liu (EF1) and Belytschko-Tsay (EF2) are appropriate shell 

elements for crush simulation. The number of integration points through shell thickness is 

also investigated, and it was shown to affect the crush behavior of tubes due to large 

amount of bending present in localized plastic regions. Quasi-static simulation was 

performed using slow enforced displacement with constant rate (constant velocity). The 
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computational model tube was evaluated by studying the effect of trigger mechanism, 

tangent modulus, material toughness, strain-to-failure and thickness. Trigger mechanism 

stabilizes the crush mode in quasi-static cases. The trigger mechanism used in this study 

imposes the asymmetric crush mode on the structure, which is a stable crush mode 

because it has the lowest energy that a thin-walled tube can dissipate under axial crush 

force. The trigger distance did not affect the overall mean crush force of the tube while it 

affected the second peak crush force due to the difference in moment arm that is directly 

resulted from the trigger distance. Tangent modulus also affects the mean crush force. It 

was shown that toughness affects the mean crush force considerably provided that the 

toughness is increased in terms of yield stress and tangent modulus as opposed to the 

total area under the stress-strain curve. Failure strain is a crucial parameter, where it can 

change the crush mode to a splitting mode. It was shown that the self contact definition 

provides a proper definition of actual problem. Although friction did not change the crush 

behavior considerably, it was shown that a high surface roughness is not desirable for 

crush. It was illustrated that the fold formation is a result of double bending formation 

and the effective crush distance is defined based on double-bending of the walls. Looking 

at the stress-strain response within different elements in the model revealed that the 

material will undergo complicated stress-strain changes including unloading. This reveals 

the importance of Baushinger effect and the kinematic hardening and anisotropic yield 

surface parameters. Dynamic load simulations were performed based on two loading 

strategies: load Case I by applying initial velocity and load Case II by applying a constant 

velocity throughout the crush process. Dynamic load can be distinguished from quasi-

static through two major factors including elastic-plastic wave propagation or inertia 
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property and material strain rate sensitivity. In the tubes without trigger mechanism, the 

stress wave propagation under dynamic load can result in formation of a partial fold at 

the bottom end of the tube whereas in the cases with trigger mechanism this effect 

vanishes due to the confined deformation in the triggered area. Strain rate effect appeared 

in models with and without trigger. Striking mass does not seem to have any effect on the 

crush behavior of tubes. 
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CHAPTER III 

QUASI-STATIC AND DYNAMIC SIMULATION OF

MULTI-CELL MULTI-CORNER TUBES 

3.1 Model Description 

Previous studies on crush characteristics of various multi-cell tubes have shown that 

such tubes can have fairly high capacity for energy absorption (Chen 2001, Zhang 2006, 

Kim 2002). In this chapter, the result of an investigation on the effect of cross-sectional 

configuration on energy absorption of multi-cell, multi-corner tubes are presented. This 

investigation was focused mainly on the evaluation of multi-cell tubes possessing acute 

and obtuse corner geometries with models in figure 3.1 as four possible examples. The 

selected models generally show a square inner tube connected to a square outer tube 

twice its size. The distinguishing feature is the way the inner and outer tubes are 

connected together to form the multi-cell geometry. The connecting webs create corner-

to-corner (C2C), corner-to-web (C2W), web-to-corner (W2C), and web-to-web (W2W)

attachments in these models. Although the shape and wall thickness of the inner and 

outer tubes are identical in all four models, there is a slight weight difference due to 

minor variation in width dimensions of the connecting webs. Since energy absorption and 

the stability of progressive folding are heavily dependent on the corner elements (Kim 
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2002), the four configurations can produce different crush characteristics. The wall 

thickness is kept constant at 2mm with the outer and inner tubes having a side dimension 

of 80mm and 40mm, respectively. The length of the tube is 400mm. All FE models are 

based on Hughes-Liu (EF1) shell  elements (Halquist 1998). 

Figure 3.1

Cross-section of multi-cell multi-corner tubes 

3.2 Quasi-static response of multi-cell tubes 

The quasi-static loading condition and associated parameters are the same as those 

discussed in the previous chapter. Three integration points are used through the shell 

thickness. An indentation trigger mechanism similar to that figure 2.7 is used on two 

opposite walls of the outer tube. There is no trigger mechanism in the inner tube. 

3.2.1 Crush mode 

A cut view of the folded tubes is shown in figure 3.2. The crush mode shapes reveal a 

more complex folding pattern than that observed previously in single-cell tubes. The 

outside and inside lobes are no longer symmetric (figure 3.2, 3.3). This can be attributed 

to the presence of internal folds such that in one side of the deformed shape a simple 

curvature occurs due to bending, whereas in the outer fold double curvature is responsible 

for folding radius. The first fold radius is usually in the same order as the tube thickness. 
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As shown in figure 2.14, the terminal stage of deformation is a result of two subsequent 

bending of initially flat sheet metal. At the center of the tube, this deformation can easily 

be identified at the center of the tube sides. Radius of the cylindrical bending is governed 

by folding of side plates rather than by corner lines. This may not be the case for multi-

cell tubes that have a wall with smaller value of C/t where C and t represent the flange 

size and wall thickness, respectively. 
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Table 3.1

Geometry of the deformed shape in each wall of the investigated multi-cells 

Configuration element  # of external folds Actual fold length 
2SH (mm) 

Equivalent Projected fold 
length 2H (mm) 

effective folding height 
xeff (mm) 

C2C

Outer tube 7 30.5 25.5 7.5 

Connector 7 27 21 10 

Inner tube 9 22 17 6.5 

C2W 

Outer tube 9 22 17 10 

Connector 17 10 6 3.5 

Inner tube 9 20 15 8 

W2C 

Outer tube 6 33 24 10 

Connector 6 33 24 8 

Inner tube 12 15 10 4.5 

W2W 

Outer tube 8 25 17 6 

Connector ~12 20 14 3 

Inner tube ~12 22 16 5 

3.2.2 Energy absorption behavior 

Figure 3.4 shows the crush behavior of the multi-cell tubes in figures 3.2. Each is 

compared with a square tube, having a 4-mm thickness, as a baseline model. The 

thickness of the single-cell tube is selected such that the mean crush force is close to that 

of the multi-cell tubes. The difference in the load fluctuation is the main noticeable 

difference between multi-cell tubes and the baseline model. The crush force fluctuation in 

the crush process for multi-cell tubes is smaller than the baseline as the slope of the load-

displacement curve is sharper in the baseline model. The crush force fluctuations of the 

multi-cell tubes are less than single-cell tubes. The load-displacement behavior shows 

that the folding pattern is more complicated and the number of folds cannot easily be 

identified from load-displacement curve. This means that a larger area in the structure is 

participating in load resistance. Thus, the multi-cell tubes have more rigidity than single-
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cell tubes. Another characteristic of the multi-cell tubes is that the effective crush 

distance is lower than the baseline (table 3.1). The decreasing crush distance is due to the 

fact that the self-contact in the tube is increased and the accumulated folds are more rigid 

than the baseline.  
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3.4 Dynamic response of multi-corner multi-cell tubes 

The effect of increase in constant velocity in dynamic loading Case II is shown in 

different multi-cell tubes in figure 3.7. Although this simulation may not be feasible 

experimentally, in many studies (Otubushin 1998, Zhang 2006, Meguid 2007, Faruque 

2008) this simulation is considered as a quasi-static simulation. Neglecting any rate 

sensitivity effect, a slight increase in the crush force is observed in all cases except C2C 

that remains almost constant. This result shows that although the quasi-static simulation 

may take a longer time, the response may vary due to the dynamics of the problem. 
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As a rough estimate of the limit on applied constant velocity, this velocity should be 

low enough such that the plastic wave is not created at the instance of initial load 

application. This limit can be calculated from the plastic wave propagation problem 

proposed by Von Karman (VonKarman 1950) with this relation 

                                                         (3.1)

where  ,  and  are yield stress, material density and elastic wave speed, respectively. 

This value for aluminum with the yield stress  is . By 

adding very small rate sensitivity as seen in AA6061-T6, the rate effect emerges to be a 

very crucial factor in the energy absorption behavior in dynamic loading.

The effect of rate sensitivity on the crush behavior of multi-cell tubes in load Case II is 

plotted in figure 3.9. It is seen that the very low rate sensitivity present in AA6060-T6 

can affect the results. This change can be significant in rate sensitive materials such as 

magnesium alloys.  
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In the impact dynamic load case, two initial velocities are considered and compared 

with the quasi-static results. Despite the very small rate sensitivity of aluminum alloy, the 

crush force increases with velocity. Since the potential plastic dissipation energy of tube 

is higher than the kinetic energy of initial velocity of 10m/s, the dynamic effects of crush 

disappears as the velocity of impactor approaches zero, whereas in the initial velocity of 

15m/s tubes crush throughout the entire length (Figure 3.8).
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Looking at some other multi-cell designs presented in the literature (Chen 2001, 

Zhang 2007), it appears that by increasing the number of cells increases the sensitivity of 

crush behavior to dynamic load. Figure 3.10 compares these multi-cell tubes in quasi-

static and dynamic loading cases. One major reason for the difference between quasi-

static and dynamic cases in rate insensitive material is because of the compatibility zone 

imposed on the structure due to the difference between folding heights, which appears in 

multi-cell tubes. These compatibility zones are the result of the difference between web 

sizes along with the presence of acute and/or obtuse angles. 
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introduced based on different methods of connection between the outer and the inner 

tubes that are aligned in the same longitudinal axis. This method of connection creates 

cells that with different angles between two webs, non-equal webs, and corners with three 

webs. Trigger mechanism is introduced on two opposite walls of the outer tube. Study of 

the crush mode shape showed that the folds have a complicated pattern depending on the 

angle between webs and web dimension. Nonuniform folding pattern leads to forming 

compatibility zones that are responsible for maintaining the structural continuity. Results 

show that the number of folds is highly dependent on the web size that can increase the 

effective folding height and reduce the crush distance. Comparing the results of multi-cell 

tubes with single-cell tubes shows that the peak-to-peak amplitude of the crush force 

decreases with multi-cell configuration. This essentially means that multi-cell tubes have 

less sensitivity to dynamic loading compared to quasi-static. Our study showed that 

increasing thickness can raise the load fluctuation while reducing the maximum crush 

distance. It was observed that the very small rate sensitivity parameter in aluminum 

alloys can affect the crush behavior. Crush behavior of load Case 1 was close to quasi-

static result for all cases except for C2W (Corner to Web) case where the dynamic and 

quasi-static results were much different. 
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CHAPTER IV 

ANALYTICAL PREDICTION OF ENERGY ABSORPTION IN 

MULTI-CELL MULTI-CORNER TUBES 

Finite element analysis (FEA) provides a general framework for solving many 

boundary and initial value problems in structural mechanics. However, in the context of 

design optimization, the direct application of FEA for high fidelity simulation can be cost 

prohibitive, especially for nonlinear problems. Developing a closed form analytical 

formulation for analysis of the structural model can significantly reduce the cost of rapid 

evaluation of design optimization. Moreover, it can serve as a useful tool to study the key 

features that can help improve the design.

In this chapter, first the the general formulation of plastic collapse or limit theorem for 

solving the limit loads of elastic-plastic problems is introduced. Then, as a special case, 

the super folding element theory (Abramowicz 1989) will be introduced. This 

methodology considers important phenomena in the plastic collapse of thin shells such as 

the folding behavior, and provides an efficient method for rapid evaluation of crush 

tubes.
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4.1 Theory of plastic collapse 

In plasticity analysis, often the two most interesting results are: (a) the critical load 

where the solid starts to yield, and (b) the critical load where it collapses (Bower 2008). 

In order to solve a plasticity problem for finding the yield point, the elastic field is 

sufficient for the analysis. In many design problems, plastic flow must be avoided, but 

there are situations where some plasticity can be tolerated or even desirable such as 

designing crumple zones in cars. The crush tubes that are used in this study are to absorb 

energy during plastic deformation. In this situation, we usually would like to know the 

collapse load for the solid. Having this collapse load gives us some measure for energy 

absorption. This is the motivation for plastic limit analysis. The limit theorems of 

plasticity provide a quick way to estimate collapse loads, without resorting the expensive 

nonlinear FEA.  

The early development of the theory of plastic collapse is attributed to Coulomb who 

in 1776 attempted to evaluate the maximum load in concrete structures and soil 

foundations (Ottosen 2005). The strict proof of lower and upper bound theory was given 

by Gvozdev (1938) and Drucker et. al. (1952) (Ottosen 2005), (Lubliner 2008). For the 

proof, derivation and historical remarks, interested readers are referred to Lubliner 

(Lubliner 2008), Calladine (Calladine 2000), and (Bower 2008). This theory states that 

the load cannot increase indefinitely and that the structure has a limited load capacity. 

The plastic collapse theorem takes two separate forms as lower bound and upper bound 

theorem. The lower-bound theorem can be used to perform limit load analysis by using 

equilibrium equation and finding the corresponding stress in the material up to yield 

resulting in calculation of the safety factor without considering the mode of deformation.
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The upper-bound theorem is used to estimate the collapse load under which the structure 

is plastically deformed or slip occurs. At this critical load, the plastic region becomes 

large enough to allow unconstrained plastic flow in the solid provided that no kinematic 

and/or kinetic constraint is present. The load cannot be increased beyond this point. 

Therefore, the limit load will be bounded by the two values coming from lower bound 

and upper bound theorem. For instance, the load points A and C in figure 4.1 represent 

the lower bound and upper bound limits for the simple elastic-plastic beam problem 

shown in the figure 4.2. The lower-bound theorem can predict the load required to yield 

the material whereas the upper-bound theorem can predict the state of material that is 

completely under plastic deformation. Figure 4.2 illustrates the normal stress distributions 

through beam thickness corresponding to points A, B and C. It is shown that at point A, 

material does not experience any plasticity whereas at point C, material has become 

perfectly plastic, and unconstraint slip can develop without increasing the load.

Figure 4.1

Illustration of limit load for a structure consisting of an elastic-perfectly plastic material 
(Ottosen and Ristinmaa 2005 ) 
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Figure 4.2

Elastic-perfectly plastic beam and the normal stress distribution at the midsection for the 
loading stages shown in figure 4.1 (Ottosen and Ristinmaa 2005 ) 

The upper-bound theorem starts by identification of the deformation pattern or 

kinematics of deformation, and then uses energy balance between the external energy due 

to applied force and the internal energy generated in structure within the previously 

assumed kinematics. It is worth noting that the proof of the upper-bound theorem requires 

both normality and convexity of the yield surface known as associative flow (Lubliner 

2008). Elastic-perfectly plastic model is the simplest model that can provide an analytical 

solution for elastic-plastic problems. This also can be extended to rigid-plastic material in 

cases where material experience significantly large plastic strains (Lubliner 2008). As 

mentioned above, the methodology is based on identification and assuming a compatible 

kinematically admissible deformation. This deformation can be observed through 

physical experiments by considering the significant modes of deformation. The assumed 

kinematically admissible deformation for associative flow rule, the weak form of the rate 

of equilibrium equitation or principle of virtual velocity can be written as the balance 

between external power and internal dissipated energy given by 

                              (4.1) 
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where  and  are strain rate and stress tensors, respectively, ,  and  are the 

displacement, surface, and body force vectors, respectively. St represents the element 

surface area and V represents the element volume. The kinematic parameters are derived 

by minimizing the above function. 

Since progressive axial crush of tubes is characterized by the presence of highly 

localized zones of plastic flow, a similar approach as the upper-bound theorem is 

established for energy absorption behavior of thin walled prismatic tubes with associative 

materials. A displacement/velocity field is called kinematically admissible if it is 

continuous in the structure, satisfies the velocity/displacement boundary condition and 

the external force does positive work on this displacement/velocity field (Lu 2003). The 

limit load theorem can only be used to determine the incipient collapse mechanism, the 

initial load or its bounds. However, in the structures that are designed for energy 

absorption due to plastic deformation, they are usually expected to experience large 

plastic deformation under external loads. Hence, the effect of large deformation should be 

taken into account while using the theory of limit analysis where mainly has been 

captured through averaging the flow stress or energy equivalent flow stress as will be 

discussed later in this chapter. In the rigid-plastic model, it is necessary to have only one 

parameter identified as flow stress. However, based on its definition, flow stress is not 

constant and can vary with the amount of tangent modulus. As a simplified approach for 

our analytical model, energy-equivalent flow stress in extensional deformation is 

introduced based on the average value of the unidirectional stress-strain curve up to the 

final strain experienced by the structure (Wierzbicki 1999).  

0
N 1

f
df

0                                                     (4.2) 



83

where is equivalent-energy flow stress for extentional deformation, f , and  are final 

strain and instantaneous stress respectively.

Based on equation 4.2, the energy-equivalent flow stress depends on the final strain in 

the structure that may have different values in different regions of the material.  

As a summary, the general assumption made here is that the material is rigid-perfectly 

plastic, isotropic, time-independent, isothermal, and associative as defined by the energy-

equivalent flow stress.

4.2 Mechanics of progressive plastic collapse in axially compressed tubes

The mechanics of plastic collapse in axially compressed prismatic tubes is motivated 

by the upper-bound theorem. As mentioned earlier, the main element of this analysis 

include (1) energy balance equation, (2) kinematically admissible deformation, (3) proper 

constitutive assumption and, (4) extermum condition. 

4.2.1 Energy balance equation 

In this study, the thin-walled shell structure primarily undergoes plastic deformation. 

Ignoring the elastic part, the global balance of the rate of energy can be expressed based 

on equation 4.1 via 

                                                 (4.3) 

where  is the external work and  is the instantaneous rate of 

energy dissipation in the plastically deformed regions. This is analogous to the balance of 

internal energy and the work done on a structure. The reason for choosing the term 

“internal dissipated energy” is that in contrast to the theory of elasticity that the energy 
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store in material, this process is irreversible and the amount of external work is dissipated 

through plastic deformation. 

Figure 4.3

Localized plastic regions and rigid-body rotation formed during axial collapse dominated 
by asymmetric mode 

The problem of deep plastic collapse and large shape distortion of shells include two 

basic deformations: rigid-body translation/rotation and localized plastic regions as shown 

in figure 4.3. The amount of rigid-body translation/rotation will be controlled by the 

plastic deformation in the localized area. The rate of external work applied on the 

collapsible component can be observed as the product of the effect of generalized 

external load and the rigid-body translation/rotation. Considering a thin-walled tube, the 

rate of external work can be expressed in terms of three major loads including force, 

moments and internal/external pressure such that 

                                        (4.4) 

where F, M and p are the vector of applied force, moment and pressure, respectively, and 

 , , and  are their corresponding vectors rigid-body deformations, respectively. In 

equation 4.4, both applied force and boundary condition can be considered. In the case of 
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axial crush analysis of the tube, the rate of external work is calculated based on applied 

axial force  and the axial crush velocity of . Hence, the 

expression for the rate of external work will be 

                                                                                (4.5) 

For shells made of rigid-perfectly plastic isotropic materials, the rate of internal energy 

dissipation is divided into continuous and discontinuous velocity fields (W. Abramowicz 

1989)

             (4.6) 

where S defines the extent of continuous plastic deformation,  is the length of the ith

hinge line, m is  the total number of stationary or moving hinge lines. In the continuously 

deforming zones, bending moments  and membrane forces  are the conjugate 

generalized stresses for the components of the rotation rate tensor  and extension rate 

tensor , is the fully plastic bending moment per unit length (Abramowicz 1989). 

4.2.2 Kinematically admissible deformation 

Crush deformation of thin-walled multi-corner tubes under quasi-static and dynamic 

axial loads is principally governed by the collapse mechanism of the corner sections. 

Following a careful examination of the folding mechanisms present in a collapsing corner 

section of various tubes made of ductile materials, Wierzbicki and Abramowicz 

(Abramowicz 1989) developed a super folding element (SFE) model (figure 4.4). They 

concluded that the collapse is a progressive phenomenon that can be represented in terms 

of angle  and described by quasi-inextensional (asymmetric) and extensional 

(symmetric) folding modes as depicted in figure. 4.5 (a) and (b). Each fold is defined in 
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terms of the half-length H, the toroidal surface curvature b, the corner angle ,

and wall thickness t. In their generalized folding model shown in figure. 4.4, they identify 

the formation of 15 shell elements that are combined into five separate groups based on 

their response characteristics. Groups 1 and 2 consist of cylindrical and conical surfaces 

that have moving boundaries and undergo inextensional deformation group 3 is a toroidal 

surface with moving boundaries and quasi-inextensional deformation group 4 consists of 

conic surfaces that undergo extensional deformation and group 5 represents multiple 

trapezoidal elements that undergo rigid-body translation and rotation due to propagating 

hinge lines. What is clear in this model is that despite the drastic geometric changes, the 

crush process is characterized principally by localization of plastic deformation in a 

relatively small area of the structure (i.e. groups 3 and 4). 

Figure 4.4

Generalized super folding element (Abramowicz 1989) 
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(a) Asymmetric mode f (b) Symmetric mode 0

Figure 4.5

Actual and simplified configuration of (a) Quasi-inextensional deformation, and (b) 
extensional deformation 

The basic geometry of the four fold lines in asymmetric deformation is presented in 

figure 4.6. The initial geometry of this asymmetric mode shape is defined with the 

element height 2H, total width C, and the corner angle  . The geometry in the 

current configuration can be expressed via either  which is the crush distance or the 

angle of rotation of side panel  (Abramowicz 1989). The geometric relations between 

these parameters are given as 

                                          (4.7) 

                                                      (4.8) 

Toroidal surface 

Horizontal hinge lines 

N2

N1
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Figure 4.6

Simplified basic geometry of asymmetric element 

The angles (in ABD plane) and (in ABC plane) are related to  and  through 

                                              (4.9) 

                                            (4.10) 

By taking the time derivative of equation 4.7, the relative vertical velocity between the 

upper and lower hinge lines (AG and EF) is found to be 

                                   (4.11) 

Similarly, the relative horizontal velocity of the middle hinge line characterized by the 

movement of point C toward its location after collapse (i.e. point D) is given as 

                             (4.12) 

The local motion of the shell through the toroidal surface identified in figure 4.7(a) is 

due to the radial flow of the material described by the tangent velocity shown in figure 

4.7(b) which is expressed as 

                                  (4.13) 
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Figure 4.7

(a)  toroidal surface formation in asymmetric mode (b) plastic flow of metal sheet 
through toroidal surface (Wierzbicki 1983) 

where denotes the angular velocity of the flow and b is the radius of the toroidal 

surface. By defining a toroidal coordinate system as  where  and  denote the 

meridional and circumferential coordinates of the toroidal surface. The shell is assumed 

to be inextensible in the meridional direction that means there is no stretch rate in this 

direction , the velocity vector in the toroidal coordinate system becomes 

                                                (4.14) 

The kinematics of the plastic flow in toroidal surface is illustrated in figure 4.7. The 

integrand in equation 4.6 has six components including the energy of all the stretches and 

rotations. Because of the rotational symmetry and assumption of radial plastic flow all of 

the nondiagonal components of strain rate tensor in toroidal coordinate (figure 4.8) 

 are zero. Also the stretching rate in the merdional direction  is also 

assumed to be inextensible and equal to zero. The rate of stretch and curvature can be 

derived from (Wierzbicki 1983)  
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                                              (4.15) 

                                                  (4.16) 

The curvature rate for the hinge lines can be expressed as

                                                  (4.17) 

Where a and b are larger and smaller radius of the toroidal surface (figure 4.7) and r is 

the current position of the point with  coordinatewith repect to the axis of symmetry

.

4.2.3 Energy contributions of localized regions 

The angle parameter  ( ), which should not be confused with , defines 

the contribution of extensional deformation to the total energy dissipation. When 0 ,

the folding mode is completely symmetric whereas for , the folding is purely 

asymmetric. In SFE, the folding process starts as an asymmetric mode that continues up 

to a point where the inclined hinge line is locked and the symmetric deformation begins. 

The actual value of  depends on geometric parameters, wall thickness, and the corner 

angle. The geometry of all of the contributing elements can be fully described by three 

parameters  where  is the radius of toroidal surface. These parameters are 

calculated from the energy balance considering the contribution of each cross-sectional 

element. The number of degrees of freedom in the super-folding elements is two orders 

of magnitude lower than that of finite element method. In other words, by describing the 

current state of deformation in terms of two or three free parameters, we can describe the 

shape function of highly distorted thin shells.
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The total internal energy dissipation is obtained by integrating Eq. (4.6) in the interval 

range of ). Since deformation is based on two different folding modes that 

are assumed to develop in series (asymmetric followed by symmetric), the expression for 

the internal energy is divided into two parts and calculated as 

                            (4.18) 

The two integrals in Eq. (4.18) can be decomposed as  and 

 where defines the contribution of each folding mechanism 

to the energy dissipation, and is calculated here by considering the separate portions of 

the cross section based on the kinematics of the deformation expressed in figure 4.4 and 

4.5.  is the contribution of the toroidal surface, 4 is the contribution of extensional 

deformation of conical surface, 2 and 5 are the energy contributions of horizontal hinge 

lines in symmetric and asymmetric modes, and 3 and 6 are the contribution of inclined 

hinge lines for symmetric and asymmetric modes respectively.  

Based on the internal energy dissipation equation 4.18, the differential surface element 

dS shown in figure 4.7 is expressed as

                                                          (4.19) 

  4.1

where the limits for the toroidal surface are 

                                                       (4.20) 

                                                              (4.21) 

where  is the central angle of the toroidal section as shown in figure 4.7. The angle 

is linearly increasing with  from  to  according to  
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                                                                 (4.22) 

The yield function in the case of two nonvanishing components of the generalized 

strain rate tensor is

                                                                                      (4.23) 

Where  and  and h represents the current thickness of the 

shell. With this and assuming associated flow rule, the continuous rate of energy 

dissipation can be uniquely determined.  

Since the effect of thickness variation is small except for problems in which the ratio 

of  is relatively large (for instance outside-in tube inversion problems (Wierzbicki 

1983)), in this study, two other  is assumed to be small thickness is kept constant. As 

shown previously in finite element analysis, these two assumptions have good agreement 

with the computational results. As mentioned previously, the major energy dissipation 

occurs during the early deformation (when  is small) with no considerable thinning in 

the shell. During the formation and development of the toroidal surface, general internal 

energy dissipation can be expressed with the first integral of the equation 4.6. Therefore, 

the first term in internal energy contributions (equation 4.18) in toroidal coordinate 

system for the toroidal surface is a double-integral equation expressed as 

E1 b M0
a sin
r2 N0

b sin
r

2
2 r d d�              (4.24) 

Doing the first integration 

E1 2 b2N0 sin b M0 1 ln 1 sin
1 sin

d�     (4.25) 
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For the small values of , the second term can be approximated by selecting the first 

(linear) term of power series, which yields 

E1 2 b sin N0b M0 d�                                                    (4.26) 

The dependence of the solution on the larger radius is neglected for the small value of 

a. The first integrant term shows the contribution of circumferential extension where as 

the second term represents the contribution of continuous bending. In the two-flange 

corners, since wall thickness is usually four times greater than the radius (Abramowicz 

1983), continuous bending can be neglected in equation 4.26. It is been founded that the 

small  is reduced to a single point on the yield condition ( ) (Abramowicz 1983). 

Considering only the first integrant of equation 4.6 together with equations 4.26 results 

in:

E1
4 N0bH
2 0 tan 0

cos sin 0 sin 2 0 cos 0 1 cos 2 0  (4.27) 

Integrating the above equation over the whole collapse process gives 

                                                          (4.28) 

where

    (4.29) 

The contribution of the horizontal hinge lines are expressed in . As it is shown in 

figure 4.5, there are two horizontal hinge lines in each side of the basic folding element. 
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The energy dissipation of horizontal hinge lines are resulted from the discontinuous 

velocity fields, where the second term in equation 4.6 is given as

                                      (4.30) 

where C1 and C2 are SFE flange sizes defined in figure 4.5 then, the energy term in the 

horizontal hinge line in basic folding element is 

E2 E20 d                                                     (4.31) 

and for the equal flange size it can be written as 

2                                                     (4.32) 

It is worth noting that for energy dissipation calculation, the horizontal hinge line is 

assumed to be simply supported. This energy dissipation will be changed due to the 

horizontal boundary condition of folding mechanism. 

The energy dissipation contribution of the inclined hinge lines are included in . The 

length of the inclined hinge lines (line ABE in figure 4.6) changes during the crush 

process with the kinematic relation 

L 2H sin                                                   (4.33) 

Where L is the length of inclined hinge line. For more accurate calculations, the larger 

radius of toroidal surface “b” should be used in this calculation (Wierzbicki 1983). The 

inclined hinge line consists of two segments of assumed straight lines and an arc of the 

circle defined by the radius  and central angle of  (figure 4.5). 

The rate of rotation is constant along L and equal to 

Vt
b                                                        (4.34) 
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Having two inclined hinge lines in nontapered tube, the energy equation based on the 

second term of equation 4.6 can be written as 

E3 M0L M0L 2M0L                          (4.35) 

Substituting equation 4.34 and 4.33 into equation 4.35 yields: 

E3 4M0
H2

b
1

tan 0

cos
sin

                                       (4.36) 

After integrating over , we find 

                                           (4.37) 

where

                                       (4.38) 

The phase two of deformation which is the symmetric mode, the second integral in 

equation 4.18 . This mode consist of the formation of conical zone along with the 

formation/continuation of the horizontal and vertical hinge lines. The material in the 

conical zone stretches in the meridional direction, . Owing to continuous deformation, 

the first term in equation 4.6 is sufficient to express the rate of energy dissipation in this 

region. Assuming inextensional deformation in  direction, and neglecting the shear and 

rotation components, 4E  can be expressed as 

E4 N0S dS                                           (4.39) 

where S is the current area of the conical surface (figure 4.5b). The final expression for 

the energy dissipation contribution of conical surface can be expressed as: 

E4 N0S dS 2 M0 Vt
H
t
                       (4.40) 



96

where  or the tangential velocity for the conical surface based on the rate of stretching 

is

Vt
H

sin2                                                          (4.41) 

The final expression for the energy contribution considering two identical conical zones 

is 

E4 2 M0
H2

t
d

sin2
f

0
                                         (4.42) 

The rate of energy dissipation for the horizontal hinge lines in the second phase is derived 

similar to equation 4.30 as 

E5 E5
f d                                                    (4.43) 

That means for equal flange size, E5 becomes 

                                       (4.44) 

During the second phase of deformation (second term in equation 4.6), the inclined 

hinge line AB is fixed (figure 4.6) A the same time, the angle between the planes that 

intersect AB varies  

                                          (4.45) 

This relation resulted from the angle between two surface normals in figure 4.6 as: 

N1 0 cos sin                                         (4.46) 

N2 cos sin 2 0 cos cos 2 0 sin       (4.47) 

The angle between two planes can be described by the angle between its two normals 

as

cos 2 1 2 cos2 cos2 2 0 1                               (4.48) 
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So the energy dissipation of the two hinge lines can be calculated as

E6 M0L2 2M0H sin sin2 tan2
0

tan 0 sin2 tan 0 sin2                  (4.49) 

Integrating  within the range of  results in 

                                    (4.50) 

with

          (4.51) 

Where the angles ,  and  are defined in figure. 4.6 while flange dimension  is 

defined in figure. 4.5 

4.2.4 Constitutive assumption and energy equivalent flow stress 

Material behavior in this analysis is assumed to be rigid-perfectly plastic. This is 

proven to be very useful in deriving the approximate solution for plane plasticity 

problems including slip line theory (Bower 2008, Lubliner 2008) and structural problems 

including limit load analysis discussed earlier. These theories consider the incipient 

plastic flow. Therefore, the material can be characterized by a single parameter called 

flow stress.  This is basically valid when the elastic strain is negligible compared to 

plastic strain. The plastic strain rate and total strain are equal in the original proof of 

Saint-Venant-Levy-Mises flow rule (Lubliner 2008, Hill 1998). This treatment is 

equivalent to treating the nonvanishing elastic modulus as infinite. Any solution obtained 

based on this theory is valid for the rigid-perfectly plastic material or Mises theory. The 

upper-bound theorem is valid for this assumption owing to associative material in which 

convexity and normality of the yield surface are satisfied.



98

In contrast to small strain plasticity, a proper formulation of energy absorption 

problems requires the consideration of a number of new effects including: 

inhomogeneous strain fields, complex strain histories under monotonic loading, 

kinematic vs. isotropic hardening rule, fracture initiation and propagation (Wierzbicki 

1999). In the literature most of the researchers (Abramowicz 1984, 1989, Hanssen 2000, 

Langseth 1996) calculated the average flow stress based on simple averaging assumption 

shown in equation 4.2, but this should be used with caution. This assumption is valid 

provided the strain value in the entire localized region is uniform. The Baushinger effect 

is ignored and no failure and damage is considered. The calculation of energy equivalent 

flow stress is one of the major sources of discrepancies between the mean crush force 

calculated from analytical equation and that of experiment (Wierzbicki 1999). The 

nonuniform strain in the hinge lines can be modified by calculating the actual strain from 

the kinematics of deformation such that the final strain f in equation 4.2 appropriately 

calculated (Abramowicz 1989). To calculate the equivalent flow stress, power law is 

widely used due to it good performance and simplicity. As shown in chapter 2, the strain 

history in some regions includes both loading and unloading. Baushinger effect can also 

be taken into account where the effects of both kinematic and isotropic hardening are 

considered. Hence the general equation for the energy-equivalent flow stress is given as 

(Wierzbicki 1999). 

0
u

n 1
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f

u

m
           (4.52) 

where , and  are ultimate stress, strain corresponding to ultimate stress and 

maximum attained strain at which strain reversal begins respectively, and n, m and  are 

the exponent of monotonic power law curve, exponent of reverse strain power law, and 
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parameter describing relative magnitude of isotropic and kinematic hardenings, 

respectively. For the pure isotropic hardening case =1, m=n, f= u., and the energy-

equivalent flow stress is simplified to  

0
u

n 1
2n                                                  (4.53) 

Kinematic hardening is obtained by setting ., which gives 

0
u

n 1
                                                      (4.54) 

As mentioned earlier in the general form of equation 4.2, the energy equivalent flow 

stress is defined based on the value of maximum attained strain or final strain. Each 

region in super folding element has its own strain value. Measuring the strain in each 

region provides a better prediction of the mean crush force. Wierzbicki (Wierzbicki 1989, 

1999) showed that the strain in three localized regions including horizontal hinge line ,

inclined hinge lines and inextensional deformation in an asymmetric element 

(figure 4.6) are 

1 1 3 t
b

2 3
                                          (4.55) 

2 0 65 t
b

1 3
                                        (4.56) 

3 0 64 t
b

1 3
                                        (4.57) 

These values should be used in calculation of energy equivalent flow stress 

(equation4.2). It has been shown shown (Wierzbicki 1999) that the values of strain in 

different regions are approximately equal for a wide range of C/t varies between 10%-

20%.



100

4.2.5 Extermum condition 

The existence of this optimum path is shown by Hill (Hill 1998) for the theory of 

plastic collapse, and was recently proven for axial crush (Abramowicz 1996). To preserve 

energy balance, the total internal energy defined by the sum of individual contributions 

has to be equal to the external work done by the axial crush force (equation 4.5), which 

can be rewritten as 

Wext u Pm eff                                                      (4.58) 

where mP  is the mean crush force and eff  the associated effective crush distance. This 

assumption helps us to include the real crush distance, which will be discussed later. The 

criterion for calculating the mean crush force is derived by minimization of mean crush 

force as a postulate (Wierzbicki 1983), (Wierzbicki 1983) for a minimum condition 

(Zhang 2007). Wierzbicki and Abramowicz (Abramowicz 1989) mentioned that the 

validity of this assumption was vague and needed a rigorous proof. This problem was 

resolved later (Abramowicz 1996). Following the framework of (Abramowicz 2003), the 

minimum condition for the mean crush force for the defined kinematic parameters is 

provided below in a simple form for the case of axial crush. 

Here, we have three kinematic parameters that should be identified to calculate the 

mean crush force. Due to the limitation that has already been imposed onto the set of 

kinematically admissible deformation, the boundary condition, initial condition and 

loading are automatically satisfied. Also the deformation gradient is also satisfied due to 

selecting the kinematically admissible deformation field in a simply connected domain. 

Consequently, the compatibility conditions are automatically satisfied.  
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The principle of virtual velocity can be expressed as the functional J defined as 

                                              (4.59) 

In order to solve this functional, we need to define a set of trial admissible 

deformation parameters defined by . With this, a set of trial functionals 

can be defined as: 

J Eext Eint                                                (4.60) 

Each trial functional  corresponds to a trial admissible deformation 

Since deformations are finite in reality, and trial may 

occupy different regions that is the limits in the actual functional and trial one can be 

different except in the initial condition. Hence, as the general approach, the equilibrium 

of the body can be expressed by requiring the vanishing of the residual value that should 

be vanished at each time instant 

                                                    (4.61) 

Since we have assumed that crush is a quasi-static process under kinematic loading, 

the trial external power (energy rate) and actual external power are the same. 

                                                       (4.62) 

Therefore, residual equation 4.62 can be written as 

                        (4.63) 

where time t is defined in the range of initial state  to final state 

Thus, to achieve equilibrium, the residual value should be minimized to zero  

Based on equation 4.63 and the upper bound theorem of the theory of plasticity, the 

internal energy should be minimized for  That is 
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                                             (4.64) 

From equation 4.59, the functional is minimized with respect to 

J
H

Eext Eint

H
Eext
H

Eint
H

0                   (4.65) 

And from equation 4.58 

Pm eff Eint                                                          (4.66) 

Assuming   and based on equation of  minimization 

Eext
H

Eint
H

                                                          (4.67) 

That the right hand side of equation 4.67 is

                                                        (4.68) 

From 4.66 and 4.68 we have 

Eint
H

Eint
H

                                                          (4.69) 

It can be shown that the above equation is equivalent to

                                         (4.70) 

It can be easily concluded that the extermal value of the kinematically admissible 

parameters  derived from the minimization of the mean crush force: 

                              (4.71) 

As presented in the previous chapter, the use of trigger mechanism led to the collapse 

of tubes in asymmetric mode shape. This means that the  term is not necessary to 

be satisfied , the angle parameter will be  in this case. In the case of symmetric 

mode shape, the angle parameter turns into the other extreme i.e. . Although in the 
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presence of trigger mechanism the second term in equation 4.18 becomes zero, the 

general deformation discussed in this chapter will be used for formulating the problem of 

multi-cell tubes.  

4.2.6 Effective crush distance and contact effect 

The effective crush distance is used to calculate the external energy from equation 

4.58. This relation should balance the internal dissipated energy and external work to find 

the mean crush force. Therefore, there is an inverse relation between mean crush force 

and the effective crush distance. Experimental and numerical observation show that the 

folds are not in a plane surface and there is a curvature associated with this distance. As 

shown in chapter 2, the double bending process of the walls creates a folding pattern as 

shown in figure 2.17. The effective crush distance is defined as . In the case 

of complete contact, where both faces of non-deformed components (region 5 in 

figure4.4) are collapsed completely on each other, . In practical cases this condition 

never happens and may result in under-predicting the mean crush force. Abramowicz 

(Abramowicz 1983) showed that the factor  varies within a range of 0.60-0.75 percent 

for linear strain hardening materials in single cell square tubes. This factor also depends 

on the corner angle and the cross sectional shape.  

Two simplified mode shapes considered in this study as depicted in figure 4.9. These 

modes are distinct from each other by the radius of the inward and outward lobes. In one 

case, the radius are equal (figure 4.9a) and in the other case the radius of the inward lobe 

is half of the radius of the outward lobe (figure 4.9b). The ratio of the effective crush 

distance and projected fold length (2H) can be calculated for figure 4.9a as 
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eff
2H

1 xeff
2H

1 Rf
3 2 Rf

3 1 0 73                      (4.72) 

And for figure 4.9b case: 

              (4.73) 

Figure 4.8

Formation of folds for crush distance calculation for (a) equal-size lobes, and (b) different 
size lobes (Wierzbicki 1999) 

Hence, the constant  can take values within 62% to 73% based on the tube crush 

mode, wall thickness and cross sectional geometry. 

With this, we have a consistent framework for characterizing the energy absorption 

properties of structures. However, this solution needs to consider the effective crush 

distance to have a proper value for external energy applied to the structure. Other effects 

such as mode instability due to imperfection and thickness effect, buckling mode, 

material behavior, failure behavior, and more importantly dynamic behavior are ignored. 

In the next section, some features regarding the dynamic behavior will be addressed. 
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4.3 Effect of dynamic loading 

Experimental studies showed that in perfectly prismatic square tubes the energy 

absorption behavior under dynamic impact changes due to inertia effects (Reid 1996, 

Langseth 1996,  Karagiozova 2008). Inertia effects are sensitive to the initial straightness 

of the specimens. In quasi-static case, the deformation occurs predominately by rotation 

of plastic hinges. Unlike the quasi-static theory of progressive plastic collapse, which 

assumes inextensional deformation in the hinge lines, in dynamic loading, a straight 

structure goes into axial compression due to the initial velocity. This will affect the initial 

peak load that was discussed in chapter 2. This effect can be described in terms of the 

elastic-plastic wave propagation. Stress wave propagation or inertia effect mainly 

influences the mode of deformation as described in chapter 2. Karagiozova showed that 

the initial out-of-plane deformation in structures under impact changes by the initial 

velocity that caused adjustment of the crush mode shape (Karagiozova 2004b). They 

showed that the speed of plastic stress wave depends on the stress state and the direction 

of wave propagation. This phenomenon initiates the buckling pattern and remains 

unchanged while large displacements develop. They have shown that two plastic stress 

waves travel with two velocities called slow and fast plastic stress. Material hardening 

has a stronger effect on the slow plastic wave speed while state of stress affects both fast 

and slow plastic wave speeds. Embedding the effect of stress wave propagation on the 

analytical equation developed in the previous section is not possible. The theory 

described above requires an identified crush mode, which is subject to change in the 

presence of dependency of the initial buckling mode formation on parameters such as 

hardening and initial velocity. We also showed that the trigger mechanism in the form of 
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indentation can eliminate this effect. This effect will not be captured through the 

analytical method described here.

4.3.1 Strain rate sensitivity 

Abramowicz and Jones (Abramowicz 1984)used the empirical Cowper-Symonds 

uniaxial constitutive equation (equation 4.74) to modify the energy equivalent flow stress 

used to derive the mean crush force such that 

0d

0
1

D

p
                                             (4.74) 

where the values for AA 6060-T6 and AZ31 are (D=1288000s-1, p=4) (de Kanter 2006) 

and (D=570s-1, p=3). The average strain rate due to a dynamic load applied by a striking 

mass with an initial velocity of can be found as 

                                     (4.75) 

Substituting equation 4.74 in to 4.75 gives the modified energy equivalent flow stress 

with the strain rate effect included 

                           (4.76) 

 value should replace the flow stress in the mean crush force calculation. 

4.3.2 Reduction in effective crush distance due to high velocity impact 

Figure 2.29 and 2.24 showed that the lobe shape changes by increasing the initial 

velocity. The schematic shape is shown in figure 4.9, such that the lobe pattern changes 

from quasi-static configuration (4.9a) to figure 4.9b. Based on quasi-static mode shape 

(figure 4.9a), the actual fold length can be derived from 

2SH 2 4 Rf1
2

Rf1                                        (4.77) 
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The actual fold length based on figure 4.9a configuration is 

                                              (4.78) 

Assuming that the actual fold length stays constant during the course of deformation, 

the effective crush distance should be modified according to 

                                            (4.79) 

4.4 General approach for multi-cell prismatic tubes 

The quasi-static mean crush force of multi-cell prismatic tubes is considered based on 

the deformation mechanism described in the previous section. Figure 4.10 Illustrates four 

different multi-cell configurations. When divided into its distinct corner sections, each 

cross-section is characterized by two- and three-flange elements. The two-flange 

elements are described by the width dimensions C1 and C2 whereas the three-flange 

elements include an additional flange with width Csh. All members have the same 

thickness t. Table 1 shows the distribution of decomposed elements in multi-cell models 

C2C, C2W, W2C, and W2W. 
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Figure 4.9

Alternative cross-sectional models for multi-cell tubes (Najafi 2008) 

Three types of three-flange elements identified as types I and II and T in figure. 4.10, 

are considered. Type I element has two obtuse angles while type II has two acute angles. 

Simple T elements present in models C2W, W2C and W2W are treated as a combination 

of two right angle corners.

Table 4.1

Distribution of corner elements in multi-cell tubes. 

Model 2-flange
elements 

3-flange
elements  
(type I) 

3-flange
elements  
(type II) 

3-flange
Elements 
T-Shape 

C2C 0 4 4 0 
C2W 4 0 4 4 
W2C 4 4 0 4 
W2W 8 0 0 8 

Based on the super folding element theory described in previous sections, the 

deformation mode in multi-cell tubes is decomposed into the basic deformation described 
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in figure 4.5. Figure 4.11 shows the deformation mode of a three-flange corner with 

obtuse angle. Based on the finite element simulation, the deformation region can be 

described in terms of basic deformation pattern shown in figure 4.11. 

Figure 4.10

Plastic deformation pattern in type II corner section 

Toroidal surface will be formed mainly between obtuse angles, so the energy 

dissipation contribution due to toroidal surface is derived from equation 4.28 between 

obtuse angles. In general, the numbers of horizontal hinge lines are based on the number 

of flanges in the model. Hence, for three flange elements there are three horizontal hinge 

lines related to each flange  with clamped boundary condition such that 

E2 2M0 C1 C2 Csh                                         (4.80) 

where in our analysis  and  since the thickness is constant in all the walls. 

Two inclined moving hinge lines are observed. Using the inclined moving hinge lines 

present in the asymmetric mode of deformation can be derived from equation 4.37. Two 

Toroidal surface 

Horizontal hinge lines 

Inclined moving hinge lines 

Conical surface 
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conical surfaces are identified resulting from the symmetric mode shape of the super 

folding element. Thus, the corresponding internal energy is found as 

E4 M0 Vt
H2

t
d

sin2
f

0
                                                   (4.81) 

Comparing equations 4.81 and 4.42, it appears that the conical surface in the actual 

two-flange element is 2 times higher than that of used in the three flange assembly 

because of the fact that this deformation assumed to be confined to one flange only. 

Figure 4.12 summarizes the calculation of the plastic deformation in each three-flange 

element based on the basic deformation in supper folding element. As it is shown type I 

and T shape corners can be decomposed in to a complete pure asymmetric element and 

half of pure symmetric element, whereas, the type II corners are decomposed into a 

combination of one and half pure asymmetric super folding elements. 
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models C2C through W2W can be obtained by adding the contribution of individual 

corner elements, which together with Eq. (14) provides a closed form formula for the 

mean crush force 

Pm
1

2�H
NjEint

jne
j 1                                                                                   (4.84) 

where Nj represents the number of each distinct corner elements from table 4.1 with 

separate contributions to the total energy absorption of the tube, and ne represents the 

number of element types present in the cross-section. Since Eq. (4.84) is based on a 

single value for equivalent projected fold length, H, some error will be introduced in the 

estimated value of Pm for crush cases with non-uniform fold geometries. 

Following the minimization equation 4.71 for H and b in previous section, the 

equivalent H and b for multi-cell elements can be obtained from equation 4.85 and 4.86 

below where all the constants have been specified in the Table 4.2. 

                                                                                (4.85) 

                          (4.86) 

t C n 3t2 2

2
1621 332 3Ct3 2

1 n 2 222 331 3

2                                         (4.87) 

  (4.88) 

     (4.89) 

Substituting the term in equations 4.85 to 489 into 4.84 using the relations defined 

earlier gives the general analytical equation for mean crush force of multi-corner multi-

cell tubes as 



113

Pm
0 t

�beqHeq
A beq

2Heq B Heq
2t K beqHeq

2 F beqCt G beqnCt      (4.90) 

where  is the internal tube flange length, n is the ratio of external tube flange by internal 

tube flange length and  based on equation 4.72. Other constants for each 

configuration are listed in table 4.2 

Table 4.2

Constants in equations 4.85 to 4.90 

C2C C2W W2C W2W 

1 1.8403 -0.7623 -189.7430 10.6814 

2 10.7261 20.1508 604.0790 63.4602 

 0.8284 4.0000 113.1370 38.6274 

 34.2118 86.7882 1101.8800 367.2940 

 9.2457 17.9513 12.5951 20.1101 

 8.5529 10.8485 3.4434 5.7390 

A 9.2457 17.9513 25.1902 40.2201 

B 8.5529 10.8485 6.8868 11.4779 

0.2071 0.5000 0.7071 1.2071 

F 0.4601 -0.0953 -1.1859 0.3338 

G 2.6815 2.5189 3.7755 1.9831 

It is worth mentioning that the equivalent energy flow stress is calculated from 

equation 4.53, which assumes that the material behaves as isotropic hardening material. 

This assumption also indicates that the strain values in the localized plastic regions are 

assumed to be uniform and identical.  
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4.4.1 Comparison of Pm and H with FEA results 

Figure 4.13 illustrates the variation of mean crush force of the four multi-cell tube 

models from both the analytical equations and FEA simulation for different thicknesses. 

Very close agreement is seen between the results in these cases. As discussed earlier, the 

analytical equation is valid as long as the mode shape of deformation does not alter. 

Crush mode is mainly dependent on the initial imperfection or trigger mechanism and 

wall thickness compared to the flange size or . This puts a limitation on the analytical 

equation and in the case of altering crush modes, the analytical equation needs to be 

revised. The average value for the equivalent projected fold length  from table 2.1 is 

compared with to  from analytical equation in table 4.3. The results differ within 1% 

to 17%.

Table 4.3

Comparison of equivalent projected fold length (H) derived from analytical approach and 
FE analysis 

Heq (mm) 

Equation 4.86 FEA 

10.7 10.6 

7.1 6.3 

8.6 9.7 

4.8 5.8 
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Figure 4.12

Comparison between the mean crush force from analytical and FEA simulation for 
different thicknesses 

4.4.2 Sensitivity of Pm with parameters 

As noted previously, the value of mean crush force in analytical equation is highly 

dependent upon choosing the proper value for the effective crush distance and energy 

equivalent flow stress. The effect of  parameter for C2C configuration within the range 

of 0.6 to 0.75 is plotted in figure 4.14. This behavior has been observed for all 

configurations. As the thickness increases, the effect of  selection becomes more 

significant.
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Figure 4.13

Effect of parameter on the mean crush force 

The influence of energy equivalent flow stress on the mean crush force of C2W 

configuration is shown in figure 4.15. Similar to the effect of effective crush distance, 

due to the linear relationship between mean crush force and energy equivalent flow 

stress, increasing the thickness increases the difference between mean crush force 

predictions.
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Figure 4.14

Effect of energy equivalent flow stress on the mean crush force 

It is seen that the calculation of mean crush force is highly dependent on the proper 

selection of effective crush distance and energy equivalent flow stress. However, 

specifying a proper effective crush distance becomes difficult in multi-cell tubes. Energy 

equivalent flow stress can be specified more accurately by identification of strain in each 

separate localized region separately. As discussed earlier, including Baushinger effect 

also improves the performance of the analytical approach presented here. 

4.4.3 Comparison with existing models 

 Chen and Wierzbicki (Chen 2001) and Zhang and Cheng (Zhang 2007) studied the 

performance of multi-cell tubes for energy absorption. The main feature of the multi-cell 

tubes they considered that they have equal-sized cells with right angle corners. The 

simulation-based results for average crush force are compared with the analytical 

predictions for W2W configuration that has right angles in Table 4.4. The analytical 

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

M
ea

n 
cr

us
h 

fo
rc

e 
(k

N
)

Wall thickness (mm)

0.2

0.22

0.24

0.26

0.28



118

models in Chen and Wierzbicki (Chen 2001) and Zhang et al. (Zhang 2006) were applied 

to single-cell and multi-cell tubes with the intersecting walls having an orthogonal 

arrangement.  

For the application of Chen and Wierzbicki equation, model W2W configuration 

divided into m separate flanges with the material cross-sectional area denoted as 

resulting in the average crush force formula: . For the Zhang et al.’s 

equation, with the number of two-flange elements denoted as N1 and three-flanges as 

(for T shape), the formula for the average crush force becomes 

. It is worth noting that the energy-equivalent flow stress in 

Zhang et. al study is derived from  where  and  represent the 

yield strength and ultimate stress of the material, respectively, with n as the exponent of 

the power law that seems to underestimate the actual energy equivalent flow stress of the 

material. They have also mentioned that it is required to use a dynamic correction factor 

of 1.2 to 1.4 which that seems inappropriate because of the presence of trigger 

mechanism and the rate independent material. 

Table 4.4

Comparison between mean crush force calculation based on present study and that of 
shown in Chen and (Chen, 2001), and Zhange et al. (Zhang 2006) for W2W model 

Chen& 
Wierzbicki Zhang et. al Present study Simulation 

120 105 138 131 

-difference (%) 8.40% 19.85% 5.34% N/A 

9.4 8.6 4.8 5.8 

- difference (%) 62.07% 48.28% 17.24% N/A 
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4.4.4 Dynamic effect 

As described in section 4.3.1 the effect of strain rate sensitivity is applied based on 

Symonds-Cowper (Symonds 1965) to modify the energy equivalent flow stress. 

Therefore, equation 4.90 will be modified using equation  

    (4.91) 

Since in this research particular attention paid on the aluminum alloys, these materials 

are approximately rate independent. Hence, the mean crush force of the dynamic and 

static loading is almost equal. 

4.5 Summary 

In this chapter, the analytical calculation of mean crush force for a single-cell tube 

based on the super folding element theory was described in detail. A comprehensive 

description of the application of the upper-bound theorem for mechanics of plastic 

collapse in terms of super folding element was also provided. Inspired by upper bound 

theorem, the analytical solution procedure for mean crush force was classified by 

defining the system energy balance in terms of the external work and plastic energy 

dissipation, defining a kinematically admissible deformation, internal energy 

contributions of each localized region defined in kinematics, constitutive equation, 

extermum condition of energy equation and effective crush distance. Different features, 

key assumptions, range of validity and proof of the minimization of crush force were 

described. Deformation pattern of corner elements was presented by identification of 
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basic deformation pattern within observed in the finite element analysis. The deformation 

pattern can be highly affected by the configuration of trigger mechanism. Thus, 

kinematics of deformation should be reconsidered once the initial perturbation changes. 

Results showed a very good agreement between analytical method and finite element 

analysis. The assumptions and capabilities for the energy absorption characterization in 

FEA and super folding element (SFE) approach were comparable. Some of the important 

features of these methods in the context of energy absorption are listed in table 4.5. Based 

on the results of previous chapters and the experimental observations, dynamic load can 

change the crush behavior of tubes. Effect of strain rate sensitivity can be added to the 

developed analytical equation provided that the mode of deformation remains the same. 

Inertia effect or stress-wave propagation that mainly affects the crush mode and increases 

the crush mode at the beginning of crush process cannot be captured within this 

framework. It has been observed that in high velocities effective crush distance is 

reduced. Comparison between mean crush force of multi-cell tubes from analytical 

equation and simulation showed a very good agreement. It also was able to predict the 

trend of mean crush force in different thicknesses and different configurations. A 

sensitivity analysis on two major parameters including energy equivalent flow stress and 

effective crush distance showed that the mean crush force is too sensitive to changes in 

these two parameters. These parameters can vary in different cross-sectional geometries. 

Similar to kinematically admissible deformation, these parameters should be assigned 

and cannot be determined from the solution. 
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Table 4.5

Comparison between finite element simulation and analytical method for energy 
absorption characterization 

FEA SFE 

Material behavior Piecewise linear isotropic hardening with J2 
plasticity. 

energy equivalent flow stress with rigid
perfectly plastic model 

Rate dependency Cowper-Symonds equation modifies the 
yield in each element 

Cowper-Symonds equation modifies the 
energy equivalent flow stress 

Kinematics 
Kinematic of deformation is predicted from 
solving differential equations based on 
defined base-function within each element 

Kinematic of deformation needs to be 
known based on experiment/simulation
analysis of deformation history 

Energy dissipation  

  Calculated in each element based on actual 
relation of stress strain behavior.  Calculated based on the defined kinematics 

and single value of energy equivalent flow 
stress 

  Integration points consider the stress 
distribution through shell thickness. 
  First-order shear deformation theory used
with shear correction factor of 0.833 

Lobe contact Imposed by penalty algorithm as a 
constraint on the element penetration 

Is modeled by defining the effective crush
distance 

Crush force Contact force Directly from the energy balance equation 

Crush distance Stroke advancement Effective crush distance 

Wave propagation Can be captured Cannot be captured 

Solution 
  Nonlinear explicit solver of governing 
equation. Algebraic analytic solution 
  Implicit solver for plasticity model 

Error sources  Round off, hourglass, element density, 
element distortion,  

Averaging kinematic parameters Heq and beq
on the multi-cells, energy equivalent flow 
stress.  
Nonuniform distribution of strain is ignored

Ratio of the effective crush distance 

Capability
Ability to model the actual boundary value 
problem, crush mode identification, 
dynamic and quasi static, contact definition 

Rapid evaluation of design concepts. 
Identification of the mechanism of
deformation 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The energy absorption behavior of thin-walled, multi-corner tubes under axial 

compression was investigated using both numerical and analytical approaches. Moreover, 

the effects of different factors such as: shell element formulation, trigger mechanism, 

inelastic behavior, cross-sectional geometry, and dynamic loading and loading rate 

sensitivity were examined. 

The results of explicit nonlinear quasi-static finite element analysis with commercial 

software (LS-DYNA) showed that both the crush mode and crush load of single-cell 

multi-corner tubes were affected by the choice of shell element formulation. Among 

those that provided converged solution, the element formulation of Hughes-Liu and 

Belytschko-Tsay offered the best performance. The results also indicated that a minimum 

of three integration points through the shell thickness was required to obtain a converged 

solution. The addition of trigger mechanism as well as is location could help reduce the 

second peak load. It was shown that low failure strain can affect the mean crush force 

very considerably. Increasing material hardening increased the crush force. Toughness 

was found to only affect the crush force when the inelastic region of stress-strain curve 

has a higher yield stress and steeper hardening modulus. Crush force fluctuation was 

found to be directly influenced by wall thickness such that increasing the thickness leads 



123

to greater fluctuation. It was found that the effective crush distance was due to double 

bending. Stress-strain response evaluation showed that the material experiences both 

loading and unloading during the process of progressive collapse.

The result of nonlinear transient dynamic FEA showed that the shell element 

formulation can influence the collapse mode of single-cell, multi-corner tubes. The effect 

of trigger mechanism was observed on the magnitude of the second peak in crush force-

crush distance plot. It was observed that without a trigger mechanism, crush force is 

slightly higher than in the case with trigger mechanism at the initial stages of crushing. 

This behavior is mainly because the buckling load in the tubes with no trigger is higher 

than the load required to crush a tube with trigger mechanism. Collapse mode was found 

to change with thickness, especially in the cases without trigger mechanism. It was also 

observed that thin-walled, single-cell tubes can show mixed deformation mode. However, 

the collapse mode could be stabilized in high energy modes, such as the symmetric mode, 

by increasing the wall thickness. Increasing the initial velocity of striking mass increased 

the crush force considerably. The inclusion of rate-sensitivity parameters indicated that 

the crush force was highly affected under dynamic loading. 

The effect of cross-sectional geometry on the energy absorption was studied by 

analyzing several multi-cell multi-corner tube models. The geometric features of interest 

included the arrangement of the interior tube walls and their connectivity with the 

exterior tube walls that resulted in acute or obtuse angles. FE simulation results showed 

that the multi-cell tubes have less crush-force fluctuation than a single-cell tube of equal 

mean crush force. Detailed evaluation of crush mode and folding length in each wall 

showed a more complex deformation pattern in multi-cell configurations due to different 
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corner angles, number of webs connected at each corner and the size of each web. The 

actual and projected fold lengths were different because of these factors. The energy 

absorption of multi-cell tube models proposed here was found to be superior to those with 

multiple rectangular cells based on the results of dynamic and quasi-static loading 

conditions.

Inspired by the upper-bound theorem, the analytical solution procedure for mean crush 

force was presented by considering the mechanics of plastic collapse and the super 

folding element theory. The analytical procedure required the system energy balance 

between the external work and plastic strain dissipation, defining a kinematically 

admissible deformation, internal energy contributions of each localized region defined by 

the kinematics of collapse, constitutive equation, extermum condition of energy equation 

and effective crush distance. Different features, key assumptions, range of validity and 

proof of the minimization of crush force were described. It was shown that the analytical 

method developed here is highly dependent on the accurate mathematical description of 

kinematically admissible deformation, which, as indicated by FE simulation results, can 

change due to existence and the type of trigger mechanism used. Plastic work in each 

localized region was defined based on uniaxial stress that was dominant in each region. 

As was observed in the FE simulation results obtained here and the experimental 

observations reported in the literature, dynamic loading can change the crush behavior of 

multi-corner tubes. To include the effect of strain rate sensitivity in the analytical 

equation, the mode of deformation must remain the same. The inertia effect or stress-

wave propagation that mainly affect the crush force and increases the crush mode at the 

beginning of crush process cannot be captured within the analytical framework. It was 
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also observed that in high velocities (40m/s), effective crush distance can be reduced. The 

comparison between mean crush force of multi-cell tubes found from the analytical 

equation and that based on FE simulation showed a very good agreement. The analytical 

model was also able to predict the trend in mean crush force for different thicknesses and 

different cross-sectional configurations. A sensitivity analysis on two major parameters 

including energy-equivalent flow stress and effective crush distance showed that the 

mean crush force was highly sensitive to changes in these two parameters, which can 

vary in different cross-sectional geometries. Similar to kinematically admissible 

deformation, these parameters should be assigned a priori as they cannot be determined 

from the solution.  

The closed form crush force formula together with nonlinear transient dynamic FE 

simulations were used to study the influence of cross-sectional geometry on the crush 

characteristics of multi-cell multi-corner tubes made of ductile materials. Force-

displacement response, crush pattern, and crush distance for different multi-cell, multi-

corner models were also investigated.  

5.1 Future work 

Despite the extensive research dedicated to energy absorption characterization of thin-

walled tubes over several decades, many questions still remain. For instance, both the 

initial imperfection and trigger mechanism could change the behavior and performance of 

multi-corner tubes. Therefore, a study on a wider range of trigger mechanisms would be 

useful for design of efficient energy absorbing components and a broader exploration of 

possible crush modes. 
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Since failure and damage can have a large influence on the energy absorption capacity 

and performance of thin-walled tubes, a future investigation of failure and damage could 

provide important information. 

As was shown in this study, material behavior in inelastic regime plays an important 

role in crush behavior of multi-corner tubes. The inclusion of physics based constitutive 

models in FE simulations could provide a very broad opportunity for material-process or 

material-process-product design. Understanding the relation between microstructural 

features and material behavior such as yield, hardening, recovery, Baushinnger effect, 

strain rate effect and plastic heating could enable designers to explore new materials and 

manufacturing processes to improve the crush performance of thin-walled tubes.  

A very limited set of experimental data is available for multi-cell metallic tubes. It 

would be crucial to have test data to physically identify the features of these designs, 

especially in compatibility regions. 

All of the proposed topics listed above are intended to enhance the capabilities of 

computer-based analysis tools that can be used for energy absorption evaluation of 

different tube models. The next step in this research is the coupling of such analysis tools 

with numerical design optimization, which is currently in progress. 
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