Lei, F., Senyurek, V.,
Kurum, M.,
Gurbuz, A., Boyd, D., Moorhead, R. J., & Crow, W. T. (2022). Quasi-global Machine Learning-based Soil Moisture Estimates at High Spatio-temporal Scales Using CYGNSS and SMAP Observations.
Remote Sensing of Environment. Elsevier.
276, 113041.
DOI:10.1016/j.rse.2022.113041. [
Abstract] [
Document Site]
Senyurek, V., Lei, F.,
Gurbuz, A.,
Kurum, M., & Moorhead, R. J. (2022). Machine Learning-based Global Soil Moisture Estimation Using GNSS-R.
SoutheastCon 2022. Mobile, AL, USA: IEEE. 434-435.
DOI:10.1109/SoutheastCon48659.2022.9764039. [
Abstract] [
Document Site]
Senyurek, V., Farhad, M.,
Gurbuz, A.,
Kurum, M., & Moorhead, R. J. (2022). SoilMoistureMapper: a GNSS-R Approach for Soil Moisture Retrieval on UAV.
UAAAI-22 AI for Agriculture and Food Systems (AIAFS) Workshop. Vancouver, BC (Canada). [
Abstract] [
Document Site]
Senyurek, V.,
Gurbuz, A., &
Kurum, M. (2021). Assessment of Interpolation Errors of CYGNSS Soil Moisture Estimations.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
14, 1.
DOI:10.1109/JSTARS.2021.3113565. [
Document] [
Document Site]
Lei, F., Senyurek, V.,
Kurum, M.,
Gurbuz, A., & Moorhead, R. J. (2021). Quasi-Global GNSS-R Soil Moisture Retrievals at High Spatio-Temporal Resolution from Cygnss and Smap Data.
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: IEEE. 6303-6306.
DOI:10.1109/IGARSS47720.2021.9554005. [
Abstract] [
Document Site]