Integrating Grid Monitoring and P&C

i-PCGRID Conference, San Francisco CA
March 26th, 2015

Manu Parashar
Alstom Grid
Agenda

- Synchrophasor & Grid Stability Vision
- Synchrophasor Applications for Real-Time Operations
- Integrating Synchrophasors into EMS & Visualization
- Synchrophasors for Wide Area Protection & Control
The Evolution of Grid Stability Analysis

Past: Offline Planning Studies
- Traditionally, a planning function based on offline engineering studies
- Needed to accommodate unknown/unforeseen grid conditions
- Pre-defined static stability limits
 - Conservative margins

Present: Real-Time Measurement-based Stability Metrics
- Phasor Measurement Units (PMUs) offer real-time observability into grid dynamics (not possible in SCADA)
- Innovative real-time measurement-based analytics monitor key grid stability metrics (i.e. damping) in real-time

Future: Predictive Analysis & Corrective Actions
- An integrated “measurement-based” and “model-based” approach to grid stability management
- Leveraging “what-if” capabilities to provide predictive capabilities and corrective actions to mitigate instability conditions
- Automated PMU-based wide area control schemes
- Proactive grid stability management
Alstom Solutions: WAMS Functional Blocks

SUBSTATION
Measurements & Controls

- **Substation**
 - PMU
 - RTU

CONTROL ROOM NETWORK
Operations

- **Monitoring**
 - SCADA
 - e-terraplatform
 - e-terratreansmission (GSA)
 - On-line DSA
 - e-terrasmulator

- **Analytics**
 - Phasor Data Concentrator
 - e-terrasorpoint
 - Application Services
 - Historian
 - Replay

- **Model-Based**
- **Measurement-Based**

BUSINESS NETWORK
Planning

- Corporate Historian

- Analysis Tools
 - e-terrasoranalytics
 - e-terrasorpoint Replay
 - Off-line DSA

VISUALIZATION

- e-terravision
WAMS and On Line Stability Control Room Operations

The Next Generation Energy Management System!

EMS
MODEL-BASED Analysis

- SCADA & Alarms
- State Estimator
- Small Signal Stability
- Transient & Voltage Stability
- Island Management

PhasorPoint
PMU MEASUREMENT-BASED Analysis

- WAMS Alarms
- State Measurement
- Oscillation Monitoring
- Stability Monitoring & Control
- Island Detection, Resync, & Blackstart

Transitioning from traditional “steady-state” view to enhanced “dynamic” situational awareness.
Oscillatory Stability Monitoring

Concept
Characterize low-frequency oscillations from PMU data.
Utilize model-based stability assessment to assess margins.

Benefits
- Real-time monitoring of oscillatory stability modes:
 - Mode frequency.
 - Mode damping levels.
 - Mode shape (amplitude and phase)
- Quickly detect sudden oscillations observable from grid measurements (e.g. forced oscillations) indicative of performance/control issues.
Full oscillation detection

Concepts

- **4-46Hz**: Sub-Synchronous Oscillations (SSO) from series capacitors, torsional modes, control interaction, etc. to identify precursors.

- **0.005-0.1Hz**: Manage governor-frequency control stability risk by oscillation detection & angle-based

Benefits

- **SSO Early warning**
 - Avoid network tripping
 - Natural frequencies for model tuning and scenario selection

- **Assess system tests of control tuning and control tuning effect**

- **Identify & correct plant malfunction or misconfiguration quickly**

![Frequency Spectrum](image)

- **Governor Control**: 0.005 – 0.1Hz
- **Electromech & V. Control**: 0.1 – 4Hz
- **Sub-Synch Osc**: 4 – 46Hz

- **Detection & early warning**
- **Source Location** for identifying contributions (unique Alstom)
- **Geographic View** presents participation and contributions
- **Analysis** information for scenario selection, problem location, modelling
Concept

Uses Oscillation **Phase** as identification of largest contributions to oscillation. Define largest group contribution, then finds closest PMU to largest contribution in group.

Benefits

- **Targeted action** - on-line or planning
- Applicable to interconnection. Defines if problem in own control area.
- Supports **operational process** to manage unexpected behaviour
- Supports **control tuning process**

Oscillation Phase Relations for a Single Machine

- P and δ lag ω by about 90°, determined by damping. E.g. damping ratio 20%, angle lags 90°+12° and power lag speed by 90°-12°
- Power (P) in phase with speed (ω) produces positive damping.
- Power out of phase with speed produces negative damping.
Islanding & Restoration

Concept

PMU-based methods to quickly detect an islanding condition, and assist with the re-synchronization process.

Model-based topology processing to identify the islanded boundaries, and generation/load resources in each island.

Benefits

• Real-time alerts/alarms on islanding condition.
 ▪ Identify boundaries of the islanded regions.
 ▪ Summarize available resources within each island.
 ▪ Assist with the overall system restoration process.
System Disturbance Management

Concept

Enhance location and add disturbance impact measures based on static & dynamic stress. Metrics compared with baseline to show severity. Real-time & off-line performance indicators, with event severity & clustering. Angle-change view to assist restoration strategy.

Benefits

Real-time

- Present severe events or sequences, assess risk. High level warnings
- Identify restoration strategy, especially following multi-contingency

Analysis

- Long-term performance statistics & risk
- Select events for reporting

Location, sequence, static & dynamic impact, alarm level. Angle-shift view.
All alarms (including WAMS alerts/alarms) maintained and managed at a centralized location with the EMS Alarm Management System.

Oscillatory Stability
- Mode Damping/Amplitude Thresholds

Islanding

Disturbances
- General Rate of Change
- Disturbance Characterization

Composite Events
- User Defined

Magnitude Threshold Violations
- Voltage Magnitude
- Calculated Data
- Angle Difference
- Frequency / ROCOF
- P&Q / Power Corridors
Benefits of an Integrated WAMS/EMS Solution
Holistic Approach from Monitoring to Operator Guidance

- Sub-second: WAMS
- Second: Network Topology
- Minute: SE/DSA

Operator Guidance
- Enhanced Situational Awareness
- Monitoring
- Predict
- Monitor
- Assess
- Correct

© ALSTOM 2014. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
Example Application
Angle-based Grid Stability Management

- Correct
- Predict

Dynamic/Static Limit (DSA Tools)

Angle Monitoring
Real-time Angle-based Stability Constraints

Dynamic Stability Limits

Concept

Stability constraints are more directly related to angle than corridor power transfers.

Benefits

- Relieve transmission capability
- Reduce uncertainty in limit as conditions change, e.g. line outages, wind generation
- Corrective Actions
Operator Training Environment
Integrated Dynamic DTS

Integrated Dispatcher Training System:
- Real-time simulator based on Powertech TSAT
- Simulated data is fed directly into PP as C37.118 streams
- Data is also downsampled and sent to the EMS & DSA Tools
- EMS integrated with PhasorPoint and DSA tools

EMS Platform
- Load Flow Simulation
- Dispatch Control
- ET Engine

DSA tools

PhasorPoint Training Server
- Central PDC
- Application Services
- Data Services

- IEEE C37.118
- IEC 60870-5-104
- PhasorPoint HMI Services
- e-terra services
- Control
- Observe

Operator in Training
Wide Area Control

Bridging the grid control gap!

Protection
- 16-200ms Equipment Protection
- 200-600ms Wide-Area Defence

Automated Wide Area Control
- 0.6-3s Automated Trip
- 3-15s Automated Dispatch

Control Room EMS/WAMS
- 15 minutes Operator Dispatch
- Human Response

Stability Categories
- Frequency Stability
- Oscillatory Stability
- Long-Term Voltage Stability
- Short-Term Voltage Stability
- N-x Transient Stability
- Transient Stability
- Local & Differential Fault Protection
Vision for Phasor-based “Hybrid” Control
Requirement for India GSES Opportunity