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a b s t r a c t

Quasi-static nonlinear finite element simulations are performed to study the energy absorption

characteristics of axially crushed thin-walled aluminum tubes with different multi-cell, multi-corner

configurations. By considering the kinematically consistent representation of plastic collapse as

observed in the crush simulations, an analytical formula for the mean crush force is derived using the

super folding element theory. In this model, the isotropic material is treated as rigid-perfectly plastic

and the total internal energy is calculated by considering both bending and membrane deformation

during the folding process. The simulation results show a strong correlation between the cross-

sectional geometry and the crush response of the tubes. The analytical predictions for the mean crush

force are compared with the FE results as well as other analytical models reported in the literature.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In design of automotive structures, the desire for weight
reduction (lightweighting) has to be balanced by the need for
crashworthiness. Vehicle structural components such as the front
rails play a crucial role in energy absorption management in
frontal crash scenarios [1]. While the component has to be
sufficiently stiff to limit intrusion distance, it has to accommodate
sufficient amount of plastic deformation to attenuate the
impulsive force and the associated acceleration transferred to
the occupants. The energy absorption capacity of a rail depends
not only on its material properties but also on its geometric
configuration and mode of deformation. Besides their ease of
manufacturing through the extrusion process, prismatic tube
models are very suitable for the study of deep plastic collapse or
the general mode of deformation under axial crush load, and as
such, have received considerable attention for many years.

Early investigations of deep plastic collapse in thin-walled
tubes made of ductile materials originated from the pioneering
works of Alexander in 1960 [2] on cylindrical tubes and those of
Wierzbicki and Abramowicz [3] and Abramowicz and Jones [4] on
multi-corner tubes.

Through examination of the collapsing response of axially
crushed single-cell rectangular tubes in laboratory experiments,
Wierzbicki and Abramowicz [3] developed a self-consistent
theory built upon the hypothesis that the plastic energy
ll rights reserved.
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dissipated during the crush process can be related to the localized
inextensional and extensional deformations observed at each
corner and web region of the tube. They also assumed that as
multiple folds develop during the progressive collapse, the folding
distance or wavelength within each fold stays constant. Using a
rigid-perfectly plastic isotropic material model, the average flow
stress was related to plastic energy dissipation using the strain
rate tensor, the Cauchy stress tensor, and the assumption of
co-rotational yield condition. By dividing the rectangular cross-
section into four identical two-flange (angle) sections and adding
the contributions of the folding mechanisms at a representative
corner element multiplied by the number of corners, they derived
a closed form equation for the axial mean crush force that could
be used to characterize energy absorption in rectangular tubes.
The theoretical predictions were later modified and compared
with data from laboratory experiments [4].

As an extension of their earlier work, Abramowicz and
Wierzbicki [5] proposed a mixed folding mechanism model by
combining quasi-inextensional and extensional modes of defor-
mation observed in multi-corner tubes with arbitrary corner
angles such as hexagonal and rhomboidal sections. By considering
extensional, inextensional, and quasi-inextensional deformation
mechanisms, Wierzbicki and Abramowicz [6] developed basic
folding element (BFE) model for a more general theory for
progressive collapse in single-cell, multi-corner tubes. These
studies revealed that extensional deformation has a more
dominant influence on the crushing of thick obtuse angle
elements whereas the primary deformation mode for acute angle
elements is the quasi-inextensional mode [7]. The resulting super
folding element (SFE) model was described in terms of fifteen
separate elements with characteristics of the deformable
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Fig. 1. Cross-sectional geometry of multi-cell, multi-corner tube models.
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elements described in terms of the three principal folding
mechanisms: inextensional, quasi-inextensional, and extensional.
The key aspect of SFE is the recognition of the formation and
propagation of various hinge lines that define the boundaries of
the constituent trapezoidal, toroidal, and cylindrical surfaces
during the crushing process. They noted that for tubes with
dissimilar corner angles, the fold wavelengths at the obtuse and
acute corners can be distinctly different depending upon the
difference in the angles.

Chen and Wierzbicki [8] studied the axial crush performance
of multi-cell, multi-corner tubes with identical rectangular cells
consisting of two- or three-member corners. They considered
both hollow and foam-filled tube models. For simplicity, the
kinematically admissible model of SFE [6] was replaced with a
basic folding element to model both the membrane action,
characterized by three extensional triangular elements near the
corner line, and the bending action, modeled using three
stationary hinge lines over each flange. By dividing the tube cross
section into separate flange sections, and relating the fractional
energy absorption of each flange to its length, thickness and
assuming an average folding wavelength, they arrived at an
analytical equation for the mean crush force.

Kim [9] applied the model of Chen and Wierzbicki [8] to multi-
cell, multi-corner tubes with dissimilar cells having right-angle
corners. Zhang and Cheng [10] also adopted the approach of Chen
and Wierzbicki [8] to derive an analytical equation for the mean
crush force for multi-cell rectangular tubes with four to nine
identical rectangular cells. However, they divided the cross
section into separate 2-, 3- and 4-flange corners, and measured
the contribution of each corner type to plastic energy dissipation
through membrane action. The resulting analytical equation for
the mean crush force assumes an average wavelength for the
dissimilar folds developed at the corners.

Although both static and dynamic tests have been used to
measure the collapse response of multi-corner crush tubes, the
effect of dynamic load on the material properties is often ignored
in analytical solutions. Langseth and Hopperstad [11] performed
extensive experiments on different heat-treated square aluminum
tubes under both static and dynamic loads, and showed that
under static loading, most of the mode shapes are symmetric
whereas in dynamic cases, the mode shapes tend to vary during
the crush deformation. DiPaolo et al. [12] and DiPaolo and Tom
[13] conducted a series of controlled experiments focused on the
symmetric quasi-static axial crush response of welded stainless
steel square tubes. They first investigated different control
methods in the form of tube end constraints and collapse
initiators (triggers) to control the so-called configuration response
(combination of collapse geometry and the shape of the load–
displacement curve). This was then followed by the examination
of the effects of alloy composition and microstructure on the
configuration response. Their results showed that the combina-
tion of greater carbon content and smaller grain size enhanced
both the peak crush load as well as energy absorption for the
secondary fold formation.

The development of nonlinear finite element analysis (FEA)
codes such as LS-DYNA, made it possible to analyze the crash
phenomenon [14–18] as a non-smooth, highly nonlinear problem
based on the explicit time integration technique [19]. Most of the
element models used in these codes were originally developed by
Hughes [20,21] and Belytschko et al. [19] with subsequent
modifications aimed at correcting the problem of zero energy
(hourglass modes) and enhancing the computational efficiency.

In the case of contact formulation, the kinematic constraint,
penalty and distributed parameter methods are often used for
rigid body and self-contact calculations [22,23]. To include
material nonlinearity, many of the previous studies have used
classical elastic–plastic models with kinematic and/or isotropic
hardening behavior [24].

One way to control the crush zone and plastic deformation of
tubes is through the design of tube cross-section. The extrusion
process makes it possible to easily manufacture various prismatic
tubes with multi-cell, multi-corner cross-sectional configurations.
Previous studies [8–10,25–27] show that multi-cell profiles with
two or more rectangular cells can enhance the energy absorption
capacity of crush tubes. Specifically, Chen and Wierzbicki [8]
show that the addition of interior walls can increase the specific
energy absorption (SEA) by approximately 15% in comparison to
the single-cell model.

Among all the multi-cell models considered in the previous
analytical studies, those in Kim [9] appear to be the most
complex. Although more complicated multi-cell models have
appeared in the literature, the theoretical analysis was replaced
by either FE solutions [17,18] or a surrogate model developed
using the response surface methodology [28,29].

While there have been many studies on multi-cell tubes, very
few have considered the energy absorption characteristics of
multi-corner, multi-cell tubes with non-rectangular or dissimilar
cell geometry. In this study, the mechanics of plastic collapse in
single-cell and multi-cell tubes is investigated using nonlinear
FEA. Based on the deformation modes observed in the FE
simulations and the theoretical foundation provided by the earlier
research mentioned above, an analytical equation for the mean
crush is developed with the results compared with those of FE
solutions.

The remaining portion of the paper is organized as follows:
Section 2 describes the FE model and associated nonlinear
simulations. The analytical approach is presented in Section 3,
followed by the discussion of results and the concluding remarks
in Sections 4 and 5, respectively.
2. Quasi-static finite element simulations

2.1. Tube models

The tube models of interest in this paper are prismatic with
cross-sectional shapes shown in Fig. 1. They generally possess
two- or multi-member junctions (corners) with acute or obtuse
angles. The selected models generally show a square inner tube
(di¼40 mm) connected to a square outer tube twice its size
(do¼80 mm). The multi-cell tube in all models has a length of
400 mm and a constant wall thickness (t¼2 mm). The distin-
guishing feature among the four models in Fig. 1 is the way the
inner and outer tubes are connected together to form the multi-
cell geometry. The connecting webs create corner-to-corner
(C2C), corner-to-web (C2W), web-to-corner (W2C), and web-to-
web (W2W) attachments in these models. Although the shape
and size of the inner and outer tubes are identical in all four
models, there is a slight weight difference due to minor variation
in width dimensions of the connecting webs. For reference pur-
poses, the performance of multi-cell models is compared with
that of a square tube of approximately similar energy absorption
level with d¼80 mm and t¼4 mm.
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2.2. Material model

All models in this study are made of AA6060-T6 aluminum
alloy (E¼70 GPa, n¼0.3, and r¼2.7e�6 kg/mm3). The material
behavior is expressed in terms of true stress–true strain curve,
which is extracted from a tension test up to the ultimate stress
point [30]. Since no failure or damage is defined in this simulation,
the stress–strain curve is extended in a perfectly plastic manner
beyond the ultimate stress point as shown in Fig. 2. Using the J2

plasticity model with multi-linear isotropic hardening law, the
stress–strain curve is treated as piecewise linear. The rate
sensitivity effect is ignored in this analysis as the material is
reported to be rate insensitive and the loading is assumed to be
quasi-static.
Fig. 3. Quasi-static model setup.

Fig. 4. Indentation trigger mechanism.
2.3. Simulation setup

In the quasi-static FE simulations, the tube is held fixed at its
base and a linear incremental displacement is applied at its free
end as shown in Fig. 3. All FE models use Hughes-Liu (continuum
based) shell elements [31,32]. An element mesh density study
was performed to find a suitable element size for the models
investigated. A subsequent examination showed that energy
absorption can be accurately estimated by using only three
integration points (NIP¼3) through the shell thickness. Because of
the high element distortion, zero energy deformation or hourglass
energy [19,31,32] was also checked. Results showed a very small
hourglass energy (o2% of the total internal energy generated due
to load).

The contact friction coefficient between the rigid wall and the
tube is set at 0.3 to prevent slippage due to numerical error
between the two surfaces (wall force). To prevent element–
element penetration resulting from excessive deformation, a
frictionless self-contact condition is defined on both inner and
outer surfaces of each element. The FE models used here are
developed using the ANSYS-preprocessor with FEA simulations
performed using transient dynamic nonlinear explicit FE code
LS-DYNA (double precision).

All simulations are conducted on a 16-node cluster with dual-
core AMD Opteron 2218 processors (2.6 GHz) and 8 GB of
memory. The post-processor LSPREPOST is used for visualization
and data analysis. To filter out noise in load history results,
the SAE type filtering with the frequency of 60 Hz is used. The
termination time of 400 ms is used for quasi-static analysis
resulting in the 1 m/s constant velocity of axial loading on the
tube throughout the simulation.
0

50

100

150

200

250

300

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

T
ru

e 
St

re
ss

 (
M

Pa
)

Strain

Fig. 2. Stress–strain relationship in piecewise linear plasticity model used in FE

simulations.
A small indentation on two opposite walls of the external tube
near its free end as shown in Fig. 4 is used as a trigger mechanism.
As reported in the literature [9], we found that an indentation
trigger mechanism can lower the initial peak crush force, induce a
stable progressive collapse, and prevent the global buckling of the
tube while it is crushed.
2.4. Crush response of a square tube

Since the collapse behavior is heavily influenced by the
deformation of corner regions, the collapse response of a simple
square tube is used as reference. In general, the folding
mechanism in a two-flange corner region involves extensional,
quasi-extensional, and quasi-inextensional modes of deformation
[4]. Using the description presented by Abramowicz [7], the
folding deformation can be expressed in terms of asymmetric and
symmetric corner elements as shown in Fig. 5. Although the
symmetric mode, with all corner regions deforming as in Fig. 5b,
is computationally possible, it has not been observed in physical
crush experiments.
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We performed a series of FE simulations to model the crush
response of a square tube with an isothermal rate insensitive
piecewise linear plasticity model as shown in Fig. 2, and found the
crush mode to be highly dependent on the trigger mechanism and
the loading rate. By adjusting the location of indentation trigger
mechanism under quasi-static loading, we were able to find both
the symmetric and asymmetric modes as shown in Fig. 5.

As noted in Wierzbicki and Abramowicz [6] and Abramowicz
and Jones [4], symmetric collapse mode involving symmetric and
asymmetric elements includes a cylindrical surface created from
the horizontal hinge lines caused by inextensional deformation,
inclined hinge lines forming inextensional deformation through
the conical surface, and a toroidal surface that has quasi-
inextensional deformation. In the toroidal surface, two bending
deformations are present [33]. The double bending action is due
to the cylindrical surface formed through the formation of
inclined hinges combined with a global bending due to cylindrical
formation of horizontal hinge lines. A toroidal surface is formed
because of the subsequent bending.
Fig. 5. (a) Asymmetric and (b) symmetric (extensional) elements resulting in

symmetric collapse deformation.

Fig. 6. Folding progression in a square tube
Symmetric extensional collapse mode involving only sym-
metric elements includes horizontal and inclined hinge lines
along with a conical surface that has extensional deformation.
Whereas in symmetric quasi-inextensional collapse mode invol-
ving only asymmetric element the major part of energy is
dissipated through quasi-inextensional deformation of the tor-
oidal surface, in the symmetric elements or extensional deforma-
tion, energy dissipation is mainly due to the extensional
deformation of the conical surface.

The cut view in Fig. 6 illustrates the progression of the
symmetric collapse mode in a square tube involving only
asymmetric elements. The folds start to appear in succession as
the applied displacement (load) is increased. Each fold maintains
its configuration as the next fold starts to develop. A load peak
appears as a horizontal hinge line begins to form. In symmetric
elements, the toroidal surface controls the crush force while
folds continue to accumulate with the surface of adjacent folds
contacting each other as shown in Fig. 6F. This phenomenon has
been captured in FE simulations by defining self-contact in such a
way that no node can penetrate any of the tube elements. The
presence of self-contact preserves each crushed fold in such a way
that the force required to increase deformation is greater than
that for forming a new fold. At this point, the folded region
behaves as a bulk rigid structure such that any further deforma-
tion will be impossible unless there is enough room for new folds
to develop.

Owing to the formation of the toroidal/conical surface and the
cylindrical hinge lines, the crush distance is not equal to the tube
length. Subsequently, once multiple folds are developed over
the entire length, the amount of force required to deform the tube
increases substantially. This is known as locking phenomenon. The
effective crush distance is calculated by considering the accumu-
lation of folds up to the locking point. The internal dissipated
energy is calculated from crush force versus crush distance curve
up to this point, and the overall mean crush force is found by
dividing this calculated energy by the effective crush distance.

2.5. Crush response of multi-cell, multi-corner tubes

The collapse modes of the multi-cell, multi-corner tube models
are shown in Fig. 7. All models undergo a stable progressive
collapse with repeated folding deformation that extends to nearly
65% of the length in all configurations. In C2C and C2W
configurations, the effective crush distance is longer than that of
W2C and W2W configurations. Therefore, the length of the rigid
bulk in W2W and W2C configurations is greater than that in C2C
and C2W.

The cut views of the crushed multi-cell tubes are shown in
Fig. 8. The figure reveals a more complicated folding pattern than
under quasi-static axial compression.



Fig. 7. Progressive collapse of different multi-cell, multi-corner tube models (deformation scale factor¼0.7).

Fig. 8. Cut views revealing the deformation patterns in different multi-cell tubes.
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that observed previously in single-cell tubes. The complex folding
pattern stemming from multi-corner configuration (i.e., the
number and angles of members joined at each corner) depicts
the interaction of large number of folds in the inner, outer, and
connector walls and is indicative of a larger portion of
the structure participating in the plastic deformation. Having
the same wall thickness, the wall dimensions cause a difference
in the folding height in the inner, outer, and the connector walls.
It can be seen that the folding patterns in the C2C and W2W
configurations are more uniform as the number of folds in the
inner and outer tube walls are approximately equal.

The close-up views of the folding patterns in Fig. 9 show that
the three-member corners with obtuse, acute, and right angles
can have different deformation patterns. For example, Fig. 9a
shows that the three-member corners with obtuse angles deform
under the symmetric mode shape. The difference in deformation
patterns of the two- and three-member corners become
important in the development of an analytical equation for the
mean crush force, as will be discussed later.

2.6. Energy absorption in single- and multi-cell tubes

Fig. 10 shows the plots of crush force versus crush distance for
the multi-cell tubes. In each case, the crush response is compared
with that of the square tube model with an equivalent cross-
sectional area. The thickness of the square tube is twice that of the
multi-cell models so that its mean crush force is close to that of
the multi-cell tubes. The range of the crush force fluctuation and
the slope of the load–displacement curve in multi-cell tubes are
smaller than those of the square tube. The load–displacement
behavior of multi-cell tubes shows that the number of folds
cannot be easily identified from the load–displacement curve.

Another characteristic of the multi-cell tubes is that their
effective crush distance is shorter than that in the square tube.



Fig. 9. Plastic deformation pattern at three-member corners with (a) obtuse, (b) acute, and (c) right angles.

Fig. 10. Crush force versus crush distance for different tube models.
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Fig. 11. Comparison of specific energy absorption for different tube models.
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This shorter effective crush distance is primarily due to the
locking of external and internal folds by the folding of connector
walls that do not allow the complete folding of the inner and
outer walls.

The specific energy absorption (SEA) of a component is defined
as the ratio of absorbed energy to the structural mass. In Fig. 11,
the SEA values for different multi-corner configurations are
compared as a function of crush distance. The models labeled
by a� b represent multi-cell tubes with a rectangular cells in one
direction and b in the other. The curves show a linear trend
up to the point where locking begins. The total SEA for each
configuration is calculated up to the initiation of locking. Amongst
the four multi-cell models considered here, configuration W2W
has the highest and C2C the lowest SEA value. The mean crush
force of C2W is very close to that of W2C configuration, but due to
their slight weight difference, the SEA and effective crush distance
of C2W are higher than those in W2C configuration.
Fig. 12. The collapse geometry of SFE [6].
3. Analytical modeling of crush response

We are extending the methodology and formulation of
kinematic based solution of crushing response in single-cell,
multi-corner sections developed by Wierzbicki and Abramowicz
[6] to multi-cell, multi-corner sections with acute and obtuse
angles. Since progressive axial crush of thin-walled prismatic
tubes with associative materials is characterized by the presence
of highly localized zones of plastic flow, a similar approach as the
upper-bound theorem [34,36] is used for analyzing their energy
absorption behavior.

The upper-bound theorem can only be used to determine the
initial collapse mechanism, the initial load or its bounds.
However, the components designed for energy absorption are
usually expected to experience large plastic deformation under
external loads.

The main elements of this analysis include: (1) the energy
balance equation, (2) identification of kinematically admissible
deformation including geometric parameters that control the
collapse process, (3) proper constitutive assumption to combine
the work conjugate variables of strain type variables present
while defining kinematically admissible deformation, and (4)
applying the extremum condition on the energy balance equa-
tion to optimize the geometric parameters based on energy
minimization.

A displacement/velocity field is kinematically admissible if it is
continuous in the structure, satisfies the velocity/displacement
boundary conditions, and the external force does positive work on
this displacement/velocity field [35]. Combining the kinematically
admissible deformation with constitutive equation gives the
internal energy equation for each localized region, and the contri-
bution of unknown parameters is captured by applying the
extremum condition to the energy balance equation.

The energy balance rate equation is generally expressed as

_W extð _uÞ ¼ _E
Total

int ð_eÞ ð1Þ

where _W extð _uÞ is the rate of external work and _E
Total

int ð_eÞ is the rate
of energy dissipation in the plastically deformed regions. Eq. (1) is
analogous to the work-energy balance between the internal
energy and work done by the applied load.

In the case of axial crush analysis, the rate of external work is
calculated based on the instantaneous crushing force P and the
axial crush velocity _d given as

_W extð _uÞ ¼ P _d ð2Þ

The right hand side of the energy balance in Eq. (1) should
contain the total energy dissipation contribution of the whole
structure. For this purpose, we need to identify the energy
absorption behavior of each localized region separately and sum
up their individual contributions. In general, for shells made of
rigid-perfectly plastic isotropic materials that experience plastic
deformation in localized regions, the rate of internal energy
dissipation is divided into continuous and discontinuous velocity
fields [7,8] represented by

_E int ¼

Z
S
ðMab _kabþNab _eabÞdSþ

Xm

i ¼ 1

Z
Li

Mi
o
_y

i
d‘i ð3Þ

where S defines the extent of continuous plastic deformation, Li is
the length of the ith hinge line, and m is the total number of
stationary or moving hinge lines. In the continuously deforming
zones, the bending moments Mab and membrane forces Nab are
the conjugate generalized stresses for the components of the
rotation rate tensor _kab and extension rate tensor _eab, respec-
tively, with Mi

o representing the fully plastic bending moment per
unit length and _y

i
representing the rotation rate of the hinge line.

In the SFE model of Wierzbicki and Abramowicz [6] as shown
in Fig. 12, the collapse response of single-cell, multi-corner tubes
is treated as a progressive phenomenon with each fold defined in
terms of the fold height H, the toroidal surface curvature b, the
corner angle y, and the wall thickness t. The contribution of each
localized region to the internal energy can be derived based on
Eq. (3). Depending upon the corner angle, energy contribution of
the two-flange corner sections can be represented by four types of
localized regions as shown in Fig. 12. The combination of three
localized regions can form two basic mode shapes (symmetric and
asymmetric) that are predominantly seen in both physical
experiments and FE simulations [7].

The asymmetric corner element that is dominant in acute and
right corner angles contains toroidal surface, as well as inclined
and horizontal hinge lines (Fig. 5a) whereas the symmetric corner
element that is dominant in obtuse corner angles is comprised of



Fig. 13. Angle parameters used in energy absorption contribution equation.

Fig. 14. Alternative cross-sectional models and geometric parameters.

Table 1
Distribution of corner elements in multi-cell, multi-corner tubes.

Model 2-flange

elements

3-flange elements

(type-I)

3-flange elements

(type-II)

3-flange elements

T-shape

C2C 0 4 4 0

C2W 4 0 4 4

W2C 4 4 0 4

W2W 8 0 0 8
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conical surface and horizontal hinge lines (Fig. 5b) [7]. Defining
pure mode shapes in corners gives more flexibility to develop an
analytical equation for the mean crush force since the switching
parameter [6,7] that defines the boundary between symmetric
and asymmetric deformation modes is assumed to be known.

The basic geometry of the four fold lines in asymmetric
deformation is presented in Fig. 13. The initial geometry of this
asymmetric mode shape is defined by the element height 2H, total
width C, and the corner angle p�2c0. The geometry in the current
configuration can be expressed via either crush distance d or the
angle of rotation of tube side a [5–7].

The energy absorption in each of the localized regions
including the toroidal surface E1, horizontal hinge line E2, and
inclinded hinge lines E3 are calculated based on the following
equations, where the upper limits in Eqs. (4) and (6) have been set
to p/2 to capture the asymmetric element:

E1 ¼
16M0Hb

t

p
ðp�2c0Þtanc0

� � Z p=2

0
cosa sinc0 sin

p�2c0

p b
� ��

þcosc0 1�cos
p�2c0

p b
� �� ��

da ð4Þ

E2 ¼ 2M0C
p
2

� 	
ð5Þ

E3 ¼
2M0H2

btanc0

Z p=2

0

cosa
sing da ð6Þ

The energy absorption contributions in the localized regions
associated with the symmetric element including conical surfaces
and horizontal hinge lines are calculated as

E4 ¼
2M0H2tanc0

t

Z p=2

0

sin2a
1þtan2c0 sin2a

 !
da ð7Þ

g¼ tan�1 tanc0

sina

� �
ð8Þ

b¼ tan�1 tana
sinc0

� �
ð9Þ

where the angles g and b, as shown in Fig. 13, are defined in ABD

and ABC planes, respectively.
It is worth noting that in E2, E3, and E4, the energy contribution

of each localized region should be doubled while considering the
two-flange corner elements.

The folding patterns in Fig. 9 show that the three-member
corners are comprised of the aforementioned localized regions. By
incorporating the energy dissipation contributions of each corner
region, the mean crush force of multi-cell, multi-corner tubes can
be calculated.

Three types of three-flange elements, identified as types I and
II and T in Fig. 9 are considered. Table 1 shows the distribution of
localized regions in each corner element of the multi-cell models
(C2C, C2W, W2C, and W2W). Type-I element is a combination of
an acute and a right angle while type-II is a combination of an
obtuse and a right angle. Simple T elements that are present in
models C2W, W2C, and W2W are treated as a combination of two
right-angle corners (Fig. 14).

The energy contributions for each corner type, as identified
from FE analysis in Fig. 9, are based on the deformation pattern
observed in the localized regions of the aforementioned basic
folding modes by considering the corner angles and the flange
dimensions (Fig. 13) [39]. Table 2 summarizes the number of
localized regions in each corner configuration along with the
corresponding energy contribution. During deformation, the
continuity condition imposed onto the common corner lines [7]
creates a mixed mode response that is considered in the method
presented in this study. Since the angle between flanges affects
the energy absorption of toroidal and conical surfaces, the energy
contribution of each localized region is calculated individually as
summarized in Table 2.

In this analysis, the material is assumed to be rigid-perfectly
plastic, which considers the incipient plastic flow. Therefore, the
material can be characterized by a single parameter (i.e., flow
stress) assuming a uniform strain over the entire localized region.
The calculation of energy-equivalent flow stress is one of the
major sources of discrepancy between the mean crush force
calculated from the analytical equation and that found experi-
mentally [37]. Although in modern SFE formulation the
Baushinger effect is included, in the present study, this effect
together with those associated with softening and failure or
damage is ignored.

Power law is widely used for energy-equivalent flow stress
calculation because of its good performance and simplicity. The
energy-equivalent flow stress for stretching and bending defor-
mation are simplified to the following equations:

sstretching
0 ¼

sðeiÞ

nþ1
, sbending

0 ¼
2sðeiÞ

ðnþ1Þðnþ2Þ
ð10Þ

where s(ei) is the stress corresponding to the maximum strain
developed in each localized region [37]. It can be shown that the
energy-equivalent flow stress values for bending and extension



Table 2
Localized regions and associated energy equations.

Localized

region

Toroidal

surface

Horizontal

hinge line

Inclined

hinge

lines

Conical

surface

Energy equation

2-flange 1 2 2 0 Eint ¼ E1ðp=2Þþ
P2

i ¼ 1 E2ðCiÞþ2E3ðp=2Þ

T-shape 1 3 2 2 Eint ¼ E1ðp=2Þþ
P3

i ¼ 1 E2ðCiÞþ2E3ðp=2Þþ2E4ðp=2Þ

Type-I 1 3 2 2 Eint ¼ E1ðp=2Þþ
P3

i ¼ 1 E2ðCiÞþðE3ðp=2ÞþE3ð3p=2ÞÞþðE4ðp=2ÞþE4ð3p=2ÞÞ

Type-II 2 3 4 2 Eint ¼ ðE1ðp=4ÞþE1ðp=2ÞÞþ
P3

i ¼ 1 E2ðCiÞþ2ðE3ðp=4ÞþE3ðp=2ÞÞþðE4ðp=4ÞþE4ðp=2ÞÞ

Fig. 15. Formation of folds for crush distance calculation in equal-size lobes.
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are close considering the average value of flange sizes. For
simplicity, the energy-equivalent flow stress in different regions
of multi-cell, multi-corner tubes is assumed to be the same.

The mean crush force for multi-cell, multi-corner models C2C
through W2W can be obtained by adding the contribution of each
individual corner elements resulting in a closed form formula for
the mean crush force expressed as

Pm ¼
1

2wHeq

Xne

j ¼ 1

NjE
j
int ð11Þ

where Nj represents the number of each distinct corner elements
from Table 1 with separate contributions to the total energy
absorption of the tube, and ne represents the number of element
types present in the cross-section. Since Eq. (11) is based on a
single value for equivalent projected fold height, Heq, the effective
crush distance is defined as deff¼w(2Heq). In the case of complete
contact, where both faces of non-deformed components are
collapsed completely on each other (w¼1), experimental and
numerical observations show that the folds are not in a plane
surface and there is a curvature associated with this distance.
Abramowicz [33] showed that the factor w varies within the range
of 0.60–0.75% for linear strain hardening materials in single-cell
square tubes. FE simulation showed that the radius of the inward
lobe is half of the radius of the outward lobe in the medium
thickness single-cell tubes whereas the radii of the inward and
outward lobes in each wall of the multi-cell tubes are equal
(Fig. 15). Considering the averaging scheme used for the mean
crush force calculation, the ratio of the effective crush distance
and equivalent projected fold length (2Heq) can be calculated from
Fig. 15 to be

w¼
deff

2Heq
¼ 1�

xeff

2Heq
¼ 1�

Rfeq

ð
ffiffiffi
3
p
þ2ÞRfeq

¼
ffiffiffi
3
p
�1¼ 0:73 ð12Þ

Here, we have two kinematic parameters that should be
identified to calculate the mean crush force. Due to the constraint
that has already been imposed on the set of kinematically
admissible deformation, the boundary conditions, initial condi-
tions, and loading are automatically satisfied. It can be concluded
that the extremal values of the kinematically admissible para-
meters {H,b} can be derived from the minimization of the mean
crush force as

@Pm

@Heq
¼ 0,

@Pm

@b
¼ 0 ð13Þ

The existence of this optimum path is shown by Hill [38] for
the theory of plastic collapse, and was proven for axial crush [34].
Following the minimization condition in Eq. (13) for H and b, the
equivalent b and H for multi-cell, multi-corner elements can be
obtained as

beq ¼�
tb
4l
�

x
4
ffiffiffi
3
p
þ 1

2 z
ð14Þ

Heq ¼
1

tZ
t2b2g
4l2

þ

ffiffiffi
3
p

t3b3g
8l3x

þ
1

8
ffiffiffi
3
p

l
tbgx� 1

4l
tbgz� 1

4
ffiffiffi
3
p gxz

 !

ð15Þ

where

xðt,C,m,kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3t2b2

l2
�

1621=332=3Ct3Z2ðm1þmm2Þ

k þ
222=331=3k

g2l

s

ð16Þ

kðt,C,mÞ ¼ ð�9Ct5b2g4Z2ðm1þmm2Þ

þ
ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2t9g6Z4ðm1þmm2Þ
2
ð27tb4g2þ256CZ2l3

ðm1þmm2ÞÞ

q
Þ
1=3

ð17Þ

zðt,C,m,xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2b2

2l2
þ

4ð2=3Þ1=3Ct3Z2ðm1þmm2Þ

k �
k

21=332=3g2l
þ

ffiffiffi
3
p

t3b3

2xl3

vuut
ð18Þ

where the constants are specified in Table 3.
Substituting the terms in Eqs. (14) through (18) into Eq. (11)

gives the general analytical equation for the mean crush force of
multi-corner, multi-cell tubes. This equation is similar to the
general form for single-cell tubes [6] and can be expressed as

Pm ¼
s0t

wbeqHeq
Ab2

eqHeqþBH2
eqtþKbeqH2

eqþFbeqCtþGbeqmCt
� 	

ð19Þ

where C is the internal tube flange length, m is the ratio of
external tube (m¼2) flange by internal tube flange length and
w¼0.73 based on Eq. (12). Other constants for each configuration
are listed in Table 3.
4. Results and discussion

The curves in Fig. 16 illustrate the variation of the mean crush
force with changes in wall thickness as predicted by the analytical
equation for the four multi-cell, multi-corner tube models. The FE



Table 3
Constants in Eqs. (9)–(14).

C2C C2W W2C W2W

m1 1.8403 �0.7623 �189.7430 10.6814

m2 10.7261 20.1508 604.0790 63.4602

l 0.6582 1.1503 49.3361 14.4686

b 34.2118 86.7882 1101.8800 367.2940

g 9.2457 17.9513 12.5951 20.1101

Z 8.5529 10.8485 3.4434 5.7390

A 9.2457 17.9513 25.1902 40.2201

B 8.5529 10.8485 6.8868 11.4779

K 0.1645 0.1438 0.3084 0.4521

F 0.4601 �0.0953 �1.1859 0.3338

G 2.6815 2.5189 3.7755 1.9831

Fig. 16. Comparison of the analytical and FEA predictions of the mean crush force

for different thicknesses.

Table 4
Comparison of equivalent projected fold length (H) for multi-cell, multi-corner

tube models.

Heq (mm)

Eq. (15) FEA

C2C 10.8 10.6

C2W 7.3 6.3

W2C 8.8 9.7

W2W 4.9 5.8

Table 5
Comparison between finite element simulation and analytical method for energy

absorption characterization.

FEA SFE

Material

behavior

Material is modeled using

piecewise linear isotropic

hardening with J2 plasticity

Material is modeled

using energy equivalent

flow stress with rigid-

perfectly plastic model

Kinematics Kinematic of deformation is

predicted from solving

differential equations

based on defined shape

function within each

element

Kinematic of deformation

needs to be known based

on experimental

observation or simulation

of deformation history

Energy

dissipation

Calculated in each element

based on the actual stress–

strain behavior

Calculated based on the

defined kinematics and

single value of energy

equivalent flow stress

Integration points consider

the stress distribution

through shell thickness

First-order shear

deformation theory is used

with shear correction factor

of 0.833

Lobe contact Imposed by penalty

algorithm as a constraint

on the element penetration

Is modeled by defining

the effective crush

distance

Crush force Contact force Directly from the energy

balance equation

Crush

distance

Predicted by the stroke

advancement

Assigned by the effective

crush distance

Solution Nonlinear explicit solution

of the governing equation

Algebraic analytic

solution

Implicit solver for plasticity

model

Error sources Round off, hourglass,

element density, element

distortion, material model

Averaging kinematic

parameters Heq and beq,

energy equivalent flow

stress

Non-uniform distribution

of strain is ignored

The effective crush

distance may vary in each

configuration

Capability Ability to model the actual

boundary value problem,

crush mode identification,

dynamic and quasi-static

Rapid evaluation of

design concepts

Deeper understanding of

the mechanism of energy

dissipation
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simulation results for three different thickness values are also
shown for comparison. Very close agreement is seen between the
results in these cases. As discussed earlier, the analytical equation
is valid as long as the mode of deformation does not change. Crush
mode is mainly dependent on the trigger mechanism and wall
thickness as opposed to the flange size or C/t ratio. This puts a
limitation on the analytical equation, and in the case of altering
crush modes, the analytical equation needs to be revised.

The average value for the equivalent projected fold length H

from FE simulations is compared with the Heq from Eq. (15) in
Table 4. The results differ within 1–17%.

The assumptions and approaches used for the energy absorp-
tion characterization of multi-cell tubes based on FEA and the
analytical procedure are listed in Table 5.

As noted earlier, the value of mean crush force in analytical
equation is highly dependent upon the proper selection of the
effective crush distance and energy equivalent flow stress. The
effect of w parameter for C2C configuration within the range of
0.6–0.75 is plotted in Fig. 17. This behavior has been observed for



Fig. 17. Effect of parameter w on the mean crush force for C2C configuration.

Fig. 18. Effect of energy equivalent flow stress on the mean crush force for C2W

configuration.

Table 6
Comparison of the analytical and FEA predictions of the mean crush force for W2W

model.

Chen and

Wierzbicki [8]

Zhang et al

[25]

Present

study

FE

simulation

Pm (kN) 120 105 136 131

Pm-difference (%) 8.4 19.9 3.8 N/A

Heq (mm) 9.4 8.6 4.9 5.8

Heq-difference (%) 62.1 48.3 15.5 N/A
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all configurations. As the thickness increases, the effect of w
becomes more significant.

The effect of the uniform energy equivalent flow stress on the
mean crush force of C2W configuration is shown in Fig. 18. Similar
to the influence of effective crush distance due to the linear
relationship between mean crush force and energy equivalent
flow stress, increasing the thickness increases the difference
between mean crush force predictions.

The calculation of mean crush force is found to depend greatly
on the proper selection of effective crush distance and energy
equivalent flow stress. However, specifying a proper effective
crush distance becomes difficult in multi-cell tubes. Energy-
equivalent flow stress can be specified more accurately by
identification of strain in each separate localized region.

For comparison with the analytical model Pm ¼ ð2=3Þs0t
ffiffiffiffiffiffiffiffiffiffiffi
pmA
p

in Chen and Wierzbicki [8], model W2W is divided into m

separate flanges with the material cross-sectional area denoted
as A. For the model Pm ¼ s0t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1þ2N2þ2N3ÞptLc

p
in Zhang et al.

[25], the number of two-flange elements is denoted by N1 and
three-flanges as N2 (for T-shape). It is worth noting that the flow
stress in Zhang et al. [25] is derived fromso ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sysu=ð1þnÞ

p
,

where sy and su represent the yield strength and ultimate
strength of the material, respectively, with n as the exponent of
the power law, which may underestimate the actual energy
equivalent flow stress of the material. They also mention that it
is required to use a dynamic correction factor of 1.2–1.4, which
may not be appropriate in the presence of asymmetric trigger
mechanism and the rate independent material. Chen and
Wierzbicki [8] and Zhang and Cheng [10] studied the performance
of multi-cell tubes for energy absorption. The main feature of the
multi-cell tubes they considered was that they have equal-sized
cells with right angle corners. In Table 6, the simulation-based
results for average crush force are compared with the analytical
predictions for the W2W configuration. The predicted values
based on the analytical models in Chen and Wierzbicki [8] and
Zhang et al. [25] are also shown for comparison.
5. Conclusions

The energy absorption behavior of thin-walled, multi-corner
tubes under axial compression was investigated using both
numerical and analytical approaches. The effect of cross-sectional
geometry on energy absorption was studied by analyzing several
multi-cell, multi-corner tube models. The geometric features of
interest included the arrangement of the interior tube walls and
their connectivity with the exterior tube walls that resulted in
acute or obtuse angles.

FE simulation results showed that the multi-cell tubes have
less crush force fluctuation than a single-cell tube of equal mean
crush force. Detailed evaluation of crush mode and folding length
in each wall showed a complex deformation pattern in multi-cell,
multi-corner configurations due to different corner angles,
number of webs connected at each corner and the size of each
web. The actual and projected fold lengths were different because
of these factors.

The analytical method developed here was found to be highly
dependent on the accurate mathematical description of kinemati-
cally admissible deformation that, as indicated by FE simulation
results, can change due to the existence and the type of trigger
mechanism used. Plastic work in each localized region was defined
based on the uni-axial stress that was dominant in each region.
As was observed in the FE simulation results obtained here and
the experimental observations reported in the literature, dynamic
loading can change the crush behavior of multi-corner tubes. To
include the effect of strain rate sensitivity in the analytical equation,
the mode of deformation must remain the same.

The comparison between the mean crush force of multi-cell
tubes found from the analytical equation and that based on FE
simulation showed a very good agreement. The analytical model
was also able to predict the trend in mean crush force for different
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thicknesses and different cross-sectional configurations. A sensi-
tivity analysis on two major parameters including energy-
equivalent flow stress and effective crush distance showed that
the mean crush force is highly sensitive to changes in these two
parameters, which can vary in different cross-sectional geome-
tries. Similar to kinematically admissible deformation, these
parameters should be assigned a priori as they cannot be
determined from the solution.
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