A CYBER-PHYSICAL POWER SYSTEM TEST BED FOR INTRUSION DETECTION SYSTEMS

Thomas H. Morris, Uttam Adhikari, Shengyi Pan
Testbed Overview
Testbed Goal

- Hardware in the loop transmission system simulation
 - Distance protection, over current protection w/ automatic reclosing
 - Simulate power system disturbances
 - Simulate cyber security attacks

- Datasets
 - Train and validate intrusion detection system algorithms
 - Fusion of multiple sensors
 - Network logs, phasors, Snort, relay logs, control panel logs

- Automate attacks and disturbances for random simulation
 - Run at night to create large datasets of
 - steady state, disturbances, control actions, and attack data
 - random order
Intrusion detection systems (IDS) use sensors to learn system state.

Synchrophasor is a new sensor for power system IDS.
- Redundant information
- High granularity
Power system models

Three generator four bus system
Power system models

IEEE 9 bus system
Power system models

IEEE 14 bus system
Power system models

Modified two generator three bus system
Simulation control and data processing

- Simulation Environment
 - RTDS
 - Matlab Script
 - Relay/PMU
 - PDC

- Simulation Control and Data Processing
 - Log Retrieving Script
 - Synchrophasor Data Retrieving Script
 - Relay Log
 - Synchrophasor Measurement Data
 - Control Panel Log

Auto IT Script
- Auto IT = windows clicker script
- Auto IT calls sub-functions in random order
 - Attacks
 - Faults
 - Control actions

Matlab Interfaces with RSCAD
- Execute fault at 1% increments
- Change load, generation

Control Panel Script
- Trip relays for maintenance
Data collected

- **PMU**: V, I, F, dF, P, Q
- **Relays**: Breaker Status, Events
- **EMS**: Maintenance logs, Control logs
- **MATLAB RSCAD**: Impedance
- **Snort**: Network Activities, Flags, logs, Alarms

All data sources time stamped
Merged comma separated data sets

Data captured during steady state, disturbances, control actions, and attacks

Simulated 10000 instances of 41 total scenarios in random order
 - PMU sample rate 120 samples per second
 - 38 GB
Power system and attack scenarios

Attacks
- Remote trip relay(s)
 - replay MODBUS packets
 - mimics line maintenance
- Altered PMU data
 - mimic relay not operating for fault
- Altered PMU data + remote trip to impersonate fault
 - man-in-the-middle IEEE C37.118
 - mimic fault
- Disabled relay
 - replay MODBUS packets

Disturbances and Control Actions
- Transmission line maintenance
- SLG Faults
 - random location
- Load variation
 - periodic random load changes
Data sets for anomaly detection

- Collaborating with Justin Beaver and Raymond Charles of Oak Ridge National Laboratory
 - Feasibility of using machine learning algorithms to classify behaviors
 - Evaluate common classifiers available in WEKA
 - Each scenario stand alone
 - Grouped scenarios
 - Steady state + disturbances + control actions vs. attacks
 - Normal vs. disturbances + control actions vs. attack
 - Most promising results come from grouped scenarios.
 - Approx, 90% accuracy.
Event order provides signature effect

We call signature which includes multiple states over time a “path”
Auto path detection

- Automatically detect paths from data logs
- State ID represents unique set of measurements across all sources (PMU, relay log, Snort, control panel log)
- Difficulty minor variations lead to many paths for same scenario
- Data mining to discover “common“
- Currently approaching 90% accuracy
Final Challenge

- Build the IDS
 - incorporates data from all sources
 - real time classification and alerts
 - currently we are limited to offline classification