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Per�lhyhH an�gkh gia par�llhlh epexergas�a prokÔptei apì thn Ôparxh qronobìrwn efarmog¸n se di�-forou tome�, ìpw h prìbleyh kairoÔ, oi exomoi¸sei purhnik  ènwsh, h an�lush tou DNAkai twn prwteðn¸n, h upologistik  prosèggish th dÔnamh twn reust¸n, k.a. H par�llhlhepexergas�a sumperilamb�nei algìrijmou, arqitektonik  upologist¸n, par�llhlo programma-tismì kai an�lush th apodotikìthta. Kat� th beltistopo�hsh th apìdosh twn akolou-jiak¸n episthmonik¸n kai teqnologik¸n programm�twn, to mègisto kèrdo proèrqetai apì thnparallhlopo�hsh twn fwliasmènwn brìqwn   twn epanalhptik¸n diadikasi¸n, ìpou meg�lakomm�tia upologismoÔ ekteloÔntai epaneilhmmèna. Oi fwliasmènoi brìqoi qwr� exart sei o-nom�zontai DOALL, en¸ auto� me exart sei onom�zontai DOACROSS. H parallhlopo�hshtwn DOACROSS brìqwn e�nai polÔ pio dÔskolh apì thn per�ptwsh twn DOALL brìqwn, diìtiprèpei na ikanopoihjoÔn oi up�rqouse an�mesa sti epanal yei exart sei. Oi prokl seipou prèpei na antimetwpistoÔn gia thn parallhlopo�hsh qronobìrwn problhm�twn e�nai: h e-laqistopo�hsh tou sunolokoÔ qrìnou epexergas�a, h elaqistopo�hsh tou qrìnou epikoinwn�ametaxÔ epexergast¸n (idia�tera sthn per�ptwsh twn DOACROSS brìqwn), h exisorrìphsh touupologistikoÔ fìrtou an�mesa stou epexergastè, h antimet¸pish kai h an�kthsh apì sf�l-mata pou mporoÔn na prokÔptoun sto prìgramma   sto sÔsthma, h diat rhsh twn qronik¸nperiorism¸n,   èna sunduasmì twn parap�nw. H paroÔsa didaktorik  diatrib  esti�zetai sthparallhlopo�hsh efarmog¸n pou perièqoun DOACROSS brìqou, antimetwp�zonta merikè a-pì ti parap�nw prokl sei. Sugkekrimèna, prot�jhkan kai parousi�zontai tèsserei statikèmejìdoi kai trei dunamikè mejìdoi dromolìghsh, gia di�fore arqitektonikè upologist¸n.Oi statikè mejìdoi sqedi�sthkan gia omogen  sust mata, en¸ gia eterogen  sust mata   su-st mata me gr goro metaballìmeno fort�o, sqedi�sthkan oi dunamikè mejìdoi. Mia apì autèti dunamikè prosegg�sei  tan bibliografik� h pr¸th prosp�jeia pro thn parallhlopo�h-sh twn DOACROSS fwliasmènwn brìqwn, qrhsimopoi¸nta mia qondrìkokkh (coarse grain)prosèggish kai dunamik  dromolìghsh, se eterogen  sust mata upologist¸n. Oi proteinìme-noi algìrijmoi ulopoi jhkan, epalhjeÔthkan kai axiolog jhkan me exantlhtik� peir�mata sedi�fore arqitektonikè upologistik¸n susthm�twn.



Abstract

The need for parallel processing arises from the existence of time consuming applications
in different areas, such as weather forecasting, nuclear fusion simulations, DNA and pro-
tein analysis, computational fluid dynamics, etc. Parallel processing comprises algorithms,
computer architecture, parallel programming and performance analysis. In optimizing the
performance of scientific and engineering sequential programs, the most gain comes from
optimizing nested loops or recursive procedures, where major chunks of computation are
performed repeatedly. Nested loops without dependencies are called DOALL, while those
with dependencies are called DOACROSS loops. Parallelizing DOACROSS loops is much
more challenging than parallelizing DOALL loops, because the existing dependencies be-
tween iterations of the loop nest much be satisfied. The challenges that must be addressed
for the parallelization of time consuming applications are: minimizing the total execution
time, minimizing the communication time between the processors (especially in the case of
DOACROSS loops), load balancing the computational load among the processors, dealing
with and recovering from failures that may occur either in the program or the system, meet-
ing deadlines, or a combination of these. This doctoral dissertation focuses on parallelizing
applications that contain nested DOACROSS loops, while trying to address some of the
aforementioned challenges. In particular, it proposes and presents four static methods and
three dynamic methods for scheduling nested DOACROSS loops on various architectures.
The static scheduling methods were devised for homogeneous systems, while the dynamic
scheduling methods were devised for heterogeneous systems or systems with rapidly vary-
ing loads. One of the dynamic approaches was bibliographically the first attempt towards
the parallelization of nested DOACROSS loops using a coarse grain approach and dynamic
scheduling, on heterogeneous systems. The proposed algorithms were implemented, verified
and evaluated through extensive experiments on various computer systems architectures.
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CHAPTER1
Introduction

This chapter gives an introduction to parallel processing, the motivation for this work, it
indicates what is missing from the field and how this dissertation makes a contribution.

1.1 What is Parallel Processing?

Parallel processing (or parallel computing) is a form of computing in which many instructions
are carried out simultaneously [AG89]. The underlying principle of parallel processing is that
large (or heavy) problems can almost always be divided into smaller (or lighter) ones, which
may be carried out concurrently (“in parallel”). Parallel computing exists in several different
forms: bit-level parallelism, instruction level parallelism, data parallelism, and task paral-
lelism. Parallel computing has been applied mainly in high performance computing systems.
High performance computing (HPC) usually refers to the use of a group of interconnected
computers (supercomputers and computer clusters) in order to perform computations in par-
allel.

The need for parallel processing (hence, high performance computing) arises from the
existence of time consuming applications in different areas, such as:

• computational fluid dynamics – all sorts of fluids

• molecular dynamics and astrodynamics – e.g. nuclear fusion simulations

• environmental modeling – atmosphere, land use, acid rain

• integrated complex simulations – e.g. weather forecasting, climate changes

• health and biological modeling – empirical models, DNA and protein analysis

• structural dynamics – civil and automotive

Parallel processing comprises algorithms, computer architecture, programming and per-
formance analysis. The process of parallelization consists of analyzing sequential programs
for parallelism and restructuring them to run efficiently on parallel systems. When optimizing
the performance of scientific and engineering sequential programs, the most gain comes from
optimizing nested loops or recursive procedures, where major chunks of computation are per-
formed repeatedly. Nested loops without dependencies are called DOALL, while those with
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dependencies are called DOACROSS loops. Parallelizing DOACROSS loops is much more
challenging than parallelizing DOALL loops, because the existing dependencies between it-
erations of the loop nest much be satisfied. Generally, the challenges that must be addressed
for the parallelization of time consuming applications are: minimizing the total execution
time, minimizing the communication time between the processors (especially in the case of
DOACROSS loops), load balancing the computational load among the processors, dealing
with and recovering from failures that may occur either in the program or the system, meeting
deadlines, or a combination of these.

The process of parallelization consists of three steps [Sin07]: (1) decomposing the ap-
plication into tasks, (2) analyzing the dependencies between the decomposed tasks and (3)
scheduling these tasks onto the target parallel or distributed system. A task can range from
a simple statement to basic blocks, loops and sequences of these. In this work, we will refer
to tasks as one iteration of a nested DO loop, unless otherwise stated.

(1) Decomposing an application into tasks, is called task decomposition, and is determined
by the following factors:

Concurrency - The degree of concurrency of an application gives the number of tasks
that can be executed concurrently. Applications in which all tasks can be executed
concurrently are called embarrassingly parallel, whereas applications in which no two
tasks can be executed concurrently are called embarrassingly serial. The embarrassingly
parallel and the embarrassingly serial applications are the two extremes of the time
consuming applications’ spectrum. Obviously, there are application in which certain
groups of tasks can be executed concurrently and they are the focus of this work.

Granularity - Expresses the size of tasks after the decomposition and therefore refers to
their computational size. There are three types of granularity: fine, medium and coarse.
Fine grain granularity expresses tasks that usually consist of a single operation or com-
putational unit (e.g. an instance of a DO loop nest), whereas coarse grain granularity
expresses tasks that consist of multiple operations or computational unit (e.g. may
consist of general program statements and/or including repetitive statements).

Application type - Applications may consists of distinct steps, in which each step is viewed
as a task and this may lead to a coarse grain decomposition. Alternatively, applications
may consist of one iterative block of (regular or not) computations, for which a fine
grain decomposition based on data decomposition is more suitable.

Target system - If the target system is a shared-memory architecture, a fine grain decom-
position is usually performed, since the cost of communicating information between
tasks is very small, whereas for a distributed-memory architecture a coarse gain de-
composition may be applied to reduce such communication costs, at the expense of
parallelism.

(2) Once the application is decomposed into tasks, the dependencies between tasks must
be determined (if they exist). This is called dependence analysis. Generally, there are two
types of dependencies: data dependencies and control dependencies. Data dependencies are
caused by data transfer between tasks. There are three types of data dependencies:

• flow (true) dependencies - one task writes a variable and another tasks reads that
variable, thus creating a precedence order for the execution of these two tasks.
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• anti-dependencies - one task reads a variable and then another tasks writes that variable.

• output dependencies - both tasks write on that variable.

Flow dependencies are real dependencies between tasks and cannot be eliminated. Anti-
dependencies and output dependencies can be eliminated by modifying programs (e.g. by
using a new variable) [CDRV98], [Sin07].

Unlike data dependencies, control dependencies are not created by data transfer but
describe the control structure of the program. Control dependencies can be transformed into
data dependencies [BENP93] and then the techniques for analyzing data dependencies can
be applied. In this work we deal with flow dependencies between tasks (i.e. iterations of
nested DOACROSS loops), which are also called inter-iteration dependencies. We consider
that all operations of a task are executed in sequential order, therefore we do not address
intra-iteration dependencies.

(3) After the application is partitioned into tasks and the dependencies between tasks are
determined, the last step of the parallelization process is scheduling these tasks in time and
spatially assigning them to the processors of the target system. The time schedule (temporal
assignment) refers to assigning a start time to each task. The spatial assignment (mapping)
is the allocation of tasks to processors. The time schedule along with the spatial assignment
are generally called scheduling.

Local scheduling is performed by the operating system of a processor and consists of
the assignment of the processes to the time-slices of the processor. Global scheduling is the
process of deciding where to execute a process in a multiprocessor system. It may be carried
out by a single authority or it may be distributed among processing elements. In this work
we focus on global scheduling, and we will refer to it simply as scheduling.

A scheduling algorithm must take into account all characteristics of the particular ar-
chitecture. A key issue that must be carefully considered is minimizing the communication
cost, in order to increase the performance of the parallel program. Communication may be
required for every iteration of the loop (fine grain parallelism approach) or for groups of
iterations (coarse grain parallelism approach).

1.1.1 Motivation

Why parallelize nested loops in general? Because they constitute the most computational
intensive part of a time consuming problem, hence the most gain in performance comes from
parallelizing nested loops. Parallelizing applications and scheduling tasks is a very complex
problem and crucially determines the efficiency of the target system.

How does task scheduling relate to loop scheduling? Loop scheduling is a particular case
of the more general case of task scheduling, in which each loop iteration is considered to be
a task. Hence, DOACROSS loop scheduling refers to the problem of scheduling dependent
tasks.

How easy is it to schedule tasks? Task scheduling is an NP-complete problem, mean-
ing that an optimal general solution cannot be found in polynomial time. This has been
the motivation behind the development of many heuristics for its near optimal solution.
Heuristic methods rely on the rules of the thumb to guide the scheduling processes in the
proper track for a near optimal solution. Static scheduling algorithms are in general easier
to design and program. In static scheduling, the communication and computation struc-
ture of the program and the target parallel system must be completely known at compile
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time. Dynamic scheduling algorithms may have a more complicated design and program-
ming. However they are more flexible allowing for adaptation to the unforeseen application
requirements at run-time or state of the target parallel system. Early heuristics focused on
producing the optimal schedules did not consider the costs of communication. Alternatively,
the heuristics which considered both the computation and communication costs, usually as-
sumed unit computations and communication costs or an unlimited number of processors.
Good scheduling heuristic (static and/or dynamic) should be based on realistic assumption,
meaning to consider arbitrary computation and communication costs as well as a limited
number of processors.

The motivation of this work is the need for such general scheduling algorithms, based on
realistic assumptions, that focus on meeting the different challenges of parallelization (mini-
mizing the total execution time, minimizing the communication time between the processors
and load balancing the computational load among the processors).

1.2 Overview of the Bibliography

Traditionally, software has been written for serial computation. The serial program was to
be run on a single computer having a single CPU, the problem was broken into a sequence of
instructions, that were executed one after another, and only one instruction could be executed
at any moment in time. In the simplest sense, parallel computing is the simultaneous use
of multiple compute resources to solve a computational problem. The parallel program is to
be run using multiple CPUs. The problem is broken into discrete parts that can be solved
concurrently. Each part is further broken down to a series of instructions, and instructions
from each part execute simultaneously on different CPUs.

The compute resources can include a single computer with multiple processors, an arbi-
trary number of computers connected by a network, or a combination of both. The compu-
tational problem usually demonstrates characteristics such as the ability to: be broken apart
into discrete pieces of work that can be solved simultaneously; execute multiple program
instructions at any moment in time; solved in less time with multiple compute resources than
with a single compute resource. When the discrete pieces of work are independent, then no
communication is required for the parallel execution.

A dependence exists between program statements when the order of statement execution
affects the results of the program. A data dependence results from multiple use of the same
storage location(s) by different tasks. Dependencies are of crucial importance to parallel
programming because they are one of the primary inhibitors to parallelism. Dependencies
must therefore be thoroughly analyzed in order to decide upon the best way to parallelize
the application [Ban88] [Pug92] [Mol93].

Usually the most computationally intensive part of a program can be attributed to the
nested loops it contains, since they iterate many times over the same statements. One of the
most addressed challenges of efficient parallelization of nested loops programs is to minimize
the makespan, i.e., the parallel execution time. The major issues of minimizing the makespan
of a parallel program concern the parallel resources and the communication overhead. With
regard to the former, parallelizing algorithms must be designed for a bounded number of
resources, such that maximum resource utilization is achieved in most cases. As for the
latter, the cost of communication between the existing resources must be minimized.

A very comprehensive historical review of scheduling is given in [Jam99]. It classifies
important models found in the literature up to 1999 as static, dynamic or hybrid (static and
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dynamic), according to the input model (arbitrary graphs, trees, precedence graphs, unrelated
tasks, arbitrary task graphs and DAGs), to the task execution time (known or unknown) and
finally according to the processors used by the model (homogeneous or heterogeneous).

The problem of scheduling DOACROSS loops with uniform dependencies is a very spe-
cial case of scheduling Directed Acyclic Graphs (DAGs). The general DAG multiprocessor
scheduling with precedence constraints is known to be NP-complete [GJ79] [Ull75] even when
the number of processors is unbounded [PY88]. Many researchers have tackled the special
cases of DAG scheduling [KPT96] [EFKR01] hoping to come up with efficient polynomial
algorithms.

Many static methods have focused on accomplishing the optimal time scheduling, the
first of which is the hyperplane method [Lam74]. The computations are organized into well
defined distinct groups, called wavefronts or hyperplanes, using a linear transformation. The
hyperplane method is applicable to all DOACROSS loops with uniform dependencies and all
the points belonging to the same hyperplane can be concurrently executed. Darte [DKR91]
proved that this method is nearly optimal. Moldovan, Shang, Darte and others applied the
hyperplane method to find a linear optimal execution schedule using diophantine equations
[MF86], linear programming in subspaces [SF91] and integer programming [DKR91]. The
problem of finding a hypersurface that results in the minimum makespan was solved more
efficiently in [PAD01]. Other attempts of scheduling uniform DOACROSS loops include
the free scheduling method introduced in [KPT96]. One of the goals of this work is to
schedule uniform DOACROSS loops so that the optimal parallel processing time is achieved
using the minimum number of processors. All these approaches consider unit execution time
for each iteration and zero communication for each communication step (UET model). It
was assumed that each loop iteration requires exactly the same processing time and there
is no communication penalty for the transmission of data among the processors. Another
polynomial time algorithm for scheduling in- and out-forrests with unit time computation
and communication delays (UET-UCT model) was given in [VRKL96].

In their efforts to minimize the communication cost for fine grained parallelism, several
methods for grouping neighboring chains of iterations have been proposed in [SC95] [KN01],
while maintaining the optimal linear scheduling vector [ST91] [DGK+00] [TKP00]. The goal
of partitioning the iteration space into chains of iterations is to annul the communication
for iterations of the same chain and minimizing the inter-chains communication. Hence,
some (neighboring or non-neighboring) chains may be grouped and computed by the same
processor, thus reducing the overhead of inter-processor communication.

For coarse grained parallelism, many researchers use the tiling transformation to reduce
the communication cost. Loop tiling (or loop blocking) is a loop optimization used by com-
pilers to make the execution of certain types of loops more efficient. It was proposed by
Irigoin and Triolet in [IT88]. Loop tiling for parallelism [Xue00] is a static transformation
and the time complexity of tiling is exponential in the size of the iteration space. The major
issues addressed in tiling are: minimizing the communication between tiles [WL91], finding
the optimal tile shape [BDRR94] [RS92] [Xue97] and scheduling tiled iteration spaces onto
parallel systems [DRR96] [RRP03].

A significant amount of work has been done for determining the optimal partitioning
(tile size, block size, grain size) of nested loops for homogeneous systems ([FDR96], [AR97],
[Low00], [Xue00], [XC02], [MSK04] and references therein). Desprez et al. presented in
[FDR96] a method for overlapping communications on homogeneous systems for pipelined
algorithms. He provided a general theoretical model to find the optimal packet size. Andonov
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and Rajopadhye addressed in [AR97] the problem of finding the tile size that minimizes the
total execution time, on homogeneous systems. Xue studied the problem of time minimal
tiling in [Xue00]. Tiles are statically assigned in a block or block cyclic fashion to homoge-
neous processors. The optimal tile size is determined based on the critical path of the last
processor. Xue and Cai presented in [XC02] a solution to the problem of finding the optimal
tile size on homogeneous systems, when the rise is larger than zero. Lowenthal et al pro-
posed in [Low00] a method for selecting block size at run-time in pipelined programs; they
target problems with irregular workloads on homogeneous systems. Strout et al proposed
in [MSK04] a run-time reordering transformation (full sparse tiling) that improves the data
locality for stationary iterative methods. The problem of finding the optimal partitioning of
iteration spaces for heterogeneous systems has not been given enough attention so far. Chen
& Xue proposed in [CX99] a method for obtaining the optimal tile size on heterogeneous
networks of workstations, in which the shape and sizes of tiles are statically determined and
scheduled using a block distribution approach.

Traditionally, DOACROSS loops were parallelized using static methods that employ ei-
ther fine grain or coarse grain parallelism. However, DOALL loops have been efficiently
parallelized with the use of various dynamic schemes. Dynamic scheduling methods are suit-
able for dynamic applications that run on a static platform, for static applications that run
on a dynamic platform or both.

An important class of dynamic scheduling algorithms for DOALL loops are the self-
scheduling schemes: Chunk Self-Scheduling (CSS) [KW85], Guided Self-Scheduling (GSS)
[PK87], Trapezoid Self-Scheduling (TSS) [TN93], Factoring Self-Scheduling (FSS) [HSF92].
These algorithms are coarse-grained and devised for DOALL loops without dependencies ex-
ecuted on homogenous systems. Self-scheduling algorithms divide the total number of tasks
into chunks, which are then assigned to processors (slaves). In their original form, these
algorithms cannot handle loops with dependencies and do not perform satisfactory on non-
dedicated heterogeneous systems. A first attempt to make self-scheduling algorithms suitable
for heterogeneous systems was Weighted Factoring (WF) proposed in [HSUW96]. WF dif-
fers from FSS in that the chunks sizes are weighted according to the processing powers of
the slaves. However, with WF processor weights remain constant throughout the parallel
execution. Banicescu and Liu proposed in [BL00] a method called Adaptive Factoring (AF),
that adjusts the processor weights according to timing information reflecting variations of
slaves computation power. This was designed for time-stepping scientific applications. Ban-
icescu et al proposed in [IBV00] a method similar to AF, called Adaptive Weighted Factoring
(AWF) scheme. AWF evolves FSS, and newly computed weights are not only based on the
performance of particular processors during the previous iteration step, but also on their
cumulative performance during all the previous iterations. Chronopoulos et al. extended in
[CABG01] the TSS algorithm, proposing the Distributed TSS (DTSS) algorithm suitable for
distributed systems. With DTSS the chunks sizes are weighted by the slaves relative power
and the number of processes in their run-queue.

1.2.1 What is missing?

As described above, the problem of DOACROSS loop scheduling has been extensively studied
in the future and there is a large number of proposed heuristics that aim at satisfying one or
more of the parallelization challenges. In order to achieve optimality for a certain criterion,
heuristics make simplifying assumptions, especially about the target architectures, which
renders them less practical or efficient on current systems. Even though we assume that
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problems containing DOACROSS loops are of static nature, the platform may be quite the
opposite, i.e. the system may be of dynamic nature. Therefore, there is a need for methods to
address: maximization of resource utilization, minimizing the inter-processor communication
cost, dynamic scheduling and load balancing, fault tolerance, scalability and reliability.

1.3 Contribution of this Dissertation

This dissertation presents several innovative methods for the parallelization of DOACROSS
loops, for various system architectures. Particularly, the contributions are summarized below:

Static methods

• An algorithm for the efficient assignment of computations that uses the least number
of processors, which guarantees the optimal parallel execution time [AKC+03a].

• An algorithm for determining the least number of processors required for an optimal
static scheduling along hyperplanes [AKC+03b].

• An adaptive cyclic scheduling method [CAP05] which exploits the geometric properties
of the index space in order to reach an efficient geometric decomposition of the index
space. This algorithm is also considered static.

• A static scheduling algorithm, called chain pattern scheduling [CAD+05], similar to the
adaptive cyclic scheduling method, which exploits also the regularity of the index space
of nested loops.

Dynamic methods

• A tool was implemented for the automatic parallel code generation, equivalent to the
original sequential program with nested loops, such that it is executable on share-
memory and distributed-memory systems [CAK+03] [ACT+04]. The proposed schedul-
ing algorithms used by this tool are dynamic, and based on the hyperplane method and
methods from computational geometry.

• A new method called dynamic multi-phase scheduling [CAR+06] [PRA+06], that ex-
tends several dynamic scheduling schemes originally devised for DOALL loops. This
method was bibliographically the first attempt to parallelizing nested DOACROSS
loops using a coarse grain approach, on heterogeneous systems and employing dynamic
scheduling.

• Two general mechanisms for enhancing the performance of self-scheduling algorithms
through synchronization and weighting [CRA+08].

• A theoretical model for determining the optimal synchronization/communication fre-
quency between processors for the execution of DOACROSS loops on heterogeneous
systems [CRA+07a].
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1.4 Dissertation Overview

In Chapter 2 we describe the basic concepts and give some background on the problem
addressed in this work. The static scheduling algorithms that this thesis contributes with are
described in Chapter 3, whereas the dynamic scheduling algorithms are exposed in Chapter
4. The implementation, experimental validation and testing of all proposed algorithms are
described in Chapter 5. Finally, we draw the conclusions and discuss future research directions
in Chapter 6.

1.5 Publications

In this list journal papers are numbered using ”J”, journal papers under review/revision using
”UR”, journal papers in submission using ”IS” and refereed conferences and workshops using
”C”.

International journals

J.1 Theodore Andronikos, Florina M. Ciorba, Panagiotis Theodoropoulos, Dimitrios Ka-
menopoulos and George Papakonstantinou, ”Cronus: A platform for parallel code gen-
eration based on computational geometry methods”, Journal of Systems and Software,
2008, Available online: http://dx.doi.org/10.1016/j.jss.2007.11.715.

J.2 Florina M. Ciorba, Ioannis Riakiotakis, Theodore Andronikos, George Papakonstanti-
nou and Anthony T. Chronopoulos, ”Enhancing self-scheduling algorithms via synchro-
nization and weighting”, Journal of Parallel and Distributed Computing, vol. 68, no.
2, pp. 246-264, 2008.

J.3 George Papakonstantinou, Ioannis Riakiotakis, Theodore Andronikos, Florina M. Ciorba
and Anthony T. Chronopoulos, ”Dynamic Scheduling for Dependence Loops on Het-
erogeneous Clusters”, Neural, Parallel & Scientific Computations, vol. 14, no. 4, pp.
359-384, 2006.

J.4 Florina M. Ciorba, Theodore Andronikos and George Papakonstantinou, ”Adaptive
Cyclic Scheduling of Nested Loops”, HERMIS International Journal, vol. 8, pp. 69-76,
2006.

International journals under review

UR.1 Ioannis Riakiotakis, Florina M. Ciorba, Theodore Andronikos, George Papakonstanti-
nou and Anthony T. Chronopoulos, ”Optimal Synchronization Frequency for Dynamic
Pipelined Computations on Heterogeneous Systems”, Journal of Cluster Computing.

UR.2 Florina M. Ciorba, Ioannis Riakiotakis, Theodore Andronikos, George Papakonstanti-
nou and Anthony T. Chronopoulos, ”Studying the impact of synchronization frequency
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mance Evaluation.

International conferences



1.5 Publications 9

C.1 Florina M. Ciorba, Ioannis Riakiotakis, Theodore Andronikos, Anthony T. Chronopou-
los, and George Papakonstantinou, “Optimal Synchronization Frequency for Dynamic
Pipelined Computations on Heterogeneous Systems”, IEEE International Conference
on Cluster Computing (CLUSTER 2007), Austin, TX USA, September 17-20, 2007.

C.2 Florina M. Ciorba, Ioannis Riakiotakis, Theodore Andronikos, Anthony T. Chronopou-
los, and George Papakonstantinou, “Studying the impact of synchronization frequency
on scheduling tasks with dependencies in heterogeneous systems”, PACT ’07: Proceed-
ings of the 16th International Conference on Parallel Architectures and Compilation
Techniques, pp. 403, Brasov, Romania, September 15-19, 2007.

C.3 Ioannis Riakiotakis, Florina M. Ciorba, Theodore Andronikos, and George Papakon-
stantinou, “Self-Adapting Scheduling for Tasks with Dependencies in Stochastic Envi-
ronments”, Proceedings of the IEEE International Conference on Cluster Computing
(CLUSTER 2006), Workshop on Algorithms, Models and Tools for Parallel Comput-
ing on Heterogeneous Networks (HeteroPar ’06), pp. 1-8, September 25-28, Barcelona,
Spain, 2006.

C.4 Florina M. Ciorba, Theodore Andronikos, Ioannis Riakiotakis, Anthony T. Chronopou-
los, and George Papakonstantinou, “Dynamic Multi Phase Scheduling for Heteroge-
neous Clusters”, Proceedings of the 20th International Parallel and Distributed Process-
ing Symposium (IPDPS’06), April 25-29, Rhodes Island, Greece, 2006.

C.5 Florina M. Ciorba, Theodore Andronikos, Ioannis Drositis, George Papakonstantinou,
“Reducing Communication via Chain Pattern Scheduling”, Proceedings of the 4th IEEE
Conference on Network Computing and Applications (NCA’05), Cambridge, MA, July,
2005.

C.6 Florina M. Ciorba, Theodore Andronikos, George Papakonstantinou, “Adaptive Cyclic
Scheduling of Nested Loops”, Proceedings of the 7th Hellenic European Research on
Computer Mathematics and its Applications (HERCMA’05), Athens, Greece, Septem-
ber, 2005.

C.7 Theodore Andronikos, Florina M. Ciorba, Panagiotis Theodoropoulos, Dimitris Ka-
menopoulos and George Papakonstantinou, “Code Generation for General Loops Using
Methods from Computational Geometry”, Proceedings of the IASTED Parallel and
Distributed Computing and Systems Conference (PCDS 2004), pp. 348-353, Cambrige,
MA USA, November 9-11, 2004.

C.8 Florina M. Ciorba, Theodore Andronikos, Dimitris Kamenopoulos, Panagiotis Theodor-
opoulos and George Papakonstantinou, “Simple Code Generation for Special UDLs”,
In Proceedings of the 1st Balkan Conference in Informatics (BCI’03), pp. 466-475,
Thessaloniki, Greece, November 21-23, 2003.

C.9 Theodore Andronikos, Marios Kalathas, Florina M. Ciorba, Panagiotis Theodoropou-
los and George Papakonstantinou, “An Efficient Scheduling of Uniform Dependence
Loops”, In Proceedings of the 6th Hellenic European Research on Computer Mathemat-
ics and its Applications (HERCMA’03), Athens, Greece, September 25-27, 2003.

C.10 Theodore Andronikos, Marios Kalathas, Florina M. Ciorba, Panagiotis Theodoropou-
los, George Papakonstantinou and Panagiotis Tsanakas, “Scheduling nested loops with



10 Introduction

the least number of processors”, In Proceedings of the 21st IASTED International Con-
ference on Applied Informatics (AI 2003), pp. 713-718, Innsbruck, Austria, February,
2003.



CHAPTER2
Preliminary Concepts - Background

This chapter starts by defining the problem of task scheduling and enumerating the charac-
teristics of tasks in general. The second step of the parallelization process is decomposing
an application into tasks. One of the factors influencing task decomposition is the target
system. We describe here the characteristics of the target systems and how they influence
the task decomposition and the task scheduling decisions. Next, we describe the general
model of nested DO loops and explain the different types of dependencies that may exist in
DOACROSS loops. Finally, we present the two models used for representing DOACROSS
loops (or tasks with dependencies, generally) and give an emphasis on the Cartesian space
representation model.

2.1 The Problem of Task Scheduling

In the previous chapter (1.1) we described the three steps that characterize the parallelization
process. The third step is task scheduling and the problem of task scheduling is described
below.

Definition 2.1.1 (The task scheduling problem) [Par99]: Given the set of tasks of a
parallel computation, determine how the tasks can be assigned to processing resources (sched-
uled on them) to satisfy certain optimality criteria.

After the application is partitioned into tasks and the dependencies between tasks are
determined, the last step of the parallelization process is scheduling these tasks in time and
spatially assigning them to the processors of the target system. The time schedule (temporal
assignment) refers to assigning a start time to each task. The spatial assignment (mapping)
is the allocation of tasks to processors. The time schedule along with the spatial assignment
are generally called scheduling.

The optimality criteria may include minimizing execution time, maximizing resource uti-
lization, minimizing inter-processor communication, load balancing computations, handling
and/or recovering from failures, meeting deadlines, or a combination of these.

Associated with each task is a set of parameters or characteristics, including one or more
of the following:

1. Execution or running time - We may be given the worst case, average case, or the
probability distribution of a task’s execution time.
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2. Creation - We may be faced with a fixed set of tasks, known at compile time, or a
probability distribution for the task creation times.

3. Relationship with other tasks - There are two types of tasks: independent tasks (em-
barrassingly parallel) and dependent tasks, for which the dependency relationship may
stem from criticality, priority order, and/or data dependencies.

4. Start or end time - A task’s release time is the time before which the task should
not be executed. Also, a hard or soft deadline may be associated with each task. A
hard deadline is specified when the results of a task become practically worthless if
not obtained by a certain time. A soft deadline may penalize late results but does not
render them totally worthless.

5. Task granularity - There are three types of granularities: fine (tasks consist of a sin-
gle operation or computational unit, e.g. an instance of a nested loop), medium and
coarse (tasks consist of multiple operations or computational unit, e.g. general program
statements and/or repetitive statements).

According to when the scheduling decisions are performed, there are two types of task
scheduling methods: static and dynamic. In static scheduling, the assignment of tasks to
the processors is done before the program execution begins. Information regarding the task
execution times and resource requirements are assumed to be known at compile time itself.
Static scheduling methods are processor non-preemptive. The goal, usually, is to minimize
the execution time of the concurrent program while minimizing the communication delay.
Static methods aim at:

• Predicting the program execution behavior at compile time.

• Performing a grouping of smaller tasks into coarser grain processes to reduce commu-
nication delays.

• Allocating the coarser grain processes to processors.

Perhaps one of the most critical drawbacks of static scheduling is that generating optimal
schedules is an NP-complete problem, hence only restricted solutions (heuristics) can be
given. Heuristic methods rely on the rules of the thumb to guide the scheduling processes
in the proper track for a near optimal solution. Static scheduling algorithms are in general
easier to design and program.

Dynamic scheduling is based on redistribution of tasks at execution time. This is achieved
either by transferring the tasks from heavily loaded processors to the lightly loaded ones
called load balancing, or by adapting the assigned number of tasks to match the workload
variation in the multiprocessor system. Dynamic scheduling is necessary in the following
situations: when a static scheduling may result in a highly imbalanced distribution of work
among processors; when the task-dependency graph itself is dynamic, thus precluding a
static scheduling; or when the target system is not stable enough or if it evolves too fast. The
primary reason for using a dynamic scheduling algorithm is balancing the workload among
processors, therefore dynamic algorithms are often referred to as dynamic load balancing
algorithms. Dynamic scheduling algorithms are usually more complicated, particularly in the
message-passing programming paradigm.
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According to where the scheduling decisions are performed, dynamic scheduling algo-
rithms can be centralized or distributed (decentralized). In a centralized dynamic load bal-
ancing approach, all ready-to-be-executed tasks are maintained in a common central data
structure or they are maintained by a special processor or a subset of processors. If a special
processor is designated to manage the pool of available tasks, then it is often referred to as
the master and the other processors that depend on the master to obtain work are referred to
as slaves or workers. Whenever a processor has no work, it takes a portion of available work
from the central data structure or the master processor. Whenever a new task is generated, it
is added to this centralized data structure or reported to the master processor. This describes
the master-slave model. Centralized load-balancing schemes are usually easier to implement
than distributed schemes, but may have limited scalability. As more and more processors
are used, the large number of accesses to the common data structure or the master processor
tends to become a bottleneck.

In a distributed dynamic load balancing approach, the set of ready-to-be-executed tasks
are distributed among processors which exchange tasks at run time to balance work. Each
processor can send work to or receive work from any other processor. These schemes do
not suffer from the bottleneck associated with the centralized schemes. However, it is more
difficult to pair up sending and receiving processors for an exchange, to decide whether the
transfer is initiated by the sender (an overburdened processor) or the receiver (a lightly loaded
processor), to decide how much work is transferred in each exchange and to decide how often
a work transfer should be performed.

The main advantage of the dynamic approach over the static approach is the inherent flex-
ibility allowing for adaptation to the unforeseen application requirements at run-time, though
at the cost of communication overheads. The disadvantages are mainly due to communication
delays, load information transfer and decision making overheads.

Unfortunately, most interesting task scheduling problems, some with as few as two pro-
cessors, are NP-complete. This fundamental difficulty has given rise to research results on
many special cases that lend themselves to analytical solutions and to great many heuristic
procedures that work fine under appropriate circumstances or with tuning of their decision
parameters. Stankovic et al. [SSDNB95] present a good overview of basic scheduling results
and the boundary between easy and hard problems. El-Rewini et al. [ERAL95] provide an
overview of task scheduling in multiprocessors.

Polynomial time optimal scheduling algorithms exist only for very limited classes of
scheduling problems. Examples include scheduling tree-structured task graphs with any
number of processors and scheduling arbitrary graphs of unit-time tasks on two processors
[ERAL95]; scheduling in- and out-forrests for unit time computation and communication
delays [VRKL96]; free scheduling of task graphs with unit time computation delays and no
communication delays [KPT96]. Most practical scheduling problems are solved by applying
heuristic algorithms.

2.1.1 Target Systems

The resources or processors on which tasks are to be scheduled are typically characterized by
their ability to execute certain classes of tasks and by their performance or speed. To achieve
performance on parallel systems, scheduling algorithms must take into account both paral-
lelism and data locality. Data locality is influenced directly by the memory architecture of
the target system. There are two main classes of memory architectures for parallel machines:
distributed address space machines and shared address space machines. The distributed ad-
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dress space machines are built from a group of processors connected via a communication
network. Each processor has its own local memory that it can access directly; messages have
to be sent across the network for a processor to access data stored in another processors’s
memory. The most popular example is a cluster of workstations (COW).

In contrast, the shared address space machines present the programmer with a single
memory space that all processors can access. Many of these machines support hardware cache
coherence to keep data consistent across the processors. Shared address space machines can
either have a single shared memory that can be uniformly accessed by all the processors,
or the memories may be physically distributed across the processors. The former class of
machines are often called centralized shared address space machines, while the latter class of
machines are called distributed shared address space machines. Distributing the memories
across processors removes the need for a single shared bus going from all the processors’ caches
to the memory and thus makes it easier to scale to more processors. An example of distributed
shared address space systems are the Silicon Graphics Origin commercial machines.

The problem of scheduling for distributed-memory systems is more challenging than for
shared-memory systems due to the fact that the communication cost must be taken into
account. Two things make the communication in multiprocessor systems more inefficient than
in uniprocessors: long latencies due to inter-processor communication and multiprocessor-
specific cache misses on machines with coherent caches. Long memory latencies imply that the
amount of inter-processor communication in the program is a critical factor for performance.
Thus it is important for computations to have good data locality. A computation has good
data locality if it re-uses much of the data it has been accessing; programs with high data
locality tend to require less communication. It is therefore important to take communication
and data locality into consideration when deciding how to parallelize a program and how to
assign the tasks to processors.

Apart from the memory architecture, the scheduling algorithms are influenced by the indi-
vidual performance or speed of every processor in the system. Often uniform capabilities are
assumed for all processors, either to make the scheduling problem tractable or because paral-
lel systems of interest do in fact consist of identical processors, called homogeneous systems.
Obviously, heterogeneous systems consist of non-identical processors, with either different
processing speeds (processor heterogeneity) or different communication speeds (network het-
erogeneity), or both. Processor heterogeneity arises from having processors with a different
architecture, i.e., different processor types, memory types etc. Network heterogeneity arises
when the speed and bandwidth of communication links between different pairs of proces-
sors differs significantly. The problem of optimal distribution of tasks across a system with
both processor and network heterogeneity is much more difficult that across a cluster of het-
erogeneous processors interconnected with a homogeneous high-performance communication
network.

According to their delivered performance or speed, both homogeneous and heterogeneous
systems can be either dedicated, meaning that processors are dedicated to running the pro-
gram and no other loads are interposed during the execution, or non-dedicated, meaning the
system may be used by other users as well, affecting the performance of the parallel pro-
gram. Both cases are examined in this dissertation, for homogeneous systems, as well as for
heterogeneous systems.



2.2 Algorithmic Model - Nested DO Loops 15

2.2 Algorithmic Model - Nested DO Loops

In order to parallelize a sequential program, the focus should be on loops. They are very
attractive since they represent the most time consuming part of the program, hence the
expected gain of parallelizing them is quite large.

The focus of this work are perfectly nested DO loops. They represent iterative (or cyclic)
computations. Perfectly DO nested loops have the form shown in Fig. 2.1.

for (i1=l1; i1<=u1; i1++) {

...

for (in=ln; in<=un; in++) {

S1(I);

...

Sk(I);

}

...

}

Loop
Body

Figure 2.1: Algorithmic model

The depth of the loop nest,n, determines the dimension of the iteration index space
J = {j ∈ N

n | lr ≤ ir ≤ ur, 1 ≤ r ≤ n}. The lower and upper bounds of the loop indices are
li and ui ∈ Z, respectively. Each point of this n-dimensional index space is a distinct iteration
of the loop and is represented by the vector j = (i1, . . . , in). An iteration j refers to all the
statements of the loop that will be executed for the current value of the loop indices. The
group of statements executed in one iteration is called loop body, and denoted LB(j). When
the loop body contains simple assignment statements, the loop nest is considered to be simple
and the execution time of one iteration is identical (or regular) for all iterations. The loop
body LB(j), however, can contain general programs statements (Si(I)), that may include
assignment statements, conditional if statements and repetitions such as for or while. In
this case, the execution time of one iteration is not necessarily the same for all iterations,
and these are called irregular loops. L = (l1, . . . , ln) and U = (u1, . . . , un) are the initial and
terminal points of the index space. The cardinality of J , denoted |J | is

∏n
i=1(ui − li + 1).

If the iterations of nested DO loops are independent of one another, the loops are called
DOALL loops (or parallel loops); otherwise, if there is a dependency relation between the
iterations, the loops are called DOACROSS loops (or loops with dependencies).

2.2.1 Dependencies and DOACROSS Loops

Generally, there are two types of dependencies between tasks of an application: data depen-
dencies and control dependencies. Data dependencies are caused by data transfer between
tasks. There are three types of data dependencies:

• flow (true) dependencies - one task writes a variable and another tasks reads that
variable, thus creating a precedence order for the execution of these two tasks.
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• anti-dependencies - one task reads a variable and then another tasks writes that variable.

• output dependencies - both tasks write on that variable.

Flow dependencies are real dependencies between tasks and cannot be eliminated. Anti-
dependencies and output dependencies can be eliminated by modifying programs (e.g. by
using a new variable) [CDRV98], [Sin07].

Unlike data dependencies, control dependencies are not created by data transfer but
describe the control structure of the program. Control dependencies can be transformed into
data dependencies [BENP93] and then the techniques for analyzing data dependencies can
be applied. In this work we deal with flow dependencies between tasks (i.e. iterations of
nested DOACROSS loops), which are also called inter-iteration dependencies. We consider
that all operations of a task are executed in sequential order, therefore we do not address
intra-iteration dependencies in this work.

2.2.2 Representation of DOACROSS Loops

Once the application is decomposed into tasks, these tasks need to be represented somehow.
Usually, the set of tasks is defined in the form of a directed acyclic graph (DAG), called task
graph, with nodes specifying computational tasks and links corresponding to data dependen-
cies or communications. A task graph (TG) differs from a dependence graph (DG) in that its
links represent only flow dependencies between nodes (tasks), whereas a DG may contain all
types of dependencies. Fig. 2.2 illustrate a TG with seven tasks and eight flow dependencies.

Figure 2.2: Task graph representation of an application with seven tasks and eight dependencies

If the number of tasks is large and/or if the dependencies between tasks are not uniform,
the description of a decomposed application using the task graph representation can be very
long and may not fit in the available memory, since each dependency must be stated explicitly.

Alternatively, a very popular representation of a nested loop is the Cartesian represen-
tation (or iteration dependence graph [Sin07]), in which points of the Cartesian space have
coordinates and represent iterations of the DOACROSS loop (or tasks), and the directed
vectors represent the inter-iteration dependencies, such as precedence. The description of
a decomposed application using the Cartesian representation is succinct, due to the exis-
tence of coordinates, which makes it much easier to describe the dependencies between tasks
implicitly.
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An example of using the Cartesian representation is illustrated in Fig. 2.3. The initial
and terminal points are highlighted and five flow dependencies are depicted. In this work
we use the Cartesian representaion to model DOACROSS loops. We refer to the directed
vectors as uniform dependence vectors. The set of the p dependence vectors is denoted
DS = {d̃1, . . . , d̃p}, p ≥ n. The size of the directed vector represents the number of iterations
between the two tasks instances forming a dependency relation. If the size is constant, then
the dependence vector is uniform.

Definition 2.2.1 (Dependence vectors) The dependence vectors are always > than 0,
where 0 = (0, . . . , 0) and > is the lexicographic ordering.

Since loops often contain array variables, most dependencies arising in loops are uniform
and in the form of array subscripts. In this dissertation, we assume that all dependence
vectors are uniform, that is, they are independent of the array indices. In particular, we
assume that any loop body LB(j) instance depends on previous loop body instance(s) as
follows:

LB(j) = f(LB(j− ~d1), . . . , LB(j − ~dp)) (2.1)

Point
Terminal
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Figure 2.3: Cartesian representation of a 2D DOACROSS loop with five uniform dependencies
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CHAPTER3
Static scheduling algorithms

3.1 What is Static Scheduling?

The main objective of scheduling is to minimize the completion time of a parallel application,
while minimizing the communication delay, by properly allocating the tasks to the processors.
As mentioned in the Introduction, the scheduling can be static or dynamic, depending on
when the tasks are assigned to the processors. Static scheduling involves assigning the tasks to
processors before the execution of the problem, in a non-preemptive fashion. The characteris-
tics of a parallel program (such as task processing times, communication, data dependencies,
and synchronization requirements) are (assumably) known before program execution. Static
methods aim at:

• Predicting the program execution behavior at compile time.

• Performing a grouping of smaller tasks into coarser grain processes to reduce commu-
nication delays.

• Allocating the coarser grain processes to processors.

Perhaps one of the most critical drawbacks of static scheduling is that generating optimal
schedules is an NP-complete problem, hence only restricted solutions (heuristics) can be
given. Heuristic methods rely on the rules of the thumb to guide the scheduling processes
in the proper track for a near optimal solution. Static scheduling algorithms are in general
easier to design and program.

This section gives a few static scheduling algorithms, devised to efficiently schedule
DOACROSS loops. Common simplifying assumptions include uniform task execution times,
zero inter-task communication times, contention-free communication, full connectivity of par-
allel processors, and availability of unlimited number of processors. These assumptions may
not hold in practical situations for a number of reasons. The first two algorithms described
in this section take a fine grained approach to the parallelizing problem, and give optimal
time schedules that use the lower bound on the number of processors needed for scheduling.
The last two algorithms, approach the problem again in a fine grain fashion, while striving
at significantly reducing the communication overhead by enhancing data locality.

The following notations and definitions are used throughout this chapter:

• UDL – uniform dependence (DOACROSS) loop, a loop nest with uniform precedence
constraints
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• GRIDs – a special category of UDLs with unitary dependence vectors that reside on
the axes

• PE – a processing element

• i – the current time step

• OET – the optimal execution time, or the least parallel time (assuming that a sufficient
number of processors is available)

• LB – the lower bound on the number of processors

• UB – the upper bound on the number of processors

• P – a candidate for the number of processors

• OP – the optimal number of processors, the least number of processors required to
achieve the OET , OP ∈ [LB,UB]

• ECT – the earliest computation time

• LCT – the latest computation time

• CR – the crucial points

• J – the iteration (or index) space of a UDL

• ECTi and LCTi – J is organized into two disjoint sequences of time sets denoted ECTi

and LCTi, 1 ≤ i ≤ OET . ECTi contains the points of J whose earliest computation
time is i whereas LCTi contains the points of J whose latest computation time is i.
ECT (j) and LCT (j) are the earliest and the latest computation time, respectively, of
point j ∈ J

• CRi = ECTi∩LCTi – the set of crucial points that must be executed during time step
i

• Out degree of j – the number of dependence vectors originating from j, that end in
points of the index space

• Zero delay – all points in ECTi are grouped according to their delay resulting in the
sequence Dk

i of points having delay k. We call crucial all the points with delay zero
(denoted D0

i ). These points must be executed during time step i

• Ui – the set of points that are unavailable for execution at the beginning of time step i

• Ai – the set of points that are available for execution at the beginning of time step i

• NAi – the set of points that are (or will become) available for execution at the end of
time step i

• Ri – the set of points that were not executed during time step i due to lack of free
processors, i.e., the points remaining from time step i
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• Eh – the total number of points that must be scheduled at this time step (containing
points of the current hyperplane h and any other points remained unexecuted from
previous hyperplanes)

• Cone – the convex subspace formed by q vectors d1, . . . ,dq ∈ N
n, q ≤ p, and is denoted

Con(d1, . . . ,dq) = {j ∈ N
n | j = λ1d1 + . . . + λqdq, where λ1, . . . , λq ≥ 0}

• Non-trivial cones, or just cones – the ones defined exclusively by dependence vectors

• Trivial cones – cones defined by dependence vectors and at least one unitary axe vector

• Hyperplane k (wavefront) – the set of points that can be executed concurrently during
time step k. The set is determined by the existing dependence vectors

• Rk – J can be partitioned into disjoint time subsets called regions and denoted Rk,
k ≥ 0, such that Rk (i.e., region k) contains the points whose earliest computation time
is k, and designates the area between hyperplanes k and k + 1 as well as the points of
hyperplane k. R0 denotes the boundary (pre-computed1) points

• Optimal hyperplane - J can be further partitioned into cones, and from the hyperplane
of every cone, an optimal hyperplane is determined using the QuickHull algorithm

• dc – communication vector, usually chosen to be the dependence vector that incurs the
largest amount of communication (in most cases the vector with the “smallest” absolute
coordinates)

• Pattern – J can also be partitioned into disjoint time subsets denoted Pats, r ≥ 0, such
that Pats contains those points of J , whose earliest computation time is s

• Pats – the pattern corresponding to time step s. Pat0 denotes the boundary (pre-
computed) points

• Pat1 – the initial pattern, i.e., the subset of index points that can be computed initially
(during time step 1)

• Pattern outline – the upper boundary of each Pats, is denoted as pats, s ≥ 1

• Pattern points – those index points necessary to define the polygon shape of the pattern

• Pattern vectors – those dependence vectors di whose end-points are the pattern points
of the initial pattern Pat1

We make the following assumptions in this chapter:

A.1 The computation begins always at time step 1, hence OET = ECT (U).

A.2 The processors are homogeneous and dedicated to executing the tasks.

A.3 The communication network is homogeneous.

A.4 The loop body consists of simple assignment statements and the dependence vectors
are constant.

1The pre-computed points designate iteration points that do not belong to the first quadrant of the index
space, but represent initial values for specific problems.
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Assumption A.2 does not entirely hold for the CPS algorithm, because it also considers
heterogeneous processors. Similarly, assumption A.4 does not hold for CPS because the loop
body of the loops considered consists of general program statements. The implementation
and experimental validation of the methods presented in this chapter is given in chapter 5.

3.2 Searching for The Minimum Number of Processors

An algorithm for the efficient assignment of computations onto the minimum number of
processing elements that guarantees the optimal makespan is described next. The algorithm
is called binary search decision algorithm (BSDA) and was published in [AKC+03a]. BSDA is
polynomial in the size of the index space and performs a binary search between a lower and an
upper bound on the optimal number of processors. This algorithm aims at building an optimal
schedule that achieves the optimal parallel processing time using the minimum number of
processors. This algorithm follows a fine grained approach by assigning one iteration to a
processor, in a centralized manner, by having all scheduling decisions be performed by one
processor.

The problem we considered in this subsection can be stated as follows: given a DOACROSS
loop that satisfies assumption A.4, we want to find a legal schedule that results in the min-
imum makespan using the least number of processors. A schedule is legal iff it includes all
index points and does not violate any precedence constraint.

In [APT96] [KPT96], an optimal scheduling in terms of the number of processors that
achieves the optimal makespan, is established. However, their approach is based on the unit
execution–zero communication model (UET). As it has been shown in [PAD01], a UDL with
unit execution–unit communication time (UET-UCT) can be reduced to an equivalent UDL
with UET; hence, in that sense, their approach also applies to UDLs that consider the UET-
UCT model. By ignoring the communication delays the criteria optimality are restricted to
the total number of processing elements. A preliminary version of BSDA was proposed in
[APT96] and [PKA+97]. Herein, we present how BSDA is employed for DOACROSS loops
with arbitrary computation and communication costs.

3.2.1 Computing the ECT and LCT Subsets

Given a UDL, ECT1 contains those points j that initially do not depend on other points.
Every subsequent ECTi+1 set, 1 ≤ i ≤ OET − 1, contains those points j that depend on
points belonging to one of the previous ECT sets, at least one of which must be ECTi.
After the ECT subsets are computed with any of the known methods, e.g. from [DAK+01]
[PAD01], the LCT of any index point j can also be computed using the following formula
from [AKC+03b]:

LCT (j) = OET − ECT (U − j + L) + 1 (3.1)

in one sweep of the index space. The CR subsets are formed by simply taking the intersection
of the ECT and LCT sets.

Example 3.2.1 Consider a 2D index space representing the following double DOACROSS
loop in unit-increment steps:

for (i=1; i<=10; i++) {
for (j=1; j<=10; j++) {
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A[i,j]=A[i-3,j-1]+3*A[i-4,j-2]+1;

B[i,j]=2*B[i-2,j-2]-1;

}
}

The index space J in this case is {(i, j) ∈ N
2 | 1 ≤ i ≤ 10, 1 ≤ j ≤ 10}, the initial point

L is (1, 1), the terminal point U is (10, 10) and the dependence vectors are d1 = (3, 1),d2 =
(4, 2),d3 = (2, 2). The dependence vectors express the fact that iteration j depends on the
j−d1, j−d2, j−d3 previous iterations; for instance, to compute A[i,j] we must have already
computed A[i-3,j-1] and A[i-4,j-2]. The ECT and LCT sets and their intersection (CR
sets) are depicted in Figure 1. The minimum makespan OET is determined to be 5. All the
points of ECT1 can be executed during time step 1. However, only those points that belong
to CR1 must be executed during time step 1. ⊳

��
��
��
��

��
��
��
��

���
���
���

���
���
�����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

CR1

CR2

CR3

CR4

CR5

ECT1 ECT2 ECT3 ECT4 ECT5

LCT1 LCT2 LCT3 LCT4 LCT5
1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Figure 3.1: Representation of ECT, LCT and CR sets for Example 3.2.1

3.2.2 Overview of the Binary Search Decision Algorithm

For any given n-dimensional UDL, we construct the sequences ECTi and LCTi, 1 ≤ i ≤ OET .
Consider that i is the ECT for point j, hence j ∈ ECTi. If j ∈ LCTi too, then the latest
time step it can be executed is i. Hence j is a crucial point and j ∈ CRi. This yields that no
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delay is possible for this point and the algorithm will mandatorily execute j during time step
i. However, if j ∈ LCTi+k, k > 0, then we could delay its execution until time step i + k, in
which case j would be considered to have delay k.

The binary search decision algorithm (BSDA) always schedules the crucial points at their
appropriate time steps, i.e., it schedules the points of CRi during time step i. If there are
not enough processors to schedule all the crucial points at any time step, then the algorithm
will return NO indicating it is impossible to to produce a legal schedule in OET using this
number of processors. Otherwise, considering there are enough processors to schedule all
the crucial points, and still have some free processors, it continues to schedule points with
delay 1, i.e., k = 1. If the points with delay 1 are more than the free processors, then, in
order to establish some kind of priority, they are sorted in increasing order of their earliest
computation time, and those with the same ECT value are sorted in decreasing order of
their out degree. If some processors still remain free after all points with delay 1 have been
assigned, we proceed to schedule the points with delay 2 on these processors, and so on.

I. The Binary Search Algorithm – Description

The binary search decision algorithm (BSDA) consists of two parts: the binary search al-
gorithm (BSA) and the decision algorithm (DA). The BSA takes as input an algorithm
A(J,DS) and computes the ECT , LCT and CR sets. It determines the LB and UB and
performs a binary search between LB and UB. For every candidate value P that results from
this search, BSA calls DA to decide whether there exists a legal schedule with P processors.
Hence, the smallest natural OP for which DA returns YES and the corresponding schedule
are produced.

Searching Between the Lower and Upper Bounds

The lower bound on the number of processors is given by:

LB = max{

⌈
|J |

OET

⌉
, max{|CRi|}}, 1 ≤ i ≤ OET (3.2)

With fewer than LB processors there is no legal way of scheduling |J | points in OET time
steps.
The upper bound on the number of processors is given by:

UB = max{|ECT1|, . . . , |ECTOET |} (3.3)

where |ECTi| is the cardinality of ECTi. With UB processors we can always legally schedule
a UDL achieving OET . However, the produced schedule might not be the optimal, if there
is at least one idle processor at a given time step.

A binary search is performed between the lower and upper bounds in order to narrow
down, as fast as possible, the search for the number of processors that suffice for the schedul-
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ing. The search goes as follows:

Try with

⌊
LB+⌊LB+UB

2
⌋−1

2

⌋

ր

Do
⌊

LB+UB
2

⌋
suffice?

Y ES

NO

ց

Try with

⌊
UB+⌊LB+UB

2
⌋+1

2

⌋

⌊
LB+UB

2

⌋
processors are used in the beginning, and if a schedule is found, then the search

proceeds with
—

LB+⌊ LB+UB
2

⌋−1

2

�

processors, getting closer to LB. If no schedule can be found,

the search proceeds with
—

UB+⌊ LB+UB
2

⌋+1

2

�

processors, getting closer to UB, and so on, until

the OP that suffice for the legal and optimal schedule is reached.

Example 3.2.2 (continued from 3.2.1) In this example, |J | = 100, therefore
⌈

|J |
OET

⌉
= 20.

Since max{|CRi|} = max{5, 6, 6, 6, 5} = 6, then LB = max{20, 6} = 20. Similarly, UB =
max{29, 26, 23, 17, 5} = 29.

The binary search is performed between these bounds as follows: it starts with trying to
find a legal schedule using

⌊
20+29

2

⌋
= 24 processors. If a schedule is found, then the process

goes on with trying with
⌊

20+24−1
2

⌋
= 21 processors, and if there is no legal schedule with 21

processors, it tries with
⌊

29+24+1
2

⌋
= 27 processors, and so on. ⊳

II. The Decision Algorithm – Description

The algorithm described below is basically a decision one, which takes as input a candidate
number P of processors and decides whether there is a legal schedule with P processors can
be produced in OET time steps. If the answer is YES it also outputs the corresponding
schedule.

Example 3.2.3 (continued from 3.2.2) We obtained earlier the LB = 20 and the UB = 29.
We want to see if the DA can produce a legal schedule with LB processors. When DA starts,
at the beginning of each time step we have 20 available processors. We initialize A1 = ECT1

containing 29 points (see Figure 3.2.1).

Time step 1: The first points chosen for scheduling are CR1 = A1 ∩ LCT1. |CR1| = 5,
so they are assigned to the first 5 processors and N becomes 15. Then the 11 points of
A1∩LCT1+1 are chosen and assigned to the next 11 available processors, N becoming 4. Next,
the |A1 ∩LCT1+2| = 5 points are chosen for scheduling, but because N < |A1∩LCT1+2|, they
are sorted in increasing order of their ECT value, and those with the same ECT value in
decreasing order of their out degree; the first 4 points are assigned to the last 4 free processors
and N becomes -1, which means there is one point remaining unexecuted from this time step
which is included in R1.

Time step 2: Since there is one unexecuted point from the previous time step, the points
(at this time step) that depend on it form the U2 set, that contains 4 points. The set A2 =
(ECT2 −U2)∪R1 that contains 31 points is calculated, and the points available for execution
at this time step are designated from this set. The first selected points are |A2 ∩ LCT2| = 6
which are assigned to the first 6 free processors, N becoming 14. Next, the |A2∩LCT2+1| = 13
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Figure 3.2: Decision Algorithm

INPUT: ECTi, LCTi, 1 ≤ i ≤ OET , P
OUTPUT: YES (and a schedule) if f P PEs execute A(J,DS) in OET
Initialization: A1 = ECT1

for (i = 1; i ≤ OET ; i + +) do
N = P;
if i == 1 then

Go to Step 2.
end if
if i == 2 then ⊲ Step 1

U2 = {j ∈ ECT2 | ∃ i ∈ R1 ∃d ∈ DS j = i + d}
else

Ui = {j ∈ ECTi | ∃ i ∈ (Ri−1 ∪ Ui−1)∃d ∈ DS j = i + d} ∪ Ui−1

end if
Ai = (ECTi − Ui) ∪ Ri−1

if N < |Ai ∩ LCTi| then ⊲ Step 2
Go to Step 6

end if
Assign a PE to each j ∈ Ai ∩ LCTi

N = N− |Ai ∩ LCTi|
if N > 0 ∧ Ai ∩ LCTi+k 6= ∅, for some k then

Go to Step 3
else

Go to Step 4
end if
while N > 0 do ⊲ Step 3

k0 īs the smallest natural k such that Ai ∩ LCTi+k 6= ∅
if |Ai ∩ LCTi+k0

| > N then
Sort Ai ∩ LCTi+k0

in order of increasing ECT & decreasing out-degree
end if
Assign as many PEs as possible to j ∈ Ai ∩ LCTi+k0

N = N− |Ai ∩ LCTi+k0
|

end while
if i 6= 1 then ⊲ Step 4

NAi = {j ∈ Ui| ∀ d ∈ DS, j − d was executed or is out of the index space}
Ui = Ui − NAi

Ri = (Ai − {points executed during time step i }) ∪ NAi

else
R1 = A1 − {points executed at 1}

end if
end for
OUTPUT: YES and terminate.
OUTPUT: NO and terminate.
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points are selected and assigned to the next 13 available processors and N becomes 1. Then
the |A2 ∩ LCT2+2| = 7 points are selected and, because N < |A2 ∩ LCT2+2|, they are sorted
as described in time step 1, and then the first point is scheduled to the last free processor and
N becomes -6. The subset NA2 containing 3 points is calculated, and those points initially
belonging to U2 that now became available for execution are designated, because they do not
depend anymore on any unexecuted points. The subset of unavailable points at this time step,
U2, is recalculated by subtracting the points of NA2, resulting in one point. The 14 remaining
points at this time step, included in R2, are the points of A2 that were not yet executed, along
with the points of NA2. The algorithm runs for each time step until OET = 5 is reached.
The resulting schedule is shown in the Table 3.1.

Conclusion. For this example, DA produced a legal schedule using N = LB = 20
processors; since there are no idle processors at any time step, maximum processor utilization
is achieved. ⊳

Table 3.1: Optimal schedule with N = LB = 20 processors for the UDL of Example 3.2.1

Time step 1 2 3 4 5

Processor id Iterations

0 (2,2) (3,3) (5,5) (7,7) (9,9)
1 (2,1) (3,4) (5,6) (7,8) (9,10)
2 (1,3) (3,5) (5,7) (7,9) (10,8)
3 (1,2) (4,2) (6,4) (8,6) (10,9)
4 (1,1) (4,3) (6,5) (8,7) (10,10)
5 (4,1) (4,4) (6,6) (8,8) (8,10)
6 (3,2) (3,6) (1,9) (8,5) (10,5)
7 (3,1) (3,7) (2,9) (8,4) (10,6)
8 (2,6) (3,8) (8,1) (8,3) (10,7)
9 (2,5) (4,5) (7,2) (6,9) (9,3)
10 (2,4) (4,6) (4,9) (5,9) (10,3)
11 (2,3) (4,7) (8,2) (10,1) (9,4)
12 (1,7) (4,8) (3,9) (9,1) (6,10)
13 (1,6) (5,2) (5,8) (2,10) (10,4)
14 (1,5) (5,3) (6,7) (1,10) (9,8)
15 (1,4) (5,4) (6,8) (4,10) (9,7)
16 (6,1) (6,2) (7,3) (9,2) (9,6)
17 (5,1) (6,3) (7,4) (10,2) (9,5)
18 (2,8) (1,8) (7,5) (3,10) (8,9)
19 (2,7) (7,1) (7,6) (5,10) (7,10)

3.2.3 Complexity of the BSDA Algorithm

BSDA is linear in the size of J . The most computationally expensive step is the calculation of
the two sequences of ECTi and LCTi sets. Due to the uniformity of the index space this can
be done in linear time in the size of J . Computing the ECT subsets requires that we traverse
the index space only once, whereas the LCT subsets are computed using eq.( 3.1). The CR
subsets are computed by intersecting each ECT with the corresponding LCT subset.
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Throughout the steps 1-6 of the DA, every point of the index space is examined at most
twice. This examination depends only on the number of dependence vectors, p, and the
dimension of the index space n which are independent of the size of the index space J .
Therefore, we conclude that each run of DA can be done in Θ(|J |) time. A trivial upper
bound on the number of DA runs is log UB, which is bounded above by log |J |. Thus, the
overall time complexity of BSDA is O(|J | log |J |).

3.3 Assigning Tasks on The Minimum Number of Processors

The problem of finding a legal schedule that results in the minimum makespan using the least
number of processors is addressed again in this section, and a fine grain, centralized scheme
is presented, published in [AKC+03b].

The approach described here is a different approach than the previous algorithm. A new
dynamic lower bound on the number of processors is presented, and the decision algorithm
(DA), described in the previous section, is employed to verify that all DOACROSS nested
loops can be legally scheduled with this lower bound.

As before, the index space is organized into the sequences of disjoint time-subsets ECTi

and LCTi, i ≥ 1, such that ECTi contains the points whose earliest computation time is i,
and LCTi contains those points whose latest computation time is i. The LCT of an index
point is computed using eq. (3.1). If the ECT and the LCT of an index point are both i, then
we say that the point belongs to ECTi and has zero delay. On the other hand, if the ECT
of an index point is i but its LCT is i + 1, we say that this point belongs to ECTi but has
a delay of one time step. Following this direction, we form partitions of ECT sets according
to the delay corresponding to each point, i.e., those that have zero delay in D0

i , those that
have delay 1 in D1

i , and so on. The intersection of each ECTi with the corresponding LCTi

is D0
i and we denote these points as crucial.

3.3.1 Computing the Lower and Upper Bounds of Processors

For any given UDL, depending on the cardinality of ECT1 set, there may exist three major

lower bounds. The most trivial one is LB1 =
⌈

|J |
OET

⌉
. If |ECT1| > LB1, during the first time

step all free processors are utilized and for most UDLs the OET is achieved using OP = LB1,
due to the geometry of the index space, that allows to obtain maximum processors utilization
at each time step.

If |ECT1| < LB1 it is possible, however, that a legal schedule cannot be found with LB1

processors in OET . On the other hand, at each time step there is the sequence of crucial
points D0

i . Therefore, another lower bound is LB2 = max{|D0
i |}, since with fewer than LB2

processors it is impossible to produce a schedule in OET . Unfortunately, in many cases even
this does not suffice. LB2 is a static lower bound, in the sense that it considers the number of
crucial points as a constant for each time step, regardless of the number of processors, which
is not an accurate assumption. For instance, if some of the points of D1

i are not scheduled
during time step i, they become crucial during time step i+1, so the correct number of crucial
points during time step i + 1 is greater than the initially computed D0

i+1 points, therefore
it is not a constant number. This partitioning of the ECT sets into Dk

i sets is depicted in
Fig. 3.3.1 for Example 3.3.1.

It becomes obvious that a better and improved lower bound is needed. The new lower
bound (LB3) described in this section takes into consideration the propagation of points with
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delays, remained unexecuted from one time step to another. In order to determine LB3 a
sequence of linear inequalities of the form below must be solved:

min Ph ∈ N such that Ph ≥ Eh where 1 ≤ h ≤ OET , Ph is
the candidate number of processors required for hyperplane
h, and LB3 = max{Ph}

For the first hyperplane, the candidate number of processors to schedule the crucial points
of ECT1 must satisfy the inequality:

P1 ≥ E1 = D0
1 (3.4)

For every subsequent hyperplane h, a check is performed to determine if the number
of processors we have found so far Ph−1 is sufficient. This is done by computing the total
number of points that must be scheduled at this time step, using the formula:

Eh = D0
h +

h−1∑

k=1

(
h−k∑

i=0

Di
k − Ph−1) (3.5)

where h, 1 ≤ h ≤ OET , is the current hyperplane. If Eh ≤ Ph−1 then Ph−1 processors suffice
to schedule the crucial points of the first h ECT sets at this time step also, hence there is
no need for more processors. In this case, Ph is set to Ph = Ph−1 and the method continues
with the next hyperplane.

On the other hand, if Eh > Ph−1 it is obvious that more processors are needed and the
exact number of processors, Ph, necessary for the current hyperplane, is computed as follows.
The following condition must hold:

Ph ≥ Eh = D0
h +

h−1∑

k=1

(

h−k∑

i=0

Di
k − Ph) (3.6)

In order to solve meaningfully the above inequality, h cases must be examined. Clearly
Ph ≥ D0

h and it has to be determined whether Ph ≤
∑h−k

i=0 Di
k or Ph >

∑h−k
i=0 Di

k, where

1 ≤ k ≤ r − 1. Hence, the r − 1 terms of
∑h−k

i=0 Di
k are computed, then ordered in increasing

order along with D0
h (yielding a sequence of h terms t1 ≤ . . . ≤ th) and the inequality (3.6)

is solved initially by assuming that t1 ≤ Ph ≤ t2; if no solution is found, it is assumed that
t2 < Ph ≤ t3, and so on, the first solution for (3.6) is found. The worst case scenario is when
Ph > th.

We must stress the fact that in solving (3.6) the physical meaning of Eh must be taken
into consideration. For instance if

∑h−k
i=0 Di

k < Ph, then in Eh the term
∑h−k

i=0 Di
k − Ph is

not taken as a negative integer, which would have no meaning, but is taken instead as zero,
meaning that the index points belonging to this set were all scheduled and none remained.

In the end, LB3 is the last dynamically computed Ph that suffices for legally scheduling
all the index points of the DOACROSS loop nest. The final lower bound is taken to be:
LB = max{LB1, LB2, LB3}.

Let us define UB = max{|ECT1|, . . . , |ECTOET |} as the trivial upper bound of processors
and let us say that with UB processors we can legally schedule any DOACROSS achieving
the OET .
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Example 3.3.1 Consider the 2D index space that represents the following DOACROSS loop
nest:

for (i=1; i<=18; i++) {
for (j=1; j<=18; j++) {

A[i,j]=A[i-1,j-4]+3*A[i-4,j-1]+1;

}
}

⊳

The ECT sets divided into Dk
i subsets according to the delay value are depicted in Fig 3.3.1.
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Figure 3.3: ECT sets partitioned into Dk
i sets for Example 3.3.1

For the first hyperplane, the inequality below holds:

P1 ≥ D0
1 = 9

hence P1 = 9. For the second hyperplane, a check is performed to determined if P1 processors
suffice using 3.5.

E2 = D0
2 + (D0

1 + D1
1 − P1) = 37

hence E2 > P1, and therefore more processors are needed. The following condition must
hold:

P2 ≥ D0
2 + (D0

1 + D1
1 − P2) ⇒ P2 ≥ 18 + (28 − P2)

In order to solve the above inequality, the case where 18 ≤ P2 ≤ 28 must be examined and a
solution is sought by solving the equation:

P2 = 18 + (28 − P2) ⇒ P2 = 23
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which satisfies the above condition. The method proceeds to the third hyperplane and checks
if P2 processors suffice for scheduling, using:

E3 = D0
3 + (D0

1 + D1
1 + D2

1 − P2) + (D0
2 + D1

2 − P2) = 60

hence E3 > P2, and therefore more processors are needed again. The following condition is
imposed:

P3 ≥ D0
3 + (D0

1 + D1
1 + D2

1 − P3) + (D0
2 + D1

2 − P3)
⇒ P3 ≥ 27 + (36 − P3) + (43 − P3)

In order to solve the above inequality, the case where 27 ≤ P3 ≤ 36 must be examined and a
solution is sought by solving the equation:

P3 = 27 + (36 − P3) + (43 − P3) ⇒ P3 = 36

which satisfies the previous condition. The method advances to the fourth hyperplane and
checks if P3 processors suffice.

E4 = D0
4 + (D0

1 + D1
1 + D2

1 + D3
1 − P3) + (D0

2 + D1
2 + D2

2 − P3) + (D0
3 + D1

3 − P3) = 63

hence E4 > P3 and again more processors are needed. The following condition is imposed:

P4 ≥ D0
4 + (D0

1 + D1
1 + D2

1 + D3
1 − P4) + (D0

2 + D1
2 + D2

2 − P4) + (D0
3 + D1

3 − P4)
⇒ P4 ≥ 36 + (38 − P4) + (45 − P4) + (52 − P4)

Similarly, in order to solve the above inequality the case where 36 ≤ P4 ≤ 38 must be
examined and a solution is sought by solving the equation:

P4 = 36 + (38 − P4) + (45 − P4) + (52 − P4) ⇒ P4 = 43

which does not satisfy the last condition. Therefore the case where 38 < P4 ≤ 45 must
be examined and the same equation is solved as above, taking the first parenthesis as zero
instead of a negative integer:

P4 = 36 + (45 − P4) + (52 − P4) ⇒ P4 = 45

which satisfies the condition. Next, the method advances to the fifth hyperplane and checks
if P4 processors suffice.

E5 =
D0

5+(D0
1+D1

1+D2
1+D3

1+D4
1−P4)+(D0

2+D1
2+D2

2+D3
2−P4)+(D0

3+D1
3+D2

3−P4)+(D0
4+D1

4−P4) = 49

hence E5 > P4 and again more processors are needed. The condition below is imposed:

P5 ≥ D0
5+(D0

1+D1
1+D2

1+D3
1+D4

1−P5)+(D0
2+D1

2+D2
2+D3

2−P5)+(D0
3+D1

3+D2
3−P5)+(D0

4+D1
4−P5)

⇒ P5 ≥ 27 + (40 − P5) + (47 − P5) + (54 − P5) + (61 − P5)

and the case where 27 ≤ P5 ≤ 40 is examined first, and a solution is sought by solving the
equation:

P5 = 27 + (40 − P5) + (47 − P5) + (54 − P5) + (61 − P5) ⇒ P5 = 46

which does not satisfy the latest condition. Therefore, the case where 40 < P5 ≤ 47 is
examined and the same equation is solved as above, taking the first parenthesis as zero:

P5 = 27 + (47 − P5) + (54 − P5) + (61 − P5) ⇒ P5 = 48
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which does not satisfy the condition. Again, the case when 47 < P5 ≤ 54 must be examined
and the same equation is solved as above, taking the first two parentheses as zero:

P5 = 27 + (54 − P5) + (61 − P5) ⇒ P5 = 48

which this time satisfies the latest condition. The method proceeds to the sixth hyperplane
and checks whether P5 processors suffice.

E6 = D0
6 + (D0

1 + D1
1 + D2

1 + D3
1 + D4

1 + D5
1 − P5) + (D0

2 + D1
2 + D2

2 + D3
2 + D4

2 − P5) + (D0
3 + D1

3 +
D2

3 + D3
3 − P5) + (D0

4 + D1
4 + D2

4 − P5) + (D0
5 + D1

5 − P5) = 40

hence E6 < P5. Since all the points of this hyperplane can be scheduled with P5 processors,
there is no need to estimate a new value for the number of processors and P6 is considered
to be equal to P5. On the last hyperplane, it checks if P6 processors suffice.

E7 = D0
7 +(D0

1 +D1
1 +D2

1 +D3
1 +D4

1 +D5
1 +D6

1 −P6)+ (D0
2 +D1

2 +D2
2 +D3

2 +D4
2 +D5

2 −P6)+ (D0
3 +

D1
3 + D2

3 + D3
3 + D4

3 −P6)+ (D0
4 + D1

4 + D2
4 + D3

4 −P6)+ (D0
5 + D1

5 + D2
5 −P6)+ (D0

6 + D1
6 −P6) = 36

hence E7 < P6. Since all the points of this hyperplane can be scheduled with P6 processors,
P7 is considered to be equal to P6 and OP required for the optimal schedule is the last
computed Ph, hence LB = P7 = 48.

3.4 Static Scheduling by Exploiting the Geometric Properties
of the Iteration Space

In this section, two methods that perform static scheduling by exploiting the geometric
properties of the iteration space are presented. The first is called adaptive cyclic scheduling
(ACS), published in [CAP05], which by exploiting the geometric properties of the index space
reaches an efficient geometric decomposition that reduces the communication cost imposed
by certain dependence vectors. The second method is called chain pattern scheduling (CPS),
published in [CAD+05], and is rather similar to the ACS method, however performs a different
assignment to processors of the partitioned index space. Both methods aim at reducing the
communication cost by assigning chains of computations (created by the a certain dependence
vector) to the same processor, and mapping dependent chains on the same processor as much
as possible.

3.4.1 Adaptive Cyclic Scheduling - ACS

As mentioned above, ACS exploits the geometric properties of the iterations space in order
to reach an efficient geometric decomposition of the iterations space. This algorithm is also
a centralized scheme with fine grained parallelism approach.

ACS is a based on [DAK+02] and [CAK+03]. In [DAK+02] a nearly optimal solution
to the loop scheduling problem, considering communication costs is given, which attains a
makespan with constant delay from the earliest possible time. In [CAK+03], the index space
of a DOACROSS loop is replicated with patterns of independent points, and a new index
space is obtained by mapping every such pattern to an iteration point of the new index space;
the scheduling is performed along the hyperplanes of the new index space, in a round-robin
fashion among the available processors. In contrast with the two works cited above, ACS
accounts for the communication cost, while being suitable for the two most common system
types: homogeneous and heterogeneous.
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In this approach, the index space of a UDL is partitioned into regions. J is further divided
into cones, according to the existing dependence vectors. Using the QuickHull algorithm
[BDH96], from the hyperplane of every cone an optimal scheduling hyperplane is determined,
that best exploits the available parallelism. These partitions are illustrated in Fig. 3.4 for
the Example 3.4.1.
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Figure 3.4: Geometrical representation of the index space, the regions, the cones, the cone vectors, the
communication vector, some chains and the optimal hyperplane of Example 3.4.1

Example 3.4.1 Consider the 2D index space of a UDL with the following dependence vec-
tors: d1 = (1, 7), d2 = (2, 4), d3 = (3, 2), d4 = (4, 4) and d5 = (6, 1). Except d4, all
other vectors belong to cone vector sequence: CV = 〈d1,d2,d3,d5〉. The 5 cones that formed
are colored respectively and the first 3 regions of all cones are shown (see Fig. 3.4). The
communication vector in this example is dc = d3. ⊳

Note that only certain dependence vectors contribute to the formation of every hyper-
plane in each cone. These vectors are called cone vectors. Partitioning the index space into
regions is beneficial to the time scheduling. However, it is not sufficient for an efficient space
scheduling, because it does not address the data locality issue. Therefore, an additional de-
composition of the index space is necessary to enhance the data locality [MMS99][MSM04].
Usually, there are certain sequences of points computed by the same processor. Each such
sequence can be viewed as a chain of computations, created by a certain dependence vector,
as shown in Fig. 3.4. This dependence vector is called communication vector, denoted dc,
and is usually chosen to be the dependence (cone) vector that incurs the largest amount
of communication (in most cases dc is the vector with the “smallest” absolute coordinates
values). The goal here is to eliminate the communication cost incurred by dc. This means
that the communication cost for executing the loop is hence attributed to the remaining k
dependence vectors: d1, . . . ,dk. Hereafter, k = p−1, i.e., the number of dependence vectors,
excluding dc.

The communication vector dc defines the following family of lines in an n-dimensional
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space: j = p+λdc, where p ∈ N
n and λ ∈ R. This means that every single index point belongs

to one of these lines. Therefore, by defining the chain Cr with offset r to be {j ∈ J | j = r+λdc,
for some λ ∈ R}, the index space J is partitioned into a set C of such chains. |Cr| and |C| are
the cardinalities of Cr and C, respectively, and CM is the cardinality of a maximal chain of
the set of chains C. Generally, an index space may have multiple maximal chains. The points
of Cr communicate via di (i designating every dependence vector except dc, i.e., 1 ≤ i ≤ k)
with the points of Cr′ .

Let Din
r be the volume of the “incoming” data for Cr, that is the number of index points

on which the points of Cr depend on. Similarly, let Dout
r be the volume of the “outgoing”

data for Cr, that is the number of index points which depend on the points of Cr. Then, the
total communication associated with Cr is Din

r + Dout
r . Hereafter, P denotes the number of

available processors.

Adaptive Cyclic Scheduling – Description

ACS is designed to enhance the data locality of programs containing DOACROSS loops
using the concept of chains, while taking advantage of the hyperplane scheduling method
[DAK+02]. When mapping all points of a chain Cr to a single processor, the communication
incurred by dc is completely eliminated. Furthermore, assuming that Cr sends data to
Cr1

, . . . , Crm due to dependence vectors d1, . . . ,dm, by mapping Cr and Cr1
, . . . , Crm to the

same processor, the communication incurred by d1, . . . ,dm is also eliminated. Similarly,
the chains from which Cr receives data, Cr′

1
, . . . , Cr′m

, can also be mapped on the same
processor, hence further decreasing the execution time of the parallel program. Usually, it is
not be possible to map all these chains on the same processor; yet the important thing is the
following: when assigning a new chain to the processor that executed Cr, systematically pick
one of Cr1

, . . . , Crm , Cr′
1
, . . . , Cr′m

instead of choosing randomly or arbitrarily. This strategy is
guaranteed to reduce the communication cost. Depending on the type of the target systems’
architecture, the chains are assigned to processors as follows: on homogeneous systems – in
a load balanced fashion, whereas on heterogeneous systems – they are assigned according to
the available computational power of every processor. In both cases, an extended version of
the master-slave model is used in which the master communicates with the slaves and the
slaves communicate with each other whenever a data exchange is necessary. A coordinator
processor (called master) computes the cones and the chains and then assigns them to the
slave processors, who will execute them and communicate accordingly with other processors
directly for sending or receiving the necessary data. The algorithm is outlined below:

ACS can be employed both on homogeneous and heterogeneous systems. In a homoge-
neous system, each slave is assigned the same number of chains and they are expected to
finish together, assuming that each slave gets approximately the same number of iterations.
In a heterogeneous system, the chains are assigned in a load balanced fashion; that is, slaves
are assigned chains according to their delivered computational power (faster slaves get more
chains), with the intent of having all slaves finish computing in the same time.

I. ACS on Homogeneous Systems

Consider a homogeneous system of 5 slaves and one master, and the example in Fig. 3.6.
The dependence vectors are d1 = (1, 3), d2 = (2, 2), d3 = (4, 1) and the communication
vector is dc = d2. The points of C(0,0) send data to the points of C(0,0) + d1 = C(0,2),
C(0,0) + d3 = C(3,0). By mapping all these chains to the same slave, say S1, one can see
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Figure 3.5: ACS algorithm

procedure INPUT ⊲ Master Input
A DOACROSS nest with n loops, and terminal point U.

end procedure

1: Master: ⊲ Master code
2: Determine the cone vectors.
3: Compute the cones.
4: Use QHull to find the optimal hyperplane.
5: Choose the dc.
6: Form and count the chains.
7: Compute the relative offsets between C(0,0) and the k dependence vectors.
8: Divide P so as to cover most successfully the relative offsets below as well as above dc.
9: if no dependence vector exists below (or above) dc then

10: choose the closest offset to P .
11: end if
12: Assign chains to slave processors in a cyclic fashion.

1: Slave Pk: ⊲ Slave code
2: Send request for work to master.
3: Wait for reply; when request served, store all chains and sort the points by the region

they belong to.
4: Compute points region by region, and along the optimal hyperplane. Communicate only

when needed points are not locally computed.

procedure OUTPUT

if no more point to assign then ⊲ Master Output
notify all slaves, collect results and terminate

end if
if no more tasks come from master & notified by the master then ⊲ Slave Output

terminate
end if

end procedure
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that the data locality is greatly enhanced. The relative offsets are: r = 3 (below d2) and
r = 2 (above d2). However the system has 5 slaves and it must assign them chains in a cyclic
fashion, so as to cover most successfully the relative offsets. In particular, the 5 slaves are
divided as follows: slaves S1,S2, and S3 are cyclicly assigned chains below dc, thus eliminating
communication along d3, whereas the other 2 slaves, S4 and S5, are cyclicly assigned chains
above dc, eliminating communication along d1 as well. This way all slaves are used in the
most efficient way.
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Figure 3.6: ACS chain assignment on a homogeneous system with 5 slaves

II. ACS on Heterogeneous Systems

When dealing with heterogeneous systems, one must take into account the available comput-
ing power and the actual load of the slave making the request to the master. It is assumed
that every process running on the slave takes an equal share of its computing resources. The
available virtual power (ACPi) of a slave i is computed by dividing its virtual computing
power (V CPi) by the number of processes running in its queue (Qi) [CABG01] [Kun91]. The
total available computing power of the system (ACP ) is the sum of the available (delivered)
computing power of every slave. ACPi is communicated to the master when slave i makes a
request for work. In this case, the master will assign chains to slave i according to the ratio
ACP/ACPi. For instance, consider a heterogeneous system with 5 slaves and the example in
Fig. 3.6. Suppose slave S3 has less computational powers than the other slaves. Therefore it
gets assigned only 4 chains, whereas the slaves S1, S2, S4 and S5 get assigned 5 chains each.
Of course, this is an oversimplified example; in a larger heterogeneous system, and for bigger
problems, the ACS algorithm would assign chains to slaves accurately reflecting the effect of
the different ACPi of every slave.

The adaptive cyclic scheduling described hereinbefore has some similarities with the static
cyclic and static block scheduling methods described in [MA01]. The similarities are: the
assignment of iterations to a processor is determined a priori and remains fixed – yielding
reduced scheduling overhead; they require explicit synchronization between dependent chains
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or tiles. However, the three scheduling methods are in the same time different, and the main
differences are: iterations within a chain are independent, while within a tile they are not
(this promotes the adaptability of ACS to different architectures, as mentioned above); ACS
significantly enhances the data locality, hence is expected to outperform the static cyclic and
block methods.

3.4.2 Chain Pattern Scheduling - CPS

This section describes a static scheduling algorithm similar to ACS, that also exploits the
regularity of nested loops iterations spaces, named chain pattern scheduling (CPS) and pub-
lished in [CAD+05]. The loops considered in this approach, however, have uniform flow
dependencies and their loop body is complex, consisting of general program statements, such
as assignments, conditions or repetitions. These loops are called general nested loops.

CPS is an extension of [DAK+] and [PAD01], in which a geometric method for the pre-
diction of the pattern outline was presented for uniform dependence loops, but no space
mapping method was presented. In [DAK+] and [PAD01] no communication cost was taken
into account, and the unit-execution time (UET) model was assumed. In contrast, CPS ac-
counts for the communication cost and a trade-off is given between different space-mapping
schemes. CPS combines the method in [DAK+] with the static cyclic scheduling of [MA01],
thus improving [DAK+] and [MA01] in that it enhances the data locality utilizing methods
from computational geometry, to take advantage of the regularity of the index space. In
particular, groups of iteration points, call chains, defining points connected via a specific
dependence vector, called communication vector dc (see [PAD01] and [CAP05]) have been
identified. Specific chains are mapped to the same processor to enhance the data locality. It
is a well-known fact that the communication overhead in most cases determines the quality
and efficiency of the parallel code. The fundamental idea of CPS is that regardless of the
underlying interconnection network (FastEthernet, GigabitEthernet, SCI, Myrinet), or of the
number of processors within a node (for SMP systems), or of the system’s homogeneity or
heterogeneity, reducing the communication cost always yields enhanced performance. Given
two scheduling policies that use the same number of processors, the one requiring less data
exchange between the processors will almost certainly outperform the other.

Due to the existence of dependence vectors, only a certain set of iteration points of J can
be executed at every time step [PAD01]. The geometric border of this set, forms a polygonal
shape called pattern. CPS executes every index point at its earliest computation time (ECT),
imposed by the existing dependence vectors. This policy guarantees the optimal execution
time of the entire DOACROSS loop (assuming an unbounded number of processors). The
index space is partitioned into disjoint time subsets denoted Pats, r ≥ 0, such that Pats
contains the set of points of J , whose earliest computation time is s. Fig. 3.7 illustrates the
patterns, the pattern outline, the pattern points and the pattern vectors for a general UDL
with the 4 dependence vectors d1 = (1, 3), d2 = (2, 2), d3 = (4, 1), and d4 = (4, 3).

Each shaded polygon depicts a pattern, that can be executed at a certain time step. The
first 3 patterns are showed. The dashed lines mark the border of each pattern, called pattern
outline. Except d4, all other vectors contribute to the formation of the pattern outline,
therefore are called pattern vectors. On the axes lie the pre-computed boundary points. The
communication vector of the loop in Fig. 3.7 is dc = d2. The chain with origin (0, 0), noted
(C(0,0)) is shown, as well as the chains it sends data to due to d1, d4 and d3, i.e., C(0,2), C(1,0)

and C(3,0) respectively.
As with ACS, the goal of CPS is to eliminate the communication cost incurred by dc,
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Figure 3.7: Patterns, pattern vectors and chains for a general UDL with 4 dependence vectors

and attributing the communication cost to the remaining k dependence vectors: d1, . . . ,dk,
k = p−1. The communication vector dc defines the following family of lines in n-dimensional
space: j = p + λdc, where p ∈ N

n and λ ∈ R. This way, every index point belongs to one
such line. Thus, by defining the chain Cr with offset r to be {j ∈ J | j = r + λdc, for some
λ ∈ R}, we partition the index space J into a set C of such chains. The offset r is chosen so
as to have at least one of its coordinates equal to 0, in other words r is a pre-computed point.
|Cr| and |C| are the cardinalities of Cr and C, respectively, and |CM | is the cardinality of a
maximal chain of the set of chains C. Generally, an index space may have multiple maximal
chains. The points of Cr communicate via di (i designating any dependence vector except
dc) with the points of Cri

′ .

Let Din
r be the volume of the “incoming” data for Cr, i.e., the number of index points

on which the points of Cr depend on. Similarly, let Dout
r is the volume of the “outgoing”

data for Cr, i.e., the number of index points which depend on the points of Cr. Then, the
total communication associated with Cr is Din

r + Dout
r . Hereafter, P denotes the number of

available processors.

Chain Pattern Scheduling – Description

The chain pattern scheduling algorithm is devised to enhance the data locality of programs
with general nested loops using the concept of chains, and taking advantage of the optimality
of the scheduling method based on patterns. By mapping all points of a chain Cr to a single
processor, communication incurred by dc for those points is completely eliminated. Further-
more, assuming that Cr sends data to Cr1

, . . . , Crk
due to dependence vectors d1, . . . ,dk, by

mapping Cr and Cr1
, . . . , Crk

to the same processor the communication incurred by d1, . . . ,dk

is also eliminated. Similarly, the chains from which Cr receives data, Cr′
1
, . . . , Cr′

k
, can also

be mapped on the same processor, thus eliminating even more communication. Generally, it
will not be possible to map all these chains on the same processor; yet the important thing is
the following: when assigning a new chain to the processor that executed Cr, systematically
pick one of Cr1

, . . . , Crk
, Cr′

1
, . . . , Cr′

k
instead of choosing in a random or arbitrary manner.

This strategy is guaranteed to lead to significant communication reduction.
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To better illustrate our rationale, consider two different scenarios: (1) unbounded P –
high communication ⇒ moderate performance, and (2) fixed P – moderate communication
⇒ good performance. A common feature of both scenarios is that chains are mapped to
processors starting with chain C(0,0) and proceeding with the chains to its left (or above)
and right (or below), like a fan spreading out. It is straightforward that by doing this more
points become available for execution (are “released” from their dependencies) than in any
other way.

Scenario 1: Unbounded P – High Communication

This is the case where there are enough available processors so that each chain is mapped
to a different processor (see Fig. 3.8). Two similar examples are given: (a) A loop with
three dependence vectors, d1 = (1, 3), d2 = dc = (2, 2) and d3 = (4, 1) with chains formed
along d2. (b) A loop with two dependence vectors, d1 = (4, 1) and d2 = dc = (2, 2), with
chains also formed along d2. Note that in both cases, 24 chains are created. However this
scenario is somewhat unrealistic because for larger index spaces the number of chains would
be much greater and, therefore, the number of processors required for assigning one chain to
one processor would be prohibitive.

On the other hand, this scenario does not support any kind of data locality (except for
d2), requiring a large volume of communication between the processors. Basically, a chain
Cr must receive data from k different chains and send data to k different chains. This implies
that both Din

r and Dout
r are bounded above by k|CM | (recall that |CM | is the cardinality of

a maximal chain). The total volume of communication induced by this scheme, denoted V,
is then: V ≈ 2k|CM ||C|. It is obvious that such a high volume of communication diminishes
the overall performance of the parallel program.
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Figure 3.8: Scenario (1) Unbounded P – high communication ⇒ moderate performance: every chain is
mapped to a different processor (unrealistic assumption with respect to the number of available processors)
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Scenario 2: Fixed P – Moderate Communication

This scenario is designed to minimize the communication and enhance the data locality, thus
increasing the overall performance of the parallel program. For this scenario, two alternative
mappings are considered, as shown in Fig. 3.9 and 3.10. In order to have moderate commu-
nication, and thus better performance than in scenario (1), an arbitrary P was considered
(herein 5 processors). The first mapping (see Fig. 3.9(a)(b)) is an implementation of the
well known cyclic mapping [MA01], where each chain from the pool of unassigned chains is
mapped in a cyclic fashion, starting with C(0,0). This means, that the same processor will
execute chains C(0,0), C(5,0), C(10,0) and so on. The communication volume for this map-
ping depends on P and on the chain-offsets r1, . . . , rk corresponding to dependence vectors
d1, . . . ,dk. In particular, if P is greater than the maximum coordinate appearing in one of the
offsets r1, . . . , rk, then the volume of communication is prohibitive, basically being the same
with the one in scenario (1), i.e., V ≈ 2k|CM ||C|. Otherwise, if P is equal to a coordinate
of an offset ri, the communication incurred by the corresponding dependence vector di is
eliminated. Hence, let q be the number of offsets that have one of their coordinates equal to
P ; then the volume of communication is V ≈ 2(k − q)|CM ||C|.

The second mapping, differs from the previous in that it intentionally zeroes the communi-
cation cost imposed by as many dependence vectors as possible. In particular, in Fig. 3.10(a)
the first three processors execute the chains “below” dc in a round-robin fashion, whereas
the other two processors execute the chains above dc, again in a round-robin fashion. This
way, the communication cost attributed to d3 is eliminated for the chains C(0,0) to C(13,0) and
the communication cost attributed to d1 is eliminated for the chains C(0,1) to C(0,10). The
difference from Fig. 3.9(a) is that in this case, the processors do not span the entire index
space, but only a part of it (i.e., below or above dc). The benefits of doing so are that a more
realistic P is assumed while still having acceptable communication needs, and performance is
increased as a result. In Fig. 3.10(b) due to the fact that there is no dependence vector above
dc, a cyclic mapping of chains is possible, starting with the chain C(0,0) and moving above
and below, so as to incrementally release points for execution. This is similar to Fig. 3.9(b),
with the difference that 5 processors were used instead of 3. The advantage of this scenario
is that it does not limit the degree of parallelism because it uses all the available processors,
hence being the most realistic of the two scenarios.

To estimate the volume of communication in this case we reason as follows: consider P as
the sum of q1, . . . , ql (i.e., P = q1+ . . .+ql and, ideally, l = k) such that each qi is a coordinate
of offset ri. By proper assignment of groups of qi chains to processors, the communication cost
incurred by di is greatly diminished throughout the index space. Even if such a decomposition
of P in groups of qi processors is not possible, it is always possible to choose the appropriate
integers q1, . . . , ql such that each qi is a coordinate of ri and P > q1 + . . . + ql. Thus, by
letting q = q1 + . . .+ql, we conclude that the volume of communication is V ≈ 2(k−q)CM |C|.

For the sake of simplicity, in both scenarios every chain was assigned to a single processor.
This is best suited for distributed-memory systems, that consist usually of single processor
nodes. Note however, that each chain may be assigned to more than one processors such that
no communication among them is required. This is more advantageous for multiprocessor
nodes, where processors of a node can communicate through the locally (intra-node) shared-
memory. Our approach is also suitable for heterogeneous networks, in which case a processor
with higher computational power would be given either longer or more chains, whereas one
with lesser computational power would be given either fewer or shorter chains. It is obvious
that the ratio communication time

processing time
is critical for deciding which scenario and which architecture
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Figure 3.9: Scenario (2) Fixed P – Moderate Communication (cyclic mapping): chains are mapped to
the available processors in a cyclic fashion starting with chain C0
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CHAPTER4
Dynamic scheduling algorithms

4.1 What is Dynamic Scheduling?

In dynamic scheduling, only a few assumptions about the parallel program or the parallel
system can be made before execution, and thus, scheduling decisions have to be made on-the-
fly [AG91] [PLR+95]. The goal of a dynamic scheduling algorithm, as such, includes not only
the minimization of the program completion time but also the minimization of the scheduling
overhead which constitutes a significant portion of the cost paid for running the scheduler.

Dynamic scheduling is necessary in situations where static scheduling may result in a
highly imbalanced distribution of work among processes or where the dependencies between
the tasks are dynamic (e.g. due to changing system’s behavior or changing application’s be-
havior), thus precluding a static scheduling approach. It has been shown that load balancing
is crucial to achieving adequate performance [ELJ86]. Dynamic scheduling algorithms [HBD]
attempt to use the runtime state information of the system in order to make informative deci-
sions for balancing the workload. Since the primary reason for using a dynamic scheduling is
balancing the workload among processes, dynamic scheduling is often referred to as dynamic
load balancing. Dynamic scheduling techniques are usually classified as either centralized or
distributed.

In a centralized dynamic load balancing scheme, all executable tasks are maintained in
a common ‘pool’ or they are maintained by a special processor or a subset of processors.
If a special processor is designated to manage the pool of available tasks, then it is often
referred to as the master and the other processors that depend on the master to obtain
work are referred to as slaves (or workers). Whenever a slave processor has no work, it
takes a portion of available work from the central data structure or the master process.
Whenever a new task is generated, it is added to this centralized pool and/or reported to the
master processor. Centralized load balancing schemes are usually easier to implement than
distributed schemes, but may have limited scalability. As more and more processors are used,
the large number of accesses to the pool of tasks or the master processor tends to become a
bottleneck. The ultimate in automatic load balancing is a self-scheduling system that tries to
keep all processing resources running at maximum efficiency. There may be a central location
or authority (usually the master) to which processors refer for work and where they return
their results. An idle processor requests that it be assigned new work by sending a message
to the master and in return receives one or more tasks to perform. This works nicely for
tasks with small contexts and/or relatively long running times. If the master is consulted too
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often, or if it has to send (receive) large volumes of data to (from) processors, it can become
a bottleneck.

In a distributed dynamic load balancing scheme, the set of executable tasks are distributed
among processors which exchange tasks at run time to balance work. Each process can send
work to or receive work from any other process. These methods do not suffer from the
bottleneck associated with the centralized schemes. However, they are more difficult to
implement.

The advantage of dynamic load balancing over static scheduling is that the system does
not need to know the behavior of the application before execution (if the application in itself
is dynamic and the system is static) and that the dynamic scheduler need not be aware of
the system’s behavior before execution (if the system’s behavior changes and the application
is static) or a combination of both. Dynamic load balancing is very useful in systems where
the primary performance goal is maximizing processors utilization, rather than minimizing
the runtime for individual jobs [SHK95]. This is often the case in networks of workstations.

This section describes several dynamic load balancing algorithms, devised to efficiently
schedule DOACROSS loops on homogeneous and heterogeneous systems. The first two algo-
rithms take a fine grain approach to parallelizing DOACROSS loops and focus on automat-
ically generating the equivalent (but efficient) parallel code. The rest of the methods take
a coarse grain approach and focus on load balancing DOACROSS loops on heterogeneous
systems.

The notations used throughout this chapter are given below:

• UDL – uniform dependence loop, a loop nest with uniform precedence constraints

• GL – general UDL, nested loops of which the loop body consists of generic program
statements (such as assignments, conditions and repetitions) and which exhibit uniform
flow dependencies

• GRIDs – a special category of UDLs, with unitary dependence vectors that reside on
the axes

• PE – a processing element

• P1, . . . , Pm – the slave PEs; P0 – the master PE

• Jaux – the auxiliary index space, obtained from the normal index space J by mapping
groups of iterations from J to a point in Jaux

• SpectPat – the special pattern, containing s neighboring independent iteration points
of J

• Laux – the initial point of the auxiliary index space

• Uaux – the terminal point of the auxiliary index space

• Convex Hull (CH) – the CH formed from the index points j1, . . . , jm is defined as:
CH = {j ∈ N

n | j = λ1j1 + . . . + λmjm, where λ1, . . . , λm ≥ 0 and λ1 + . . . + λm = 1}

• i - the current scheduling step

• N – the number of scheduling steps (total number of chunks), i = 1, . . . , N
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• uc – the scheduling dimension and Uc the size of this dimension

• us – the synchronization dimension and Us the size of this dimension

• Ci – the chunk ; represents a few consecutive iterations of the loop; Ci is the chunk size
at the i-th scheduling step

• Vi – the projection of Ci along scheduling dimension uc

• Ci = Vi ×
Qn

j=1
uj

uc
– the size of a chunk

• M - the number of synchronization points inserted along us

• SPj – the j-th synchronization point, 1 ≤ j ≤ M

• h - the synchronization interval, i.e., the number of elements in the index space along
us between two SP s; h is the same for every chunk

• Synchronization frequency – the number of synchronization points over the synchro-
nization dimension

• Current slave – the slave assigned chunk Ci (master side)

• Previous slave – the slave assigned chunk Ci−1 (master side)

• Send-to slave1 – the slave id to which Pk must send computed data (slave side)

• Receive-from slave – the slave id from which Pk must receive computed data (slave side)

• V Pk – virtual computing power of slave Pk (relative speed of processor k when compared
to the other k − 1 processors)

• qk – number of processes in the run-queue of slave Pk reflecting the total load of Pk

• Ak = ⌊V Pk

qk
⌋ – available computing power of slave Pk (the delivered speed)

• A =
∑i=1

m Ak – total available computing power of the system

• SCi,j – the set of iterations of chunk i, between SPj−1 and SPj

• S – the synchronization mechanism (completely independent of the scheduling algo-
rithm and does not enhance the load balancing capability of the algorithm)

• W – the (chunk) weighting mechanism (completely independent of the scheduling al-
gorithm and alone can be used for DOALL loops)

• p – the total number of pipelines (depends on the algorithm employed)

• tc – the cost of communicating a message of size h between two slaves; tc = cd + hcc

• cd – the start-up cost (the time to send a zero-length message including the hard-
ware/software overhead of sending the message)

1Master informs Pk about the send-toand receive-from ids based on the current and previous slaves ids
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• cc – the network throughput, defined as 1
sustained bandwidth

, where the sustained bandwidth
is the ratio of the amount of data sent over the actual time measured at the application
level

• tp – the computation cost of a subchunk; tp = hVicp

• cp – the computation time per iteration of the slowest worker

We make the following assumptions in this chapter:

A.1 The computation begins always at time step 1.

A.2 The processors are homogeneous and dedicated to executing the tasks (the first two
algorithms).

A.3 The processors are heterogeneous and not necessarily dedicated to executing the tasks
(all methods, except for the first two).

A.3 The communication network is homogeneous.

A.4 The loop body consists of general program statements and the dependence vectors are
constant.

A.5 The execution and communication times are arbitrary.

A.6 The communication network is homogeneous and the cost of sending a message is equal
to the cost of receiving a message.

A.7 The computation cost is a linear function of the computation cost per iteration times
the number of iterations.

Note that assumption A.4 does not hold for the first method presented below, because
the loop body of the loops considered consists of simple assignment statements.

4.2 Automatic Parallel Code Generation

4.2.1 For Scaled GRIDs

A method for transforming sequential perfectly nested loops into their equivalent parallel
form, is described next, published in [CAK+03]. The motivation for this method was devis-
ing a way to automatically generating the near optimal parallel code, which is equivalent to
the original sequential code. The contribution of this new dynamic (fine grained) schedul-
ing methodology is ensuring a high resource utilization and providing an automatic code
generation tool.

This work is based on parallelizing the special category of uniform dependence loops
(UDLs), called Scaled GRIDs and denoted SGRIDs. Every UDL in this category has the
general structure of a GRID, i.e., all dependence vectors reside on the axes and the value
of the non-zero coordinate is an arbitrary positive integer. GRIDs are a particular case of
SGRIDs, where the dependence vectors are the unitary vectors along the axes.

The problem addressed below can be stated as follows: given a sequential program with
a loop of SGRID UDLs structure, with a simple loop body, assuming that a fixed number of
processors is available, produce its asymptotically optimal equivalent parallel program. The
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method described here always produces the equivalent parallel code in polynomial time. If the
targeted architecture is a shared memory system, the produced parallel code is the optimal
time scheduling for the available number of processors. However, if the targeted architecture
is a distributed memory system, the produced parallel code is an efficient scheduling for
the specified number of processors, and the experimental results are very close to the ideal
speedup.

Definition 4.2.1 (Scaled GRIDs) The Scaled GRIDs are a subclass of the general class
of UDLs in which the set DS is partitioned into two disjoint subsets: AXV and DS−AXV .
The AXV (Axes Vectors) subset contains all the dependence vectors that lie along the axes,
i.e., each dependence vector has the form d = λ · ei, where ei is the unitary vector along
dimension i and λ ≥ 1 is a positive integer. Further, we require that for every i, 1 ≤ i ≤ n,
there exists at least one d = λ · ei.

Definition 4.2.2 (SpecPat) The special pattern (SpecPat) is a collection of s iteration
points that are non-dependent on each other throughout the execution of the whole nest,
obtained by considering the vectors with the smaller values from the AXV set, such that all
other dependence vectors of DS−AXV do not create any dependency between iteration points
within the pattern.

The well known GRIDs are a special case of SGRIDs in which λ = 1 for all the dependence
vectors, and any resulting SpecPat contains only one iteration point, due to the unitary
dependence vectors that characterize GRIDs.

Considering s to be the number of independent points within the pattern, replicating Spec-
Pat throughout the whole iteration space, yields collections of s independent points, which
obviously can be concurrently executed, provided there are available hardware resources.
Therefore, the loop nest can be scheduled according to the available number of processors,
that should preferably be a multiple of s. If the number of processors is not a multiple of s
then, at some moment, several processors will be idle due to no available iterations eligible
for execution. If the number of available resources is less than s (which is rarely the case)
the results produced by our tool are not satisfactory. Therefore, hereafter, we assume that
the number of available processors is a multiple of s.

Example 4.2.1 Consider the 2D index space of an SGRID, representing the following DOACROSS
loop:

for (i=1; i<=10; i++)

for (j=1; j<=10; j++) {
A[i,j]=(A[i,j-2]*A[i-2,j])20;

B[i,j]=2*B[i,j-3]10+B[i-4,j]10-1;

}

For this example, the initial point of the index space is L = (1, 1), the terminal point
is U = (10, 10) and the cardinality of |J | = 100 points. The dependence vectors are d1 =
(0, 2), d2 = (2, 0), d3 = (0, 3) and d4 = (4, 0). Due to the size of the smallest vectors on
each axe, the SpecPat is a collection of 4 independent iteration points. The iteration index
space with the replicated patten is shown in Figure 1(a), while the auxiliary space is depicted
in Figure 1(b). Notice the initial point in the auxiliary space is Laux = (0, 0) and contains
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(1, 1) (the initial iteration point), (2, 1), (1, 2) and (2, 2) iteration points. The terminal point
in the auxiliary space Uaux = (4, 4) contains the iteration points: (9, 9), (9, 10), (10, 9) and
(10, 10) (the terminal iteration point). The cardinality of the auxiliary space is |Jaux| = 25
patterns. ⊳
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Figure 4.1: Geometrical representation of the (a) iteration index space J and (b) auxiliary index space
Jaux of Example 4.2.1

The iteration index space J is partitioned into hyperplanes (or hypersurfaces) using the
concept of earliest computation time [AKC+03b] [PAD01], that is, all the points that can be
executed the earliest at time step k are said to belong to hyperplane k. As it can be seen in
Figure 1, all the points that belong to hyperplane 3 in J , belong to the same hyperplane 3
in the auxiliary space Jaux too. Of course, this holds for every hyperplane of J .

I. Dynamic Scheduling Policy

We describe here the first of the dynamic scheduling methods, a distributed coarse grain
approach scheme. This method schedules concurrently all the eligible iterations grouped
in a pattern, because there is no need to exchange data between iteration points of the
same pattern. Any iteration space replicated with the special pattern (SpecPat) is traversed
pattern by pattern according to the lexicographic ordering of the resulting coordinates, as if
each pattern were taken as a cartesian point in the auxiliary index space Jaux. Therefore, the
patterns’ execution order is the lexicographically traversal of the points on every hyperplane
(zig-zag ordering) of the auxiliary space, as shown in Figure 1(b). In other words, all the
patterns in the iteration space J are executed in a lexicographic order. At every moment,
all the executable points are executed on the existing resources, in groups of s processors.
The processors within each such group work concurrently, due to being assigned independent



4.2.1 For Scaled GRIDs 49

iterations. It is obvious though, that two distinct groups of processors may exchange data, if
there is any dependency between the iterations being executed by one group and the iterations
executed by the other group (which correspond to dependencies between the two patterns).

Let us assume we have m available processors. They are arranged in groups of s processors.
The execution flow goes as follows. Initially, the first group executes the first pattern (i.e.,
Laux), the second executes the second pattern, and so on, until the last group executes the
m/s-th pattern. Once the initial pattern assignment is done, every subsequent pattern of
each group is determined by skipping m/s positions from the currently assigned pattern.
In other words, the first group gets the Laux + m/s-th pattern, the second group gets the
Laux + m/s + 1-th pattern, and so on, until the last group gets the Laux + 2 × m/s-th
pattern. Notice that, when the processor groups are assigned patterns belonging to the
same hyperplane, they can all compute concurrently. The scheduling proceeds this way, until
reaching and executing the pattern containing the terminal point U of J .

II. Automatic Parallel Code Generation

The automatic code generation tool performs the following tasks:

Input: The sequential C code, P and the target system (shared-memory or distributed-memory)

Extracts: n, |J |, m, SpecPat, s

Performs: transforms J into Jaux; forms processor groups with ranks ranging 1, . . . , ⌊ P
m
⌋

Outputs: The near-optimal equivalent parallel C+MPI code

Consider the loop nest of Example 4.2.1, written in a high level programming language
(such as C). Since loops have a simple loop body, in the general case, a conventional parser
can be used to extract the necessary information about the program. In this case, we assume
that the parsing has been performed and the following information is extracted: depth of the
loop nest n = 2, size of the iteration index space |J | = 100, number of dependence vectors
k = 4, and their coordinates d1 = (0, 2), d2 = (2, 0), d3 = (0, 3), d4 = (4, 0).

Following the parsing and dependence analysis, the number of independent iterations
that form a pattern is determined to be s = 4. Before the scheduling begins, the tool
requires as input from the user the number of available hardware resources m on which the
sequential code is to be parallelized. Assuming m = 12 available processors, they are arranged
in three groups of four processors each. According to the scheduling policy, the first such
group (G1) is assigned the pattern of the first hyperplane (hyperplane 0), the second (G2)
is assigned the next lexicographic pattern (hyperplane 1) and the third (G3) is assigned the
next lexicographic pattern (also on hyperplane 1). After the initial assignment of patterns
to groups, the next pattern for each group is the one found three (that is m/p− 1) positions
further in the lexicographic ordering. In other words, the second pattern for G1 is found by
skipping three patterns from the initial pattern position (0,0) in Jaux, i.e., the first pattern
on hyperplane 2, (0,2). The second pattern for G2 is the pattern at (1,1), three position
further from the initial pattern (0,1), and G3 gets (2,0), three position further from the
initial pattern (1,0). The skipping method for traversing the index space is used in order to
avoid the re-execution of some pattern(s) (or iterations) and constitutes the main benefit of
using multiple groups of processors.
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We make the following observations: (1) All groups assigned auxiliary space points of the
same hyperplane compute concurrently ; (2) The scheduling policy is decentralized, i.e. there
is no master processor.

The loop body of the sequential program is taken as a ‘black box’ (which contains all
assignment statements) and is passed on to each processor to be executed for the appropriate
loop indices. It is worth mentioning that the only way to distinguish processors in MPI
is to reference them by their rank. A rank is a positive integer assigned to each processor
in the system, which designates the identification number of the processor throughout the
parallel execution. Therefore, in order to know from which processors to receive necessary
data and/or to send computed data to, the available processors are assigned ranks as follows:
processors from first group get ranks between 0 to 3, processors from second group get ranks
between 4 to 7 and the ones of third group get ranks between 8 and 11. The parallel code is
generated upon the completion of the above phases and is described next.

III. Parallel Code Generation

This section gives the parallel code that was generated by the tool for Example 4.2.1. The
pseudocode for the equivalent parallel version of the program is given below:

forall (available processors)

/* get coordinates of initial pattern and processor rank */

current_pattern = get_initial_pattern(rank);

while (current_pattern!=out_of_auxiliary_space)

{

/* we know the current pattern and the rank, find the */

/* iteration point to be executed by each processor with rank */

current_iteration_position=find_position(current_pattern, rank);

/* receive data from all points the current point depends on */

MPI_Recv(from_all_dependencies);

/* execute the loop body associated to the current iteration */

execute(Loop_Body, current_iteration_position);

/* send data to all points that depend on current point */

MPI_Send(to_all_dependencies);

/* move on to the next pattern */

current_pattern=Skip_x_patterns(current_pattern);

}

endforall

The function get_initial_pattern(rank) is the following:

get_initial_pattern(rank){

if (0 <= rank <=3) return L_aux

else if (4 <= rank <=7) return Skip_1_pattern(L_aux)

else if (8 <= rank <=11) return Skip_2_patterns(L_aux)

}

Herein, L_aux represents the initial point of the auxiliary space, i.e., Laux. This function
returns the initial pattern coordinates for every of the three groups of s = 4 processors using
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the skipping method and according to their rank values. The generated file containing MPI
is ready to be executed onto the available processors.

The conclusions that can be drawn regarding dynamic scheduling for simple DOACROSS
loops are:

• Making scheduling decisions at run time for DOACROSS loops is possible and efficient.

• Using blocking communication has the advantage of accuracy of the data exchanged.

4.2.2 For General Loops using Cronus

This section describes Cronus, a platform for parallelizing general DOACROSS loops, pub-
lished in [ACT+04] and to appear in [ACT+08]. Cronus uses geometric methods, partic-
ularly the QuickHull algorithm (which can be freely downloaded from www.qhull.org) to
determine the optimal hyperplane, by computing the convex hull of the end points of the
dependence vectors (starting in origin) and the terminal point of the iteration space. For
scheduling, Cronus employs a distributed, fine-grain dynamic scheme, called successive dy-
namic scheduling (SDS). SDS sweeps the index space of DOACROSS loop along the optimal
hyperplane, leading to the optimal makespan. Cronus generates the parallel code so that
each processor executes its apportioned computation and communication explicitly. Finally,
the parallel code is run on the target machine.

The problem addressed by SDS and Cronus is defined as follows: given a sequential gen-
eral UDL (GL), produce the equivalent high performance parallel program using a bounded
(but arbitrary) number of processors. The approach to the above problem consists of three
steps:

Step 1 (Preprocessing) Determining the optimal family of hyperplanes using the QuickHull
algorithm [BDH96]. Computing the minimum and maximum points of every hyperplane
in order to follow the lexicographic ordering.

Step 2 Scheduling the iterations along the optimal hyperplane on-the-fly using the successive
dynamic scheduling algorithm (SDS).

Step 3 Generating portable parallel code with Cronus.

Note: A hyperplane is optimal if no other hyperplane leads to a smaller makespan.

Step 1 is performed at compilation, whereas steps 2 and 3 are carried out at runtime. Step 2
is performed at runtime because we can exploit the uniformity of the index space and make
the most of the SDS adaptive rule.

Definition 4.2.3 (General loops) General loops (GL) are nested DOACROSS loops that
contain in their loop body generic program statements (such as assignments, conditions and
repetitions) and which exhibit uniform flow dependencies.

I. Finding the optimal scheduling hyperplane using convex hulls

The hyperplane (or wavefront) method [Lam74] was one of the first methods for parallelizing
uniform dependence loops, and as such it formed the basis of most heuristics algorithms.
A hyperplane is an n-dimensional plane that consists of a subset of independent iteration
points ([Lam74], [Mol93, p.75]). These points can be executed in parallel, which results
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in the significant reduction of the total makespan. Formally, a hyperplane Πk(a1, . . . , an),
where ai, k ∈ N, consists of the index points j = (j1, . . . , jn) ∈ J that satisfy the equation
a1j1 + . . . + anjn = k. The number of points of hyperplane Πk is called the cardinality of Πk

and is denoted |Πk|. For all index points j = (j1, . . . , jn) lying on hyperplane Πk(a1, . . . , an)
the sum

∑n
r=1 arjr has the same value k. In particular, the terminal point U = (us, . . . , un)

lies on hyperplane k = a1us + . . . + anun.

Example 4.2.2 Consider a 2D index space and a family of hyperplanes defined by the equa-
tion x1 + x2 = k. For k = 1, the index points lying on hyperplane Π1 are (0, 1) and (1, 0),
and the cardinality of this hyperplane is |Π1| = 2. The index points lying on hyperplane Π2

are (0, 2), (1, 1) and (2, 0), and the cardinality of this hyperplane is |Π2| = 3. ⊳

As we have already mentioned, most methods for finding the optimal hyperplane use
exponential time algorithms. In [PAD01] and [DAK+02] the problem of finding the optimal
hyperplane for uniform dependence loops was reduced to the problem of computing the convex
hull of the dependence vectors and the terminal point. The convex hull is a concept from
computational geometry, defined as follows:

Definition 4.2.4 (Convex Hull) The convex hull formed from the points j1, . . . , jm is de-
fined as: CH = {j ∈ N

n | j = λ1j1+ . . .+λmjm, where λ1, . . . , λm ≥ 0 and λ1+ . . .+λm = 1}.

This means that algorithms from computational geometry that compute the convex hull
can be used to find the optimal hyperplane. Typically, such algorithms produce as output a
sequence of hyperplanes (in the context of computational geometry they are called “facets”)
that define the convex hull. The hyperplanes defined exclusively by the endpoints of depen-
dence vectors are the candidate optimal hyperplanes. Which one is the optimal depends on
the terminal point of the loop. In [PAD01] and [DAK+02] it was shown that the optimal
hyperplane is the one defined by the endpoints of the dependence vectors with the following
property: the terminal point can be written as a linear combination of these dependence
vectors with non-negative coefficients. One of the best algorithms for computing the convex
hull is QuickHull [BDH96], which has lower complexity because it determines the hyperplanes
for up to 3D index spaces in polynomial time as opposed to other methods (e.g. diophan-
tine equations [MF86], linear programming in subspaces [SF91], and integer programming
[DKR91]) which have above polynomial time complexity. This technique is explained in the
following example:

Example 4.2.3 In Fig. 4.2 the dependence vectors are d̃1 = (1, 8), d̃2 = (2, 5), d̃3 = (3, 3),
d̃4 = (6, 2) and d̃5 = (8, 1). Consider the following two cases:
(1) N1 = 75, N2 = 90, resulting in the terminal point U1 = (75, 90) (Fig. 4.2(a))
(2) N ′

1 = 105, N ′
2 = 90, resulting in the terminal point U2 = (105, 90) (Fig. 4.2(b)).

As shown in Fig. 4.2, in the first case the convex hull is the polygon ABCEU1 and in
the second case the convex hull is the polygon ABCEU2. The terminal point U1 belongs to
the cone defined by the dependence vectors d̃2 and d̃3 (see Fig. 4.2(a)). This means that U1

can be written as λd2 + λ′d3 with λ and λ′ ≥ 0. Similarly, U2 belongs to the cone defined
by d̃3 and d̃5 (see Fig. 4.2(b)), i.e., it can be written as ρd3 + ρ′d5 with ρ and ρ′ ≥ 0. The
optimal hyperplane is defined by the endpoints of the dependence vectors that form the cone
containing the terminal point ([PAD01] and [DAK+02]). Thus, the optimal hyperplane in the
first case is the line defined by the endpoints of (d̃2, d̃3), whereas, in the second case, it is the
line defined by the endpoints of (d̃3, d̃5). Note that d̃4 is an interior point of the convex hull
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Figure 4.2: Optimal hyperplane for two different index spaces

and as such it plays no role in defining the optimal hyperplane. The equations of the lines
passing through points (2, 5) and (3, 3) and points points (3, 3) and (8, 1) are 2x1 + x2 = 9
and 2x1 + 5x2 = 21, respectively. ⊳

II. Lexicographic ordering on hyperplanes

An important issue in dynamic scheduling is finding an adaptive rule for instructing every
processor what to do at runtime rather than explicitly specifying at compile time. The
adaptive rule determines the next-to-be-executed point and the required-already-executed
point for any loop instance. To efficiently define such a rule, a total ordering (or serialization)
of the index points is necessary. We shall define a serialization that facilitates the scheduling
strategy we present.

Definition 4.2.5 (Lexicographic ordering) Suppose that i = (i1, . . . , in) and j = (j1, . . . , jn)
are two index points. We say that i is less than j according to the lexicographic ordering and
we write i < j, if i1 = j1 ∧ . . . ∧ ir−1 = jr−1 and ir < jr for some r, 1 ≤ r ≤ n.

In the rest of this paper, we use the lexicographic ordering among the index points, i.e.,
we write i < j when i is lexicographically less than j. The index space can be traversed
along hyperplanes, yielding a zigzag traversal in 2D index spaces, or a spiral traversal in 3D
(or higher) spaces. Given a specific hyperplane, the lexicographic ordering induces a total
ordering of its points.

Definition 4.2.6 (Minimum of a hyperplane) Index point j belonging to hyperplane Πk

is the minimum point of Πk, if Πk contains no other point i such that i < j. Similarly, point
j of Πk is the maximum point of Πk, if Πk contains no other point i such that j < i.

Finding the minimum point of a given n-dimensional hyperplane is an optimization prob-
lem. Moreover, it exhibits the optimal substructure property, i.e., the optimal solution to
the n-dimensional case contains within it the optimal solution to the (n − 1)-dimensional
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Figure 4.3: Minimum and maximum points on hyperplanes

case. Consequently, the minimum point can be computed by a simple dynamic programming
algorithm. The pseudocode for this algorithm is given in the Appendix (Fig. A.1). In a
symmetrical way, one can compute the maximum points of n-dimensional hyperplanes.

However, when dealing with 2D nested loops we can use mathematical techniques to speed
up the computation of the minimum point of a 2D hyperplane. Before we explain what these
techniques are, it is perhaps necessary to argue that although special, the 2D case is indeed
very important for two reasons:
1. Most practical cases (most examples in the literature) fall into this category.
2. Even in higher dimensional cases, we may use, if necessary, loop transformation techniques
(such as loop interchange, see [Mol93] for more details) in order to treat the higher dimensional
loop as a 2D loop. This is not only possible (our platform Cronus can handle complex loop
bodies) but it is also advantageous because it leads to heavier loop bodies and, thus enabling
a more coarse grain parallelization approach.

Consider the equation a1x1 + a2x2 = k, where a1, a2, x1, x2, k ∈ Z. A solution of this
equation is an ordered couple (j1, j2), where j1, j2 ∈ Z, such that a1j1 + a2j2 = k. Assuming
that g = gcd(a1, a2) and that not both a1 and a2 are equal to 0, then this equation has
infinitely many solutions if and only if g divides k. It has no solution if g does not divide
k (see [NZH91] and [Sil01]). Furthermore, if (j1, j2) is a solution, then all other solutions
are of the form (j1 + la2

g
, j2 − la1

g
), where l ∈ Z. Finding the solutions, assuming of course

that they exist, can be done easily and efficiently using the tabular algorithm presented in
[NZH91], which is a modification of the Gaussian elimination method. We explain the details
of this method in the Appendix. We introduce now two new concepts: the successor and the
predecessor of an index point.

Definition 4.2.7 (Successor & Predecessor) Suppose now that i and j are two index
points of the same hyperplane Πk. We say that j is the successor of i (equivalently, i is
the predecessor of j) according to the lexicographic ordering, if i < j and for no other point
j′ of the same hyperplane does it hold that i < j′ < j.

The maximum point of a hyperplane has no successor by definition (otherwise, it would
not be the maximum point). The computation of all minima and maxima is done during
Step 1 (preprocessing), i.e., when we compute the convex hull. It makes sense to perform
these computations offline (at compilation time), because once the minima and maxima are
computed they are stored in arrays, which are then transmitted to all slaves, so as to be used
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in the process of finding the successor and predecessor at runtime.

Finding the successor of an index point is straightforward once the minimum points are
known. The pseudocode of the algorithm for computing the successor in the general n-
dimensional case is given in the Appendix (Fig. A.2). However, for the case of 2D loops,
computing the successor of a point is trivial. Suppose that i and j belong to the same
hyperplane Πk(a1, a2). In this case both i and j can be derived from the general form
(j1+ la2

g
, j2−

la1

g
) for different values of l. Assuming that li and lj are the values corresponding

to i and j, we immediately deduce that li < lj ⇔ i < j. Hence, j is the successor of i if and
only if lj = li + 1.

III. Successive Dynamic Scheduling (SDS)

Our scheduling scheme is based on the concept of the successor. Using the successor the
index space can be traversed hyperplane by hyperplane and each hyperplane lexicograph-
ically, yielding a zig-zag/spiral traversal. This ensures its validity and its optimality. The
former because the points of the current hyperplane depend only on points of previous hyper-
planes, and the latter because by following the optimal hyperplane all inherent parallelism
is exploited. We advocate the use of the successor function to iterate along the optimal hy-
perplane as an adaptive dynamic rule. The use of the successor concept is efficient because
it induces a negligible overhead, and it does not incur any additional communication cost in
distributed memory platforms. For this purpose we define the following function:

Succ(j, r) =






j, if r = 0; / ∗ the same point j ∗ /
successor(j), if r = 1; / ∗ the immediate successor of point j ∗ /
successor(Succ(j, r − 1)), if r > 1. / ∗ the r − th successor of point j ∗ /

The above function provides: (1) the means by which each processor decides what iteration
to execute next, and (2) an efficient algorithm enabling each processor to determine from
which processor(s) to receive their computed data and to which processor(s) to send locally
computed data.

The decentralized scheduling policy is the following: assuming there are NP available
processors (P1, . . ., PNP ), P1 executes the initial index point L, P2 executes Succ(L, 1), P3

executes Succ(L, 2), and so on, until all processors are employed in execution for the first time.
Upon completion of L, P1 executes the next executable point, found by skipping NP points
on the hyperplane. The coordinates of this point are obtained by applying the Succ function
NP times to the point currently executed by P1: Succ(L, NP ). Similarly, upon completion
of its current point j, P2 executes the point Succ(j, NP ) and so on until exhausting all index
points. SDS ends when the terminal point U has been executed.

The communication scheme employed by Cronus is capable of identifying on the fly the
processor(s) to receive data from and send data to. Every processor must receive data from
other processors before commencing its computation and must, afterwards, send data to other
processors.

To explain how this works in Cronus, let us assume that processor Pi is assigned iteration
j. Pi must go through the following steps:

(1) Determine the iterations on which j depends on, according to the dependence vectors.

(2) Find which processors executed these iterations; in MPI this means finding their rank.
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(3) Initiate appropriate MPI receive calls, using these ranks.

(4) Upon receiving data, compute iteration j.

(5) Upon computation, determine the iterations which depend on j.

(6) Find the ranks of the processors that are assigned these iterations2.

(7) Initiate appropriate MPI send calls for these ranks.

(8) Determine the next executable iteration by calling the Succ function with parameters
j and NP .

As mentioned earlier, employing a fine grain parallelization scheme implies that the loop
body must be computationally intensive, otherwise the performance gain is canceled out.
In particular, when such schemes are implemented on message passing architectures, the
cost incurred by the communication routines should be less than the cost of computing the
respective iteration. Therefore, generating MPI calls for each iteration is not prohibitive as
long as computing the loop body surpasses this cost. The test cases presented in Chapter
5 have different loop bodies, leading to different granularities, i.e., different computational
sizes of the iterations.

Another aspect of our approach is the decentralization of the scheduling overhead. This
means that each processor is responsible for making the proper scheduling decisions. The
decentralized scheduling approach is better suited for fine grain parallelism than the central-
ized one. This is because if the scheduling were left to a master processor that would have
to communicate with multiple slave processors after every iteration, the resulting overhead
would be excessive.

IV. Overview of Cronus

Cronus is an existing semi-automatic parallelization platform3 (see Fig. 4.4). In the first
stage (User Input) the user inputs a serial program. The next stage (Compile Time)
consists of the loop nest detection phase (Parallelism Detection). If no loop nest can be

2In order to find the rank of the processor one needs to receive from or the rank of the processor one needs
to send to, we use the simple successor computation technique of the previous Section when dealing with 2D
cases, or the general successor algorithm, given in the Appendix for higher dimensional cases.

3A detailed description of the platform is contained in the “Cronus User’s Guide” that can be found at
www.cslab.ece.ntua.gr/∼cflorina/ .
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found in the sequential program, Cronus stops. Throughout the second phase (Parameters
Extraction), the program is parsed and the following essential parameters are extracted:
depth of the loop nest (n), size of the index space (|J |) and dependence vectors set (DS).
Once the necessary parameters are available, the program calls the QuickHull algorithm
(which we freely downloaded from www.qhull.org), and use it as an external routine, which
takes as input the endpoints of the dependence vectors and the terminal point of the problem;
finally it returns the coordinates of the optimal hyperplane. At this point, the available
number of processors (NP ) is required as input. A semi-automatic code generator produces
the appropriate parallel code (in the Semi-automatic Code Generation phase) for the given
NP . This is achieved with the help of a Perl script that operates on a configuration file,
which contains all the required information.

In the configuration file the user must also define a startup function in C (automatically
called by the parallel code) to perform data initialization on every processor. The parallel
code is written in C and contains runtime routines for SDS and MPI primitives for data
communication; it is eligible for compilation and execution on the multicomputer at hand (in
the Run Time stage).

The conclusions that can be drawn regarding dynamic scheduling for general DOACROSS
loops are:

• Making scheduling decisions at run time for DOACROSS loops is now possible and
efficient.

• Using blocking communication has the advantage of accuracy of the data exchanged.

4.3 Self-Scheduling DOACROSS Loops

This section addresses the problem of scheduling DOACROSS loops in the more general case,
that of heterogeneous distributed systems, with and without permanent extra load (dedi-
cated and non-dedicated mode). We extended three well known dynamic schemes: Chunk
self-scheduling (CSS), Trapezoid self-scheduling (TSS) and Distributed TSS (DTSS) by in-
troducing synchronization points at certain intervals so that processors compute in wavefront
fashion. Our scheme, published in [CAR+06] and extended in [PRA+06], is called dynamic
multi-phase scheduling DMPS(A), where A stands for one of the three algorithms, taken as
input parameter to DMPS. Our scheme is stable with respect to internal parameters (such
as chosen chunk size and synchronization interval) but sensitive to external parameters (such
as cluster configuration and workload). DMPS(A) is a distributed coarse-grain approach
that is applied to general loops with uniform flow dependencies.

Most systems nowadays are heterogeneous and non-dedicated to specific users, yielding a
system with variable workload. When static schemes are applied to heterogeneous systems
with variable workload the performance is severely deteriorated. Dynamic scheduling algo-
rithms adapt the assigned work to match the workload variation of both homogeneous and
heterogeneous systems. An important class of dynamic scheduling algorithms are the self-
scheduling schemes (such as CSS [KW85], GSS [PK87], TSS [TN93], Factoring [BL00], and
others [MJ94]). On distributed systems these schemes are implemented using the classical
master-slave model.

Since distributed systems are characterized by heterogeneity, to offer load balancing loop
scheduling schemes must take into account the processing power of each computer in the
system. The processing power depends on CPU speed, memory, cache structure and even the
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Figure 4.5: Self-Scheduling algorithms for DOALL loops
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program type. Furthermore, the processing power depends on the workload of the computer
throughout the execution of the problem. Therefore, load balancing methods adapted to
distributed environments take into account the relative powers of the computers. These
relative computing powers are used as weights that scale the size of the sub-problem assigned
to each processor. This significantly improves the total execution time when a non-dedicated
heterogeneous computing environment is used. Such algorithms were presented in [HBFF00]
and [HSUW96]. A recent algorithm that improves TSS by taking into account the processing
powers of a non-dedicated heterogeneous system is DTSS (Distributed TSS) [CABG01]. To
the best of our knowledge, all dynamic schemes proposed so far apply only to parallel loops
(also called DOALL loops).

When DOALL loops are parallelized using dynamic schemes, the index space is partitioned
into chunks, and the master processor assigns these chunks to slave processors upon request.
Throughout the parallel execution, every slave works independently and upon executing
the chunk sends the results back to the master. Obviously, this approach is not suitable for
DOACROSS loops because, due to dependencies, iterations in one chunk depend on iterations
in other chunks. Hence, slaves need to communicate. Inter-processor communication is
the foremost important reason for performance deterioration when parallelizing DOACROSS
loops. No study of dynamic algorithms for loops with dependencies on homogeneous or
heterogeneous clusters has been reported so far.

In order to parallelize nested DOACROSS loops, after partitioning the index space into
chunks (using one of the three schemes), we introduce synchronization points at certain
intervals so that processors compute chunks in wavefront fashion. Synchronization points are
carefully placed so that the volume of data exchange is reduced and the wavefront parallelism
is improved.

4.3.1 Overview of Self-Scheduling Methods for DOALL Loops (CSS, TSS,
DTSS)

Before explaining how the self-scheduling schemes are applied to DOACROSS loops, we must
describe the methods extended in this section, as they were originally devised for DOALL
loops. Recall that for DOALL loops the classical master-slave model is employed, where the
communication takes place only between the master and slave(s).



4.3.1 Overview of Self-Scheduling Methods for DOALL Loops (CSS, TSS, DTSS) 59

Self-scheduling algorithms work by partitioning the iteration space into chunks along one
of its dimensions, called chunk dimension and denoted uc. This creates a pool of tasks which
are then dynamically assigned to available workers upon request. The simplest self-scheduling
algorithm, called pure self-scheduling (PSS) assigns one iteration to each worker per request.
To reduce the synchronization overhead of PSS, the chunk self-scheduling (CSS) algorithm
assigns a fixed size chunk of iterations per request.

Chunk Self-Scheduling (CSS) [KW85] assigns constant size chunks to each slave, i.e.,
Ci = constant. The chunk size is chosen by the user. If Ci = 1 then CSS is the so-called
(pure) Self-Scheduling. A large chunk size reduces scheduling overhead, but also increases
the chance of load imbalance, due to the difficulty to predict an optimal chunk size. As a
compromise between load imbalance and scheduling overhead, other schemes start with large
chunk sizes in order to reduce the scheduling overhead and reduce the chunk sizes throughout
the execution to improve load balancing. These schemes are known as reducing chunk size
algorithms and their difference lies in the choice of the first chunk and the computation of
the decrement.

The Trapezoid Self-Scheduling (TSS) [TN93] scheme linearly decreases the chunk size
Ci. The first and last (assigned) chunk size pair (F,L) may be set by the programmer. A

conservative selection for the (F,L) pair is: F = |Uc|
2∗m and L = 1, where m is the number

of slaves. This ensures that the load of the first chunk is less than 1/m of the total load in
most loop distributions and reduces the chance of imbalance due to a large first chunk. Still
many synchronizations may occur. One can improve this by choosing L > 1. The proposed
number of steps needed for the scheduling process is N = 2×|Uc|

(F+L) . Thus, the decrement

between consecutive chunks is D = (F − L)/(N − 1), and the chunk sizes are C1 = F,C2 =
F − D,C3 = F − 2 × D, . . . , CN = F − (N − 1) × D.

Distributed TSS (DTSS) [CABG01] improves on TSS by selecting the chunk sizes accord-
ing to the computational power of the slaves. DTSS uses a model that includes the number
of processes in the run-queue of each slave. Every process running on a slave is assumed to
take an equal share of its computing resources. The application programmer may determine
the pair (F,L) according to TSS, or the following formula may be used in the conservative

selection approach: F = |Uc|
2×A

and L = 1 (assuming that the loop which is scheduled by

DTSS is the r-th loop). The total number of steps is N = 2×|Uc|
(F+L) and the chunk decrement is

D = (F−L)/(N−1). The size of a chunk in this case is Ci = Ak×(F−D×(Sk−1+(Ak−1)/2)),
where: Sk−1 = A1 + . . . + Ak−1. When all slaves are dedicated to a single user job then
Ak = V Pk. Also, when all slaves have the same speed, then V Pk = 1 and the tasks assigned
in DTSS are the same as in TSS. The important difference between DTSS and TSS is that in
DTSS the next chunk is allocated according to the slave’s available computing power. Hence,
faster slaves get more loop iterations than slower ones. In contrast, TSS simply treats all
slaves in the same way.

Table 4.2 shows the chunk sizes computed with CSS, TSS and DTSS for a DOALL loop
with an index space of 5000 × 10000 iterations and and m = 10 slaves. Since, CSS and TSS
were devised for homogeneous system, they are insensitive to the system’s load. Hence, CSS
and TSS obtain the same chunk sizes in the dedicated cluster as in the non-dedicated cluster.
On the contrary, DTSS improves on TSS for heterogeneous systems, because it adapts the
chunk size to match the different computational powers of slaves. As mentioned before, all
these algorithms have been evaluated for DOALL loops [CABG01] and it has been established
that the DTSS algorithm improves on the TSS, which in turn outperforms CSS.
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Table 4.1: Sample chunk sizes given for |J | = 5000 × 10000 and m = 10. Chunks are formed along
uc = 5000

Algorithm Chunk sizes

CSS 300 300 300 300 300 300 300 300 300
300 300 300 300 300 300 300 200

TSS 277 270 263 256 249 242 235 228 221
214 207 200 193 186 179 172 165 158
151 144 137 130 123 116 109 102 73

DTSS 392 253 368 237 344 221 108 211 103
(dedicated) 300 192 276 176 176 252 160 77 149

72 207 130 183 114 159 98 46 87 41 44

DTSS 263 383 369 355 229 112 219 107 209
(non-dedicated) 203 293 279 265 169 33 96 46 89 86

83 80 77 74 24 69 66 31 59 56
53 50 47 44 20 39 20 33 30 27
24 21 20 20 20 20 20 20 20 20 8

4.3.2 Motivation for Dynamic Scheduling of DOACROSS Loops

Existing dynamic scheduling algorithms cannot cope with DOACROSS loops. Consider, for
instance, the heat equation, and its pseudocode below:

/* Heat equation */ for (l=1; l<loop; l++) {

for (i=1; i<width; i++){

for (j=1; j<height; j++){

A[i][j] = 1/4*(A[i-1][j] + A[i][j-1]

+ A’[i+1][j] + A’[i][j+1]);

}

}

}

When dynamic schemes are applied to parallelize this problem, the index space is parti-
tioned into chunks, that are consequently assigned to slaves. These slaves then work inde-
pendently. But due to the presence of dependencies, the slaves have to communicate with
each other. However, existing dynamic schemes do not support inter-slave communication,
only master-to-slave(s) communication. Therefore, in order to apply dynamic schemes to
DOACROSS loops, one must provide an inter-slave communication scheme, such that prob-
lem’s dependencies are not violated or ignored.

4.3.3 The Inter-Slave Communication Scheme

In this work we bring the existing dynamic scheduling schemes into the field of scheduling
DOACROSS loops. We propose an inter-slave communication scheme for three well known
dynamic schemes: CSS [KW85], TSS [TN93] and DTSS [CABG01]. In all cases, after the
master assigns chunks to slaves, the slaves communicate with each other by means of syn-
chronization points. This provides the slaves with a unified communication scheme. This is
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Figure 4.6: Synchronization points

depicted in Fig. 4.6 and 4.11, where chunks i−1, i, i+1 are assigned to slaves Pk−1, Pk, Pk+1,
respectively. The shaded areas denote sets of iterations that are computed concurrently
by different PEs. When Pk reaches the synchronization point SPj+1 (i.e. after computing
SCi,j+1) it sends Pk+1 only the data Pk+1 requires to begin execution of SCi+1,j+1. The
data sent to Pk+1 designates only those iterations of SCi,j+1 imposed by the dependence
vectors, on which the iterations of SCi+1,j+1 depend on. Similarly, Pk receives from Pk−1

the data Pk requires to proceed with the execution of SCi,j+2. Note that slaves do not reach
a synchronization point at the same time. For instance, Pk reaches SPj+1 earlier than Pk+1

and later than Pk−1. The existence of synchronization points leads to pipelined execution,
as shown in Fig. 4.6 by the shaded areas.

4.3.4 Dynamic Multi-Phase Scheduling

For the sake of simplicity we consider a 2D DOACROSS loop with U = (us, uc), and us ≥ uc.
The index space of this loop is partitioned into chunks along the scheduling dimension uc

(using one of the self-scheduling algorithms). Synchronization points are inserted along the
synchronization dimension us, at equal intervals. The interval length, h, is carefully chosen
by the programmer and yields the number of synchronization points, M = Us

h
.

The following notation is essential for the inter-slave communication scheme: the master
always names the slave assigned with the latest chunk (Ci) as current and the slave assigned
with the chunk Ci−1 as previous. Whenever a new chunk is computed and assigned, the
current slave becomes the (new) previous slave, whereas the new slave is named (new) current.
Fig. 4.8 below shows the state diagram related to the (new) current – (new) previous slaves.
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Figure 4.8: State diagram of the slaves

The state transitions are triggered by new requests for chunks to the master.
The Dynamic Multi-Phase Scheduling scheme consists of the following two phases:

Phase 1 Apply self-scheduling algorithms to the scheduling dimension.

Phase 2 Insert synchronization points along the synchronization dimension.

The Dynamic Multi-Phase Scheduling scheme DMPS(A), which employs the extended
master-slave model (i.e. with inter-slave communication) is described next.
Remark: (1) Note that the synchronization intervals are the same for all chunks. For remarks
(2)–(5) below refer to Fig. 4.8 for an illustration. (2) Upon completion of SCi,0, slave Pk

requests from the master the identity of the send-to slave. If no reply is received, then Pk
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Figure 4.9: DMPS(A) Scheme

procedure INPUT ⊲ Master Input
An n-dimensional DOACROSS loop, with terminal point U
The choice of algorithm A ∈ [CSS, TSS, DTSS]
if A =CSS then

chunk size is Ci

end if
The synchronization interval h
The number of slaves m
if A =DTSS then

also the virtual power Vk of every slave
end if

end procedure

1: Master: ⊲ Master code
2: procedure Initialization:

3: Register slaves
4: if A =DTSS then
5: slaves report their Ak

6: end if
7: Calculate F,L,N,D for TSS and DTSS; for CSS use the given Ci

8: end procedure
9: while there are unassigned iterations do

10: if a request arrives then
11: put it in the queue
12: end if
13: Pick a request from the queue, and compute the next chunk size using CSS, TSS or

DTSS
14: Update the current and previous slave ids
15: Send the id of the current slave to the previous one
16: end while



64 Dynamic scheduling algorithms

Figure 4.10: DMPS(A) Scheme (continued)

1: Slave Pk: ⊲ Slave code
2: procedure Initialization:

3: Register with the master
4: if A =DTSS then
5: report Ak

6: end if
7: Compute M according to the given h
8: end procedure
9: Send request to the master

10: Wait for reply.
11: if received chunk from master then
12: go to step S.3
13: else
14: goto OUTPUT
15: end if
16: while the next SP is not reached do
17: compute chunk i
18: end while
19: if id of the send-to slave is known then
20: goto step S.5
21: else
22: goto step S.6
23: end if
24: Send computed data to send-to slave
25: Receive data from the receive-from slave and goto step S.3

procedure OUTPUT

if no more chunks to be assigned then ⊲ Master Output
terminate

end if
if no more tasks come from master then ⊲ Slave Output

terminate
end if

end procedure
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is still the current slave, and it proceeds to receive data from the previous slave Pk−1, and
then it begins SCi,1. (3) Slave Pk keeps requesting the identity of the send-to slave, at the
end of every SCi,j until either a (new) current slave has been appointed by the master or Pk

has finished chunk i. (4) If slave Pk has already executed SCi,0, . . . , SCi,j by the time it is
informed by the master about the identity of the send-to slave, it sends all computed data
from SCi,0, . . . , Si,j. (5) If no send-to slave has been appointed by the time slave Pk finishes
chunk i, then all computed data is kept in the local memory of slave Pk. Then Pk makes a
new request to the master to become the (new) current slave.

The advantages of the proposed Dynamic Multi-Phase Scheduling scheme DMPS(A) are
outline below:

X Can take as input any self-scheduling algorithm, without requiring any modifications

X Phase 2 is independent of Phase 1

X Phase 1 deals with the heterogeneity and load variation in the system

X Phase 2 deals with minimizing the inter-slave communication cost

X Suitable for any type of heterogeneous systems

The conclusion regarding the proposed dynamic schemes is that DOACROSS loops can
now be dynamically scheduled on heterogeneous dedicated and non-dedicated systems. How-
ever, there are still a few things missing. And they are:

• A generic add-on to other self-scheduling algorithms, such that they can all handle
DOACROSS loops and account for system’s heterogeneity without any modifications

• A model for predicting the optimal synchronization interval h and minimizing the com-
munication

4.4 Enhancing Self-Scheduling Algorithms via Synchroniza-

tion and Weighting

In this section we introduce two mechanisms that were devised to enable other self-scheduling
algorithms to handle general DOACROSS loops and account for system’s heterogeneity with-
out any modifications, published in [CRA+08].

To compensate for the fact that existing self-scheduling algorithm cannot handle DOACROSS
loops (or tasks with dependencies), we introduce here a synchronization mechanism that pro-
vides the inter-processor communication, thus, enabling self-scheduling algorithms to handle
efficiently nested DOACROSS loops. We also present in what follows a weighting mechanism
that significantly improves the performance of dynamic self-scheduling algorithms. These
algorithms divide the total number of tasks into chunks and assign them to processors. The
weighting mechanism adapts the chunk sizes to the computing power and current run-queue
state of the processors. The synchronization and weighting mechanisms are orthogonal, in the
sense that they can simultaneously be applied to DOACROSS loops. Hence, they broaden
the applications’ spectrum of dynamic self-scheduling algorithms and improve their perfor-
mance. We expect that the synchronization and weighting mechanisms to be quite efficient
for DOACROSS loops on heterogeneous systems, and this is verified in chapter 5.



66 Dynamic scheduling algorithms

This section extends and generalizes the work in the previous section by constructing
a general synchronization mechanism S, which applies to all loop self-scheduling schemes.
When this mechanism is applied to a self-scheduling algorithm, it enables it to handle effi-
ciently DOACROSS loops. The synchronization mechanism S inserts synchronization points
in the execution flow so that slaves perform the appropriate data exchanges. This mechanism
is not incorporated within the self-scheduling algorithm, but it is an additional stand-alone
component, applicable without further modifications. Given a self-scheduling algorithm A,
its synchronized version is denoted S-A.

In addition, motivated by the results in [SHW96] [BL00] [CABG01], we define a weight-
ing mechanism W, aimed at improving the load balancing and, thus, the performance of
all non-adaptive self-scheduling algorithms on non-dedicated heterogeneous systems. This
mechanism is inspired from the approach used in [CABG01], i.e., it uses the relative powers
of the slaves combined with information regarding their run-queues to compute chunks. How-
ever, in contrast to previous approaches to chunk weighting, this mechanism is not embedded
within the self-scheduling algorithm, but it is an external stand-alone component applicable
to any dynamic algorithm without modifications. Given any self-scheduling algorithm A, its
weighted version will be called W-A.

4.4.1 Overview of Self-Scheduling Methods for DOALL Loops (GSS, FSS)

Before we describe the two mechanisms, we will describe the self-scheduling algorithms that
we considered for testing in chapter 5. In section 4.3.1 we described the CSS, TSS and DTSS
self-scheduling schemes. In this section, we will describe two other self-scheduling schemes:
Guided Self-Scheduling (GSS) and Factoring Self-Scheduling (FSS), as they were originally
devised for DOALL loops. Recall that for DOALL loops the classical master-slave model is
employed, where the communication takes place only between the master and slave(s).

In the Guided Self-Scheduling (GSS) [PK87] scheme, each slave is assigned a chunk given
by the number of remaining iterations divided by the number of slaves, i.e., Ci = Ri/m,
where Ri is the number of remaining iterations. Assuming that the loop which is scheduled
with GSS is the r-th loop, then R0 is the total number of iterations, i.e., |Ur|, and Ri+1 =

Ri − Ci, where Ci = ⌈Ri/m⌉ = ⌈(1 − 1
m

)i · |Ur|
m

⌉. This scheme initially assigns large chunks,
which implies reduced communication/scheduling overheads in the beginning. At the last
steps small chunks are assigned to improve the load balancing, at the expense of increased
communication/scheduling overhead.

The Factoring Self-Scheduling (FSS) [BL00] scheme schedules iterations in batches of
m equal chunks. In each batch, a slave is assigned a chunk size given by a subset of the
remaining iterations (usually half) divided by the number of slaves. The chunk size in this
case is Ci = ⌈ Ri

α∗m⌉ and Ri+1 = Ri − (m × Ci), where the parameter α is computed (by a
probability distribution) or is sub-optimally chosen α = 2. The weakness of this scheme is
the difficulty to determine the optimal parameters. However, tests show [BL00] improvement
on previous adaptive schemes (possibly) due to fewer adaptations of the chunk-size.

4.4.2 The Synchronization Mechanism – S

The purpose of the synchronization mechanism is to enable self-scheduling algorithms to
handle general DOACROSS loops. In all cases the master assigns chunks to slaves, which
synchronize with each other at every synchronization point SP . We must emphasize that the
synchronization mechanism is completely independent of the self-scheduling algorithm and
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Figure 4.11: Partitioning of a 2D DOACROSS loop into chunks, and placement of synchronization
points

does not enhance the load balancing capability of the algorithm. Therefore, synchronized
self-scheduling algorithms perform well on heterogeneous systems only if the self-scheduling
algorithm itself explicitly takes into account the heterogeneity. The synchronization overhead
is compensated by the increase of parallelism resulting in an overall performance improve-
ment.

The synchronization mechanism S provides the synchronization interval along us:

h = ⌈
Us

M
⌉ (4.1)

and the framework for inter-slave communication. Figure 4.11 illustrates Vi and h. The
horizontal strip sections are assigned to single slaves. Synchronization points are placed in
the us dimension so that other slaves can start computing as soon as possible. Note that in
this example, Ci is the number of loop iterations in the horizontal strip, i.e., Ci = Vi × Us.

The synchronization mechanism S extends the classical master slave model, by enabling
slaves to exchange data directly with each other, and communicate with the master only to
request and receive work. To accomplish this, the synchronization mechanism S adds three
components to the original algorithm A (see Fig. 4.12):

(1) transaction accounting (master side) - according to slaves’ requests, the master
extracts information and decides upon the identity of the slaves participating in a data
exchange (previous and current slaves)

(2) receive part (slave side) - uses the information from (1) to receive the corresponding
communication sets

(3) transmit part (slave side) - uses the information from (1) to send the corresponding
communication sets.
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Details regarding components (2) and (3) are given in the pseudocode algorithm 4.4.2 be-
low. We must specify that the synchronization interval h is determined empirically or selected
by the user, and must be a tradeoff between synchronization overhead and parallelism.

The flexibility of the synchronization mechanism is twofold:

(1) Pk checks for the identity of the send-to slave at every synchronization point. Suppose
that Pk first learns the identity of the send-to slave Pk+1 at synchronization point SPj .
In this case, Pk sends to Pk+1 all the locally stored data that Pk+1 requires, in one step
(sending one large message is more efficient than sending the same amount of data in
smaller consecutive messages). Hence, Pk+1 is not delayed at any synchronization point
up to SPj. Moreover, the fact that Pk is j synchronization points ahead of Pk+1, where
2 ≤ j ≤ M , means that Pk+1 receives from Pk the data it needs since they have already
been computed.

(2) In the extreme case where no send-to is designated by the time Pk reaches the last
synchronization point, Pk stores all the data it should have sent to the send-to slave in
a local buffer. When the master designates the send-to slave Pk+1, then Pk sends to
Pk+1 all stored data. Note that in this case Pk could also be the send-to slave.

For the implementation of the synchronization mechanism, the following issues must be
addressed: (a) the placement of synchronization points along dimension us and (b) the trans-
mission of data to the adjacent slave. The synchronization points are computed as follows:
SP1 = h and SPi+1 = SPi + h. The synchronization interval h depends on M , which is
determined empirically, as demonstrated in the experiments of Chapter 5, or selected by the
user. The pseudocode of Algorithm 4.4.2 provides the basis for two C-code blocks that han-
dle the transmission part. The code blocks are inserted in the slave code, in the positions
indicated in Fig. 4.12. Before “Compute chunk” we insert the block responsible for handling
the reception part of the communication, and after “Compute chunk” we insert the block
that handles the send part. We have assumed that the outer dimension of the loop is the
synchronization dimension. This implies that the receive and send code blocks are inserted
between the loop iterating over the synchronization dimension and before the loop iterating
over the chunk dimension. Whenever the index of synchronization dimension is iterated h
times, these blocks are activated in order for the data exchange event to occur. On the master
side, a code block is inserted so as whenever a new slave makes a request, it is registered
as the current slave, and the last registered slave is renamed as the previous slave. This
information is then transmitted to the last two registered slaves. A preprocessor could be
implemented for automatic parsing, detecting and inserting the appropriate code blocks. In
our experiments we did this manually. In either case the initial code does not have to be
rewritten. This is also applicable to the implementation of the W and the SW mechanisms,
as will be described next.

4.4.3 Empirical Determination of M

In order to understand the impact on performance of the choice of M , we give in Fig. 4.14
the parallel execution on m = 4 slaves of a hypothetical example. For simplicity, assume that
each slave is assigned only two chunks and that all chunks are of the same size. The slave
request order, i.e., P1, P2, P3, P4, and the synchronization points, SP1, . . . , SP12, inserted
by the synchronization mechanism, are also shown. The numbers in each subchunk SCi,j

indicate the time step in which it is executed. The flow of execution follows a wavefront
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Figure 4.13: Pseudocode of the communication scheme implementation on the slave side

1: procedure Receive part ⊲ Receive partial results from Pk−1

2: in synchronization point SPi check for partial results from previous slave Pk−1

3: if current and previous slaves are the same, that is, Pk = Pk−1 then
4: all partial results exist in local memory
5: proceed to the computation without blocking in any SP for the completion of

current chunk
6: else
7: receive partial results from Pk−1

8: check the number of communication sets b of partial results received
9: if b > 1 then

10: skip the next b SPs
11: end if
12: end if
13: proceed to computation
14: end procedure

1: procedure Transmit part ⊲ Send partial results to Pk+1

2: in synchronization point SPi

3: if SP reached is SP1 then
4: make a non-blocking request to master for the rank of the next slave Pk+1

5: if the rank of slave Pk+1 is not yet known to master then
6: store partial results in local memory
7: proceed to receive part
8: else
9: get the rank of Pk+1

10: send it partial results
11: end if
12: else
13: if the rank of Pk+1 is already known by Pk then
14: send Pk+1 the partial results
15: else
16: if a reply has been received by the master for the rank of the next slave Pk+1

then
17: send Pk+1 all previous partial results in a single packet
18: proceed to receive part
19: else
20: store partial results in local memory
21: proceed to receive part
22: end if
23: end if
24: end if
25: end procedure
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Figure 4.14: Parallel execution in a pipelined fashion

fashion. From time steps 1 to 3 (initial time steps) and 25 to 27 (final time steps), denoted
by the gray areas, one can see that not all slaves are active, whereas from 4 to 24 (intermediate
time steps) all slaves are active. At the end of the 12-th time step, slave P1 has completed
its first chunk and it is then assigned a second chunk by the master. It begins computing
the second chunk at time step 13, since it has all the necessary data from slave P4. In the
same time step, slaves P2, P3, P4 are still computing their first chunk. As soon as slave P2

completes its first chunk (at the end of time step 13), it proceeds with its next chunk at time
step 14. The transition to the second chunk for P3 and P4 takes place at time steps 14 and
15, respectively. In other words, except for the initial and the final time steps, the execution
proceeds with no delays, apart from the synchronization between slaves, as imposed by the
synchronization points. The #initial steps is (m − 1) and is equal to the #final steps, while
#intermediate steps = #total steps - 2(m−1), as illustrated in Fig. 4.14. The number of total
steps depends on the number of SPs and the number of chunks produced by the scheduling
algorithm. Since the number of chunks is algorithm dependent, the choice of the number of
SPs should maximize the percentage of intermediate time steps over the total time steps.

The selection of the number of SPs is a tradeoff between synchronization overhead and
parallelism. A choice of a large M incurs too frequent data exchanges and a high synchro-
nization overhead, whereas a small M restricts the inherent parallelism. We believe that
the optimal selection of the synchronization interval depends on many factors, such as: the
dependencies of the loop, the characteristics of the underlying communication network and
of the processors, and the self-scheduling algorithm used. Extensive experimental runs for
various test cases and self-scheduling algorithms (contained in Section 6) show that a good,
albeit arbitrary, choice is M ≥ 3 ∗ m, where m is the number of slaves. In our example
(Fig. 4.14), M = 12, which yields that #total steps = 27, #intermediate steps = 21, and a
percentage of 77% of execution without idle times.
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4.4.4 The Weighting Mechanism – W

The purpose of the weighting mechanism W is to enable the self-scheduling algorithms to
handle load variations and system heterogeneity. W adjusts the amount of work (chunk size)
given by the original algorithm A according to the current load of a processor and its nominal
computational power. It must be mentioned that W is a completely independent mechanism
of the self-scheduling algorithm and alone (without S that is) can be used for DOALL loops.
The weighting overhead is insignificant (a ⋆ and a / operation).

Let us consider that the self-scheduling algorithm A is used to parallelize a nested loop on
a heterogenous system with m slaves, each with V P1, . . . , V Pm virtual computational power.
Furthermore, let us assume that during the i-th scheduling step, slave Pk has qk processes in
its run-queue. The weighting mechanism W, calculates the chunk Ĉi assigned to Pk, using
the following formula:

Ĉi = Ci ×
V Pk

qk
(4.2)

In the above formula V Pk and qk are the virtual power and number of processes in the run-
queue of slave Pk, respectively, and Ci is the chunk size given by the original self-scheduling
algorithm A. Hence, Ĉi is the “weighted” chunk size, given the current load conditions of Pk.
In most cases the addition of the W mechanism improves the performance. However, when
the loop is run on a dedicated homogeneous cluster, the W mechanism does not improve the
performance and could be omitted.

The effects of the weighting mechanism on a self-scheduling algorithm A are shown in
Fig. 4.15. The mechanism adds two components to the original algorithm:

(1) chunk weighting (master side) - the master adjusts the chunk size based on the slave’s
load information and computational power

(2) run-queue monitor (slave side) - it keeps track of the number of processes that require
CPU time, updates qk and informs the master of its current load.

Table 4.2 shows the chunk sizes given by the original and weighted self-scheduling al-
gorithms. These chunks were obtained for a parallel loop (Mandelbrot computation4) of
10000 × 10000 points. Four slaves were used, having virtual computing powers V P1 =
1, V P2 = 0.8, V P3 = 1 and V P4 = 0.8. The two slowest slaves were loaded with an ex-
tra process, i.e., q2 = 2, q4 = 2, and their available computing power halved: A2 = 0.4 and
A4 = 0.4.

Table 4.2 also shows the order in which slaves requested work from the master, which
differs from algorithm to algorithm. Self-scheduling algorithms were devised for homogenous
systems and they tend to assign large initial chunks to all slaves. They make the assumption
that all slaves compute their assigned chunk in roughly the same time and advance to the
next chunk simultaneously, as it is explained in [MJ94]. This assumption is not valid for
heterogenous systems. Slower slaves may fall behind faster ones because they need more
time to compute chunks of equal size. In most cases, slower slaves requested work only once
throughout the whole execution. The weighting mechanism compensates for this deficiency
as shown by the request orders in Table 4.2. The gain of the weighted algorithms over the
non-weighted ones is also demonstrated by the times of the parallel execution in the same
table.

4The Mandelbrot test case is described in Section 5.1.
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Table 4.2: Chunk sizes given by the original and weighted algorithms for the Mandelbrot set, index
space size |J | = 10000 ×10000 points and m = 4 slaves

Chunk sizes with A Chunk sizes with W-A Par. time Par. time
A with respect to the with respect to the for A for W-A

processors’ request order processors’ request order

1250(P1) 1250(P2) 1250(P3) 1250(P1) 1250(P3) 500(P4)
CSS 1250(P4) 1250(P3) 1250(P1) 500(P2) 1250(P3) 500(P2) 120.775s 66.077s

1250(P3) 1250(P1) 500(P4) 1250(P1) 1250(P3)
500(P4) 1250(P1)

1250(P1) 1250(P3) 1250(P2) 1250(P1) 1250(P3) 500(P2)
1250(P4) 625(P3) 625(P3) 500(P4) 812(P3) 324(P2)
625(P1) 625(P3) 390(P1) 324(P4) 324(P1) 324(P3)

FSS 390(P1) 390(P3) 390(P1) 812(P3) 630(P1) 630(P1) 120.849s 56.461s
244(P3) 244(P4) 244(P1) 630(P4) 252(P3) 176(P1)
208(P3) 441(P4) 441(P2) 176(P3)

123(P1) 308(P2) 308(P4)
113(P1)

2500(P1) 1875(P2) 1406(P3) 2500(P1) 1875(P3) 562(P2)
1054(P4) 791(P3) 593(P3) 506(P4) 455(P4) 410(P2)
445(P3) 334(P1) 250(P3) 923(P3) 692(P3) 519(P1)

GSS 188(P1) 141(P3) 105(P1) 155(P4) 140(P2) 315(P3) 145.943s 58.391s
80(P3) 80(P1) 80(P3) 78(P1) 94(P4) 213(P1) 160(P3)

120(P1) 90(P3) 80(P2)
80(P1) 80(P3) 31(P1)

1250(P1) 1172(P3) 1094(P2) 1250(P1) 1172(P3) 446(P2)
1016(P4) 938(P3) 860(P1) 433(P4) 1027(P3) 388(P4)

TSS 782(P3) 704(P1) 626(P3) 375(P2) 882(P1) 804(P3) 89.189s 63.974s
548(P4) 470(P2) 392(P1) 299(P4) 286(P2) 660(P1)
148(P3) 582(P3) 504(P1) 179(P4)

392(P3) 134(P2) 187(P1)
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The code blocks that implement the weighting mechanism are much shorter than those
of the synchronization mechanism, as it can be seen from Fig. 4.15. In particular, we insert
a block in the slave’s code that monitors the current load of the slave at the time it makes a
new request for work to the master. This load is then reported to the master along with the
new request. On the master side, the block code implementing W performs a multiplication
of the chunk size produced by the original self-scheduling algorithm according to the slave’s
reported virtual power and current load, using formula (4.2). Note that the performance gain
of W-A over A is quite significant.

4.4.5 The Combined Mechanisms – SW

In Section 4.4.2 we applied the synchronization mechanism S to DOACROSS loops whereas
in Section 4.4.4 we applied the weighting mechanism W to DOALL loops. In this section
we combine the two mechanisms and demonstrate their effectiveness. The synchronization
mechanism, while necessary to parallelize DOACROSS loops, does not provide any sort of
load balancing. This makes advantageous the simultaneous use of the weighting mechanism
in order to improve the overall performance of the self-scheduling schemes. It is obvious
that a self-scheduling algorithm with both synchronization and weighting will outperform
the same self-scheduling algorithm without weighting in a heterogeneous system.

Figure 4.16 shows the effects of both synchronization and weighting mechanisms for the
scheduling of dependence loops on heterogenous systems. As with the previous cases, the
combined SW mechanisms add two components to the master: (1) chunk weighting and (2)
transaction accounting, and three components to the slave: (3) run-queue monitor, (4)
receive part and (5) transmit part. Component (1) (master-side) along with component
(3) (slave-side) are related to the weighting mechanism, whereas all other components (both
from master and slave) belong to the synchronization mechanism.

The chunk sizes of the synchronized–only and synchronized–weighted algorithms for a
DOACROSS loop (Floyd-Steinberg computation5) of 10000 × 10000 points are shown in
Table 4.3. Notice that due to the existing dependencies and synchronization, the slaves
request order stays the same for a particular algorithm. The chunk sizes differ from the ones
in Table 4.2, where no synchronization was used and the slave request order was random.
Again, from the parallel times in Table 4.3 one can see that the synchronized–weighted
algorithms perform better than the synchronized–only ones. It is worth mentioning that the
synchronization and weighting overheads are compensated by the performance gain.

The implementation of the combination of the two mechanisms is actually the insertion
of all code blocks associated with each of the mechanisms, both in the code of the slave and
the code of the master, as it can be seen in Fig. 4.16.

The conclusions that can be drawn from the proposed mechanisms is that DOACROSS
loops can be dynamically scheduled using S, whereas self-scheduling algorithms are quite
efficient on heterogeneous dedicated and non-dedicated systems using W. Throughout this
work, we identified the importance of the synchronization frequency and the need for a model
to predict the optimal synchronization interval h which will minimize the communication.
This is the focus of the next section.

5The Floyd-Steinberg test case is described in Section 5.1.
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Table 4.3: Chunk sizes given by the synchronized–only and synchronized–weighted algorithms for the
Floyd-Steinberg loop, index space size |J | = 10000 ×10000 points and m = 4 slaves

Chunk sizes with S-A Chunk sizes with SW-A Par. time Par. time
A with respect to the with respect to the for S-A for SW-A

processors’ request order processors’ request order

1250(P1) 1250(P3) 1250(P2) 1250(P1) 1250(P3) 500(P2)
CSS 1250(P4) 1250(P1) 1250(P3) 500(P4) 1250(P1) 1250(P3) 27.335s 16.582s

1250(P2) 1250(P4) 500(P2) 500(P4) 1250(P1)
1250(P3) 500(P2)

1250(P1) 1250(P3) 1250(P2) 1250(P1) 1250(P3) 500(P2)
1250(P4) 625(P1) 625(P3) 500(P4) 812(P1) 812(P3)
625(P2) 625(P4) 390(P1) 324(P2) 324(P4) 630(P1)

FSS 390(P3) 390(P2) 390(P4) 630(P3) 252(P2) 252(P4) 27.667s 16.556s
244(P1) 244(P3) 244(P2) 488(P1) 488(P3) 195(P2)
208(P4) 195(P4) 378(P1) 378(P3)

151(P2) 151(P4) 40(P1)
2500(P1) 1875(P3) 1406(P2) 2500(P1) 1875(P3) 562(P2)
1054(P4) 791(P1) 593(P3) 506(P4) 1139(P1) 854(P3)
445(P2) 334(P4) 250(P1) 256(P2) 230(P4) 519(P1)

GSS 188(P3) 141(P2) 105(P4) 389(P3) 116(P2) 105(P4) 28.526s 18.569s
80(P1) 80(P3) 80(P2) 237(P1) 178(P3) 80(P2)
78(P4) 80(P4) 108(P1) 81(P3)

80(P2) 80(P4) 25(P1)
1250(P1) 1172(P2) 1094(P3) 509(P2) 1217(P1) 464(P4)
1016(P4) 938(P1) 860(P2) 1105(P3) 420(P2) 995(P1)
782(P3) 704(P4) 626(P1) 376(P4) 885(P3) 332(P2)

TSS 548(P2) 470(P3) 392(P4) 775(P1) 288(P4) 665(P3) 25.587s 14.309s
148(P1) 244(P2) 555(P1) 200(P4)

445(P3) 156(P2) 335(P1)
34(P4)
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4.5 Finding the Optimal Inter-Processor Synchronization Fre-

quency

In this section we study the problem of finding the optimal synchronization frequency. We
propose a theoretical model that estimates the parallel time of tasks in DOACROSS loops on
heterogeneous systems. We show that the minimum parallel time is obtained theoretically
with a synchronization frequency that minimizes the function giving the parallel time.

We describe next the communication and computation cost models we used to estimate
the parallel time in a distributed (heterogeneous) system.

4.5.1 Communication Cost Model

We use a linear model for estimating the communication cost between workers. The cost
of communicating a message between two workers is assumed to be the sum of two factors:
the start-up cost cd, representing the time to send a zero-length message including the hard-
ware/software overhead of sending the message, and the transmission cost of the message.
The transmission cost varies according to the size and type of data. The transmitted data
can be of different type, e.g., float, double or any other user-defined type. The transmitted
message consists of β rows of h data elements each. In this paper we assume that the de-
pendencies create one row messages, that is β = 1. The transmission cost per unit and type
of data is denoted cc. For simplicity of explanation, we assume that the cost ts of sending a
message is equal to the cost tr of receiving a message, as we explain in Chapter 5, Section
5.3.5. This is a simple but realistic assumption, since in most cases the send and receive
operations are executed in pairs between communicating workers. Therefore, the cost tr or
ts of communicating a message of size h data units, of data is:

tr = ts = cd + hcc (4.3)

where cd is the start-up cost and cc is the network throughput, defined as 1
sustained bandwidth

,
where sustained bandwidth is the ratio of the amount of data sent over the actual time
measured at the application level.

4.5.2 Computation Cost Model

We define the computation cost as a linear function of the computation cost per iteration times
the number of iterations. The computation cost per iteration is application- and processor-
dependent. In this work we consider DOACROSS loops with regular loop bodies. The
computation time per iteration, cp, differs from processor to processor in heterogeneous sys-
tems, as is shown later in the paper (see Chapter 5, Section 5.3.5). Hence, the computation
cost of a subchunk (i.e., the number of iterations between two successive synchronization
points), is:

tp = hVicp (4.4)

4.5.3 Optimal Inter-Processor Synchronization Frequency for CSS and W-
CSS

A few methods that focused on determining the optimal partitioning (tile size, block size,
grain size) of DOACROSS nested loops were described in Section 1.2. The theoretical model
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Figure 4.17: Partitioning a 2D loop into chunks and placement of synchronization points (P = N)

described in this section is one of the first attempts to determine the optimal synchronization
frequency for DOACROSS loops on heterogeneous systems. It appeared in [CRA+07a] and
its extended version [CRA+07b] is currently under review.

To find the optimal synchronization frequency, we first build a theoretical model for
predicting the minimum parallel time for the simpler case of homogeneous dedicated systems.
For the CSS algorithm with synchronization points [CAR+06] [CRA+08] we show that the
minimum actual parallel time for homogeneous systems is achieved with a synchronization
interval that is within +0.0750% from the theoretical optimal interval. Next, we build a
theoretical model for heterogeneous dedicated systems, in which workers have different speeds.
Again using the CSS algorithm, we show that the minimum actual parallel time for the
particular heterogeneous system is achieved for a synchronization interval within +0.1750%
of the theoretical optimal interval. For the experiments on the heterogeneous clusters, we
use the weighting mechanism presented earlier (see 4.4.4) and apply it to the CSS algorithm
such that the chunk assigned to a worker is weighted according to its computational power.

Fig. 4.17 depicts Uc, Us, h, SPj and Vi, for i = 1, . . . , 4. In this work we assume a
master-worker model with P workers, which are assigned the iterations to execute by the
master. Fig. 4.18 depicts the parallel execution with one master and four workers. Workers
are considered to be homogeneous and each worker is assigned one chunk.

We investigate next the impact of the synchronization interval h on the parallel execution
time. We construct a mathematical model that estimates the parallel time, both for homo-
geneous and heterogeneous systems (which are dedicated to our application), as a function
of the synchronization interval. The proposed model is valid if the following two reasonable
premises are satisfied:

(1) The time to compute a subchunk is the same in all cases and for all worker types. This
is a reasonable assumption because the size of the subchunk can be adjusted according
to the computational power of a worker.
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Figure 4.18: Parallel execution on a homogeneous system with P = N

(2) The communication time (sending and/or receiving data) for every subchunk is the
same.

The special case when P > N is not investigated, since it can be reduced to the case
when P = N by dropping the extra processors. Thus we have two cases: P = N and P < N
to be studied and analyzed next.

I. Parallel Time Estimation for Homogeneous Systems

The case of homogeneous systems is presented in order to facilitate the understanding of the
heterogeneous systems case (analyzed in Section 4.5.3).
Case P = N : This is the special case when there are as many processors available as the
chunks of tasks, so that each processor is assigned exactly one chunk. Note that this is
different from the case where there are as many processors available as tasks to be executed
(i.e., fine grain parallelism). Fig. 4.17 illustrates a small scale index space partitioned into
four chunks (horizontal segments) assigned to four workers. Ten synchronization points are
inserted in each chunk. The parallelization strategy for this case is given in Fig. 4.18.

All four workers start by requesting work from the master. The master receives the first
request, from P1, it calculates the size of the first executable chunk and then it assigns it
to P1. The master continues to serve the other incoming work requests in the same fashion.
On the workers’ side, P1 begins computing its assigned chunk. Due to the dependencies P2

can start receiving and computing its assigned chunk only after P1 has computed its first
subchunk and sent the necessary data to P2. This takes place at the first synchronization
point SP1. Similarly, P3 can begin computations only after P2 has sent the initially required
data, again at the first synchronization point, but at a later time. This is the idle time tidle

shown in Fig. 4.18 by the horizontal white strip. The same holds for P4, except for the
sending part. P4 does not need to send any data since it is the last worker. However, it must
wait for P3 to send the necessary data, thus introducing an expected idle time, as depicted
in Fig. 4.18 by the white small boxes between computing and receiving.

Since Vi and cp are the same for all four processors, it follows that the time needed
to compute the iterations in a subchunk tp = hVicp, is the same for all processors. The
communication between two workers at the subchunk level consists of two parts: the sending
part and the receiving part. The send operation takes ts = cd + hcc, and is equal to the
receive operation, according to our communication model.

For the case when P = N , the total number of chunks is P and the size of each chunk
is Vi = Uc/P . The theoretical parallel time for this situation, denoted TP , is the completion
time of the last subchunk of the problem (in our example this is the last subchunk of P4).
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This can be estimated as the completion time of the highlighted subchunks in Fig. 4.17.
We must clarify that for every chunk, except for the first and last chunk, a worker has to
receive, compute and send data. For the first chunk however a worker needs only to compute
and send data. Therefore, the time to compute each subchunk and send the necessary data
to the next worker is: tp + ts. Likewise, for the last chunk a worker needs only to receive
and compute data, i.e., the time required to received the necessary data and compute every
subchunk is tr + tp. The time needed for the first subchunk of the chunks 2, 3, . . . , P − 1 is:
(P − 2)(tr + tp + ts), where P can be written as P = Uc

Vi
, since P = N (see Fig. 4.17).

Proposition 4.5.1 The time required to compute the last chunk is the product of the time
to compute any one of its subchunks, i.e., tr + tp, multiplied by the number of subchunks, i.e.,
Us

h
, including the expected total idle time spent on waiting for the required data to be sent

from the previous worker, i.e., (Us

h
− 1)tidle. We assume tidle is approximately equal to ts, as

illustrated in Fig. 4.18.

It is easy to see that this claim holds since, due to the dependencies, workers cannot
work in parallel. A worker starts computing only after it receives the partial data from the
previous worker. Therefore, the total parallel time is the completion time of the worker that
computes the last chunk (and subchunk) of the problem.

Since we use the master-worker model, the work assignment time is Twa = tr + csch + ts,
where tr is the transmission time needed for the work request to reach the master and ts is
the time needed for the master’s reply to reach the worker; csch is the time needed for the
master to compute the next executable chunk size, called scheduling overhead. Therefore, the
total parallel time in this case is:

TP = (tp + ts) + (
Uc

Vi

− 2)(tr + tp + ts) +
Us

h
(tr + tp) + (

Us

h
− 1)tidle + Twa (4.5)

Note that Twa is taken only once because the work assignment time for every chunk is
overlapped with the worker’s computation or communication operations, except for the first
chunk of the problem.

Fig. 4.18 gives a timing diagram which clarifies formula (3). Using the above formula
in conjunction with formulas (1) and (2), one can determine the theoretically optimal value
of h for which TP is minimized. This is done by differentiating TP with respect to h, which
yields:

hP =

√
2cdUs

(Uc − Vi)cp + (2Uc

Vi
− 4)cc

(4.6)

Case P < N : In this case there are more chunks of tasks than the available processors
and each processor is assigned more than one chunk. Fig. 4.19 depicts such a situation,
in which there are four workers and 12 chunks, and every worker is assigned three chunks.
For simplicity, in this analysis we assume that all workers are assigned the same number of
chunks.

We address this case by assuming that a problem of size Uc × Us with P < N processors
can be decomposed into k subproblems of size U⋆

c × Us, where Uc
⋆ = Uc

k
, and Vi = Uc

⋆

P
,

with P = N/k processors. These subproblems are inter-dependent in the sense that part
of the data produced by one subproblem are consumed by the next subproblem. Therefore,
the computation of a subproblem cannot start until the previous subproblem is completed.
Upon completion, the processor assigned the last chunk of the previous subproblem transmits
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Figure 4.19: Parallel execution on a homogeneous system with P < N , k=3

(in a single message) all necessary data to the processor assigned the first chunk of the
next subproblem. The time to complete this data transfer is called Ttr and is given by
Ttr = 2(cd + Uscc); it designates the time to send and receive a data packet of size equal to
the size of the scheduling dimension.

Fig. 4.19 illustrates a problem when P < N problem, which is divided into 3 subproblems
with P = N/3 and the resulting flow of parallel execution. The same set of processors is used
for each subproblem.

In the general case, assuming k subproblems, the parallel time for the completion of
the first subproblem is T ⋆

P , which is the time required to compute a subproblem of size
Uc

⋆ × Us. The parallel time for the completion of every subsequent subproblem is T ⋆
P − Twa

because the work assignment time for every chunk is overlapped with other communication
or communication operations, except for the chunks of the first subproblem. Finally, the time
to transfer the necessary data between all the successive subproblems is (k − 1)Ttr.

Proposition 4.5.2 The total parallel time for the case when P < N , denoted TN , is:

TN = kT ⋆
P + (k − 1)Ttr − (k − 1)Twa (4.7)

It is easy to see that this claim holds because, due to the dependencies, the execution of
each subproblem can only start after it receives the partial data from the previous subproblem.
Therefore, the total parallel time is the completion time of the subproblem that contains the
last chunk of the original problem, plus the time required for the transfer of partial results
from one subproblem to the next.

As in the previous case, one can determine the theoretical optimal value of h for which
TN is minimized by differentiating TN with respect to h. Hence,

(TN )′ = k(TP )′ + ((k − 1)Ttr)
′ + ((k − 1)Twa)

′ (4.8)
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where T ′
tr = 0 and T ′

wa = 0. This yields:

hN =

√
2cdUs

(Uc
⋆ − Vi)cp + (2Uc

⋆

Vi
− 4)cc

(4.9)

II. Parallel Time Estimation for Heterogeneous Systems

To describe our theoretical model for a dedicated heterogeneous system, we use the notations
of the previous section and the following additional notations:

• α1, . . . , αξ – the worker types of the heterogeneous system.

• NPαj ≥ 1 – the # processors of type αj , j = 1, . . . , ξ.

• V Pαj – the virtual computing power6 of a worker of type αj .

• V
αj

i – the size of the projection of chunk i on uc, assigned to processor of type αj and
weighted according to its virtual power.

• c
αj
p – the computation time per iteration on a worker of type αj.

• t
αj
p – the computation time of hV

αj

i iterations on a worker of type αj .

In order to derive a formula for the theoretical parallel time on a heterogeneous system,
we follow the homogeneous case approach and devise first a formula for the case when P = N ,
which we use to infer the formula for the case P < N . We assume that workers are assigned
work in decreasing order of their computational power. This means that the last chunk
is assigned to the slowest worker. In order to satisfy the first premise, i.e., the time to
compute a subchunk is the same in all cases and for all worker types, the size of the chunk
must be weighted according to the computational power of each worker type. We assume
that workers are grouped according to their type, and that the group of workers having the
greatest computational power per worker, gets assigned work first.

Case P = N : As with the homogeneous P = N case, the parallel time is given by the
completion time of the last subchunk of the problem. The completion time of the first
subchunk assigned to the last worker is the total time required for the completion of the first
subchunk of all previous chunks. In this scheme all workers are grouped according to their
type and are assigned only one chunk, so, we can compute the total time for the completion of
the first subchunks in each group. For all workers of type αj , the total time for the completion
of all corresponding first subchunks is Pαj (tr + t

αj
p + ts). Therefore, the total time for all

worker types is given by
∑ξ

j=1(P
αj )(tr + t

αj
p + ts). From this sum we subtract tr since there

is no receive operation for the first subchunk of the problem, and ts since there is no send
operation for the last subchunk of the problem.

The time required for the computation of the remaining subchunks of the last chunk is
(Us

h
− 1)(tr + t

αξ
p + tidle) and it corresponds to a worker of type αξ which is the slowest type

of workers of the heterogeneous systems.

Reasoning as in Proposition 4.5.2, we can prove the following Proposition:

6The virtual power for each machine type can be established as the normalized execution time of the same
test program on each machine type.
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Proposition 4.5.3 The theoretical parallel time on a heterogeneous system when P = N is:

TP =

ξ∑

j=1

(Pαj )(tr + t
αj
p + ts) − tr − ts + (

Us

h
− 1)(tr + t

αξ
p + tidle) + Twa (4.10)

Differentiating TP with respect to h to determine the optimal h we obtain:

hP =

√
2cdUs∑ξ

j=1(NPαj )(V
αj

i c
αj
p + 2cc) − V

αξ

i c
αξ
p − 4cc

(4.11)

Case P < N : In this case there are more chunks of tasks than the available processors and
each processor is assigned more than one chunk. Chunks are again weighted according to the
virtual power of a node.

Proposition 4.5.4 The theoretical parallel time for the heterogenous case when P < N is
obtained similarly to the theoretical parallel time of the homogeneous case when P < N :

TN = kT ⋆
P + (k − 1)Ttr − (k − 1)Twa (4.12)

where, T ⋆
P is the parallel time of the heterogeneous case when P = N for a subproblem of size

U⋆
c × Us, where U⋆

c = Uc

k
, and Ttr = 2(cd + Uscc).

The proof is the same with that of Proposition 4.5.2.
As in the previous case, one can determine the theoretical optimal value of h for which

TN is minimized by differentiating TN with respect to h. Hence,

(TN )′ = k(TP )′ + ((k − 1)Ttr)
′ + ((k − 1)Twa)

′ (4.13)

Taking into account that T ′
tr = 0 and T ′

wa = 0, we derive the optimal h:

hN =

√
2cdUs∑ξ

j=1(P
αj )(V

αj

i c
αj
p + 2cc) − V

αξ

i c
αξ
p − 4cc

(4.14)

Formula (4.14) is similar to formula (4.11), only now the values of V
αj

i are different
because each worker is assigned more than one chunk.



CHAPTER5
Implementation and Experimental
Validation

5.1 Test Cases

To validate the usefulness of the various proposed algorithms, we experimented with several
case studies. They are described below, along with their pseudocodes.

5.1.1 Mandelbrot Set

The Mandelbrot set generator [Man88] is a type of fractal model generator. Fractal models
are used in many supercomputing applications. They are useful for predicting systems that
demonstrate chaotic behavior. The Mandelbrot set is obtained from the quadratic recurrence
equation zn+1 = z2

n + C, with z0 = C, where points C in the complex plane for which the
orbit of zn does not tend to infinity are in the set. Setting z0 equal to any point in the set
gives the same result. The Mandelbrot set was originally called a µ molecule by Mandelbrot
[Man88]. This application is a real life example that has no loop iteration dependencies
(i.e., is a DOALL nested loop) but was considered herein because the loop iterations tasks
are highly irregular in size. The pseudocode of the Mandelbrot fractal computation is given
below:

/* Mandelbrot set */

for (hy=1; hy<=hyres; hy++) { /* scheduling dimension */

for (hx=1; hx<=hxres; hx++) {

cx = (((float)hx)/((float)hxres)-0.5)/magnify*3.0-0.7;

cy = (((float)hy)/((float)hyres)-0.5)/magnify*3.0;

x = 0.0; y = 0.0;

for (iteration=1; iteration<itermax; iteration++) {

xx = x*x-y*y+cx;

y = 2.0*x*y+cy;

x = xx;

if (x*x+y*y>100.0) iteration = 999999;

}

if (iteration<99999) color(0,255,255);
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else color(180,0,0);

}

}

5.1.2 Full Search Block Matching Motion Estimation

Block motion estimation in video coding standards such as MPEG-1, 2, 4 and H.261 is
perhaps one of the most computation-intensive multimedia operations. Hence is also the
most implemented algorithm. The block matching algorithm is an essential element in video
compression to remove the temporal redundancy among adjacent frames. The motion com-
pensated frame is reconstructed from motion estimated blocks of pixels. Every pixel in each
block is assumed to displace with the same 2D displacement called motion vector, obtained
with the Block ME algorithm.

The Full-Search-Block-Matching Motion-Estimation Algorithm (FSBM ME) [YH95] is a
block matching method, for which every pixel in the search area is tested in order to find the
best matching block. Therefore, this algorithm offers the best match, at an extremely high
computation cost. Assuming a current video frame is divided into Nh × Nv blocks in the
horizontal and vertical directions, respectively, with each block containing N ×N pixels, the
most popular similarity criterion is the mean absolute distortion (MAD), defined as:

MAD(m,n) =
1

N2

N−1∑

i=0

N−1∑

j=0

|x(i, j) − y(i + m, j + n)| (5.1)

where x(i, j) and y(i+m, j+n) are the pixels of the current and previous frames. The motion
vector (MV) corresponding to the minimum MAD within the search area is given by:

MV = arg{minMAD(m,n)},−p ≤ m,n ≤ p, (5.2)

where p is the search range parameter. The algorithm focuses on the situation where the
search area is a region in the reference frame consisting of (2p + 1)2 pixels. In FSBM, MAD
differences between the current block and all (2p + 1)2 candidate blocks are to be computed.
The displacement that yields the minimum MAD among these (2p + 1)2 positions is chosen
as the motion vector corresponding to the present block. For the entire video frame, this
highly regular FSBM can be described as a six-level nested loop algorithm, as shown in the
pseudocode below:

/* FSBM ME */

for (h=0; h<=Nh; h++) {

for (v=0; v<=Nv; v++) {

MV[h][v] = {0,0};

Dmin[h][v] = maxint;

for (m=0; m<=2*p; m++) {

for (n=0; n<=2*p; n++) {

MAD[m][n]=0;

for (i=h*N; i<=h*N+N; i++) {

for (j=v*N; j<=v*N+N; j++) {

MAD[m][n] += fabsf(x[i][j] - y[i+m][j+n]);
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} // end j

} // end i

if (Dmin[m][n] > MAD[m][n]) {

Dmin[m][n] = MAD[m][n];

MV[h][v] = {m,n};

} // end if

} // end n

} // end m

} // end v

} // end h

Note that the loop body itself contains nested DOACROSS loops. However it has no
dependencies with respect to the two outer loops and the entire loop body is executed se-
quentially. This means that the dependencies inside the loop body are satisfied. This is
acceptable because our tool is designed to handle such complex loop bodies. Moreover, it
is desirable to have such computationally intensive loop bodies, in order to maximize the
performance gain of the parallel program.

5.1.3 Heat Conduction

The heat conduction computation is one of the most widely used case studies in the literature,
and its loop body is similar to the majority of the numerical methods used for solving partial
differential equations. It computes the temperature in each point of a grid, based on two
values of the current time step (A[i-1][j], A[i][j-1]) and two values from the previous
time step (A’[i+1][j], A’[i][j+1]), over a number of loop time steps. The pseudocode
is given below:

/* Heat Conduction */

for (l=1; l<loop; l++) {

for (i=1; i<width; i++){ /* synchronization dimension */

for (j=1; j<height; j++){ /* scheduling dimension */

A[i][j] = 1/4*(A[i-1][j] + A[i][j-1]

+ A’[i+1][j] + A’[i][j+1]);

}

}

}

5.1.4 Hydrodynamics

Hydro is a modified version of the Livermore kernel 23 (Implicit Hydrodynamics fragment)
[McM86], widely used in hydrodynamics. It is a 3-dimensional DOACROSS loop, which we
modified in order to explicitly show the 3-dimensional dependencies among iterations for the
array za. The pseudocode is given below:

/* hydro */

for (l=1; l<=loop; l++) { /* synchronization dimension */

for (j=1; j<5; j++) {

for (k=1; k<n; k++){ /* scheduling dimension */
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qa = za[l-1][j+1][k]*zr[j][k] + za[l][j-1][k]*zb[j][k] +

za[l-1][j][k+1]*zu[j][k] + za[l][j][k-1]*zv[j][k] +

zz[j][k];

za[l][j][k] += 0.175 * (qa - za[l][j][k] );

}

}

}

5.1.5 Floyd-Steinberg Dithering

The Floyd-Steinberg computation [FS76] is an image processing algorithm used for the error-
diffusion dithering of a width by height grayscale image. The boundary conditions are
ignored. The pseudocode is given below:

/* Floyd-Steinberg */

for (i=1; i<width; i++){ /* synchronization dimension */

for (j=1; j<height; j++){ /* scheduling dimension */

I[i][j] = trunc(J[i][j]) + 0.5;

err = J[i][j] - I[i][j]*255;

J[i-1][j] += err*(7/16);

J[i-1][j-1] += err*(3/16);

J[i][j-1] += err*(5/16);

J[i-1][j+1] += err*(1/16);

}

}

5.1.6 Transitive Closure

Transitive closure is used to find if any two vertices in a graph are connected. Formally, if
G = (V,E) is a graph, then the transitive closure of G is defined as the graph G∗ = (V,E∗),
where E∗ = {(i, j)| there is a path from i to j in G}. The transitive closure of a graph is
determined by computing the connectivity matrix P ; P [i][j] = 1 if there is a path from i to
j, and 0 otherwise. Matrix P can be obtained using Warshall’s algorithm given below. In
this algorithm A is the adjacency matrix of G, that is A[i][j] = 1 iff (i, j) ∈ E.

/* Transitive Closure */

for (i=0; i<N; i++){

for (j=0; j<N; j++){

/* There is a path if there is an edge */

P[i][j] = A[i][j];

} // end j

} // end i

for (k=0; k<N; k++){

for (i=0; i<N; i++){

for (j=0; j<N; j++){

if (!P[i][j])

P[i][j] = P[i][k] && P[k][j];

} // end j
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} // end i

} // end k

5.1.7 Artificial Code

The artificial code is a 2-dimensional nested loop with a general loop body (which includes a
third loop). It has five 2-dimensional dependence vectors, given by the two outer loops.

/* Artificial Code */

for (i=0; i<N1; i++){

for (j=0; j<N2; j++){

A[i][j] = 2*A[i-1][j-8]+A[i-8][j-1]+3*B[i-2[j-5];

B[i][j] = 0;

for (k=0; k<j; k++){

B[i][j] += C[i][k]*C[i][j];

} // end k

B[i][j] += B[i-3][j-3]+B[i-6][j-2];

} // end j

} // end i

5.2 Static Methods

In this section we describe the experimental evaluation and validation of the static methods
described in Chapter 3. The first evaluated algorithm is BSDA (Binary Scheduling Decision
Algorithm), the second one is DA (Decision Algorithm) and the last one is CPS (Chain
Pattern Scheduling). ACS (Adaptive Cyclic Scheduling) was not implemented and evaluated.

5.2.1 Evaluation of BSDA

We developed a tool, called BSDA-Tool, that generates random UDLs and then determines
the optimal schedules. We ran experiments with 2D, 3D, 4D and 5D random UDLs, with the
number of dependence vectors ranging from 3-6 and 7-10. The results given in Table 5.1 and
Fig. 5.2.1, show the percentage of UDLs that have OP = LB, the percentage that have OP
within 10% of the LB, etc.

While generating random UDLs, a special subclass of UDLs was identified: the scaled
grids (SGRIDs). It includes those UDLs of which the dependence vectors reside on the
axes and the value of the non-zero coordinate is an arbitrary positive integer, i.e., these
dependence vectors are non-unitary. We observed that SGRIDs always require UB processors
for an optimal schedule, if the size of the index space in each dimension is divisible with the
corresponding coordinate of the dependence vector of this dimension. This means that the
size of the index space in a certain dimension is a multiple of the size of the dependence vector
residing on that axe. In order to produce the optimal schedule, the DA algorithm must be
used.

The statistical analysis of the experimental results lead us to the following conclusions:

(1) UB processors must be used for SGRIDs.

(2) The vast majority of UDLs (55% to more than 80%, in some cases), needs an OP within
10% of the LB.
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Table 5.1: Execution evaluation for 2D, 3D, 4D, 5D UDLs and the percentage of binary searching for
OP between LB and UB

dim.# dep.# LB 1-10 % 10-50 % 50-99 % UB

2 3-6 63.1% 9.2% 19.5% 6.9% 1.2%
dim. 7-10 46.1% 7.9% 26.1% 17.1% 2.9%

3 3-6 71.9% 6.3% 10.6% 8.8% 2.4%
dim. 7-10 64.4% 10.3% 16.1% 7.3% 1.9%

4 3-6 75.3% 6.6% 8.7% 7.4% 2.0%
dim. 7-10 65.6% 12.4% 13.9% 6.1% 1.9%

5 3-6 77.2% 7.6% 6.6% 6.9% 1.7%
dim. 7-10 68.3% 7.9% 15.2% 6.5% 2.1%

Figure 5.1: Test results of scheduling 2D, 3D, 4D, 5D UDLs with OP ∈ [LB, UB]

5.2.2 Evaluation of DA

In order to verify that all UDLs can achieve the proposed dynamic lower bound, LB =
max{LB1, LB2, LB3}, we use the DA described in Section 3.2.2. The BSDA-Tool is used to
generate random UDLs. The goal is to determine if an optimal schedule can be found for each
UDL using the candidate number of processors. We experimented with 2D, 3D, 4D and 5D
random UDLs. In each case, we compare the results obtained using LB = max{LB1, LB2}
with the one obtained using LB = max{LB1, LB2, LB3}. The results given in Fig. 5.2.2–
5.2.2, show the percentage of UDLs that have OP = LB, the percentage that have OP within
10% of the LB, etc.

The results indicate that all UDLs are scheduled using LB = max{LB1, LB2, LB3}
processors, in comparison with the results before introducing LB3. The statistical analysis of
the experimental results lead us to the conclusion that we can schedule every random UDL
using the proposed lower bound. This means we can know a priori the number of processors



5.2.2 Evaluation of DA 91

Figure 5.2: Test results of scheduling 2D UDLs: left - without the LB3, right - with the LB3

Figure 5.3: Test results of scheduling 3D UDLs: left - without the LB3, right - with the LB3

Figure 5.4: Test results of scheduling 4D UDLs: left - without the LB3, right - with the LB3

needed for the optimal schedule and we can start building the schedule using the appropriate
lower bound, hence reducing the hardware cost. Also, we conclude that for SGRIDs, UB
actually coincides with LB3. Moreover, if the size of the index space in each dimension of an
SGRID UDL is divisible with the corresponding coordinate then every index point is crucial
and LB2 = UB.
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Figure 5.5: Test results of scheduling 5D UDLs: left - without the LB3, right - with the LB3

5.2.3 Evaluation of CPS

To validate the methodology proposed in Section 3.4.2, a program written in C++, which
emulates the distributed-memory systems model, was used. This program implements both
the cyclic scheduling method [MA01], and the chain pattern scheduling. We experimented
with index spaces ranging from 10 × 10 to 1000 × 1000 index points. For all index spaces,
the four dependence vectors of the loop nest given in Fig. 3.7 and the communication vector
(2,2) were considered. Fig. 5.6–5.9 give the simulation results when NP ranges from 5 to 8
processors. Note that in every case, and for all index space sizes, the chain pattern mapping
performs better than the classic cyclic mapping. In particular, the communication reduction
achieved with the chain pattern mapping ranges from 15% - 35%.

Figure 5.6: Experimental results, CPS vs cyclic, on NP = 5

The conclusions that can be drawn regarding CPS are outlined below:

• The total communication cost can be significantly reduced if the communication in-
curred by certain dependence vectors is eliminated

• The chain pattern mapping outperforms other mapping schemes (cyclic mapping) by
enhancing the data locality
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Figure 5.7: Experimental results, CPS vs cyclic, on NP = 6

Figure 5.8: Experimental results, CPS vs cyclic, on NP = 7

Figure 5.9: Experimental results, CPS vs cyclic, on NP = 8

5.3 Dynamic Methods

In this section we describe the experimental evaluation and validation of all dynamic meth-
ods described in Chapter 4. We first describe the parallel code generation tool devised for
SGRIDS, then the automatic code generation tool, Cronus, devised for general loops (GLs).
Next, we describe ...
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5.3.1 Evaluation of the Automatic Code Generation Tool for Scaled Grids

Recall that the automatic code generation tool performs the following tasks:

Input: The sequential C code, P and the target system (shared-memory or distributed-memory)

Extracts: n, |J |, m, SpecPat, s

Performs: transforms J into Jaux; forms processor groups with ranks ranging 1, . . . , ⌊ P
m
⌋

Outputs: The near-optimal equivalent parallel C+MPI code

The tool was implemented in C with MPI primitives for the parallel execution and data
exchange. The resulting MPI code uses point-to-point communication and standard blocking
send and receive MPI operations, meaning that a send or receive operation blocks the cur-
rent process until resources used for the operation can be reutilized. The experiments were
performed on a cluster with 16 identical 500MHz Pentium nodes. Each node has 256MB of
RAM and 10GB hard drive and runs Linux with 2.4.20 kernel version. MPICH was used to
run the experiments FastEthernet.

We evaluated the performance of the tool by means of randomly generated SGRID UDLs,
described in Table 5.2. The speedup of the generated parallel code over the sequential program
was measured. It is expected that the tool schedules and achieves speedups that scale with
the number of available hardware resources. As validated by the experimental results (Figure
5.3.1), the proposed methodology obtained near optimal results for seven reasonably sized
randomly generated applications, given in Table 5.2. The tool adapts well to shared memory
systems by simply replacing the MPI communication routines with read and write calls from
and to the shared memory of the multicomputer system.

Table 5.2: SGRID examples used to test the automatic code generation tool

Test # # of Size of index Dependencies
dim, n space |J |

1 2 400 points d1 = (0, 2), d2 = (1, 0) and d3 = (1, 2)
2 2 600 points d1 = (0, 1), d2 = (1, 0) and d3 = (1, 1)
3 2 1024 points d1 = (0, 4), d2 = (2, 0) and d3 = (4, 2)
4 3 1000 points d1 = (0, 0, 2), d2 = (0, 2, 0), d3 = (2, 0, 0) and d4 = (2, 2, 2)
5 3 2744 points d1 = (0, 0, 2), d2 = (0, 2, 0), d3 = (1, 0, 0) and d4 = (1, 2, 2)
6 3 2744 points d1 = (0, 0, 2), d2 = (0, 1, 0), d3 = (1, 0, 0) and d4 = (1, 1, 2)
7 3 3375 points d1 = (0, 0, 1), d2 = (0, 1, 0), d3 = (1, 0, 0) and d4 = (1, 1, 1)

The experimental results proved to be very close to the ideal speedup. However, by using
standard blocking send/receive communication primitives, the tool introduces a communica-
tion overhead which can slightly reduce the speedup when the number of utilized processors
exceeds an optimal threshold, i.e., when the communication to computation ratio becomes
higher than one. On the other hand, the choice of using blocking communication primitives
brings the advantage of accuracy regarding the appropriate data exchanged between pro-
cessors at execution, and the experimental results proved to be near optimal even in this
case.
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Figure 5.10: Speedup results for 7 testing examples
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5.3.2 Evaluation of Cronus for General Loops

Cronus was coded in C, except for the code generator written in Perl. The parallel code pro-
duced by Cronus uses point-to-point, synchronous send and receive MPI calls when required.
The experiments were conducted on a cluster with 16 identical 500MHz Pentium III nodes.
Each node has 256MB of RAM and 10GB hard drive and runs Linux with 2.4.23 kernel ver-
sion. MPI (MPICH) was used to run the experiments over the FastEthernet interconnection
network.

The experiments were conducted on (a) an SGI ORIGIN 2000 shared memory system,
running IRIX 6.5, with 16 R10000 processors, total memory 4GB RAM, and 300 GB hard
drives connected through raid 5 CXFS system; and (b) on a cluster with 16 identical 500MHz
Pentium III nodes, each node having 256MB RAM and 10 GB hard drive and runs Linux
with 2.4.23 kernel version. MPI (MPICH) was used to run the experiments on the shared
memory system (a) and over the FastEthernet interconnection network of the cluster (b).

The MPI standard was chosen for the inter-processor communication due to the fact that
it is widely portable. Also, the MPI implementation used on the shared memory system is
a shared memory optimized implementation that supports the MPI 1.2 standard, as docu-
mented by the MPI Forum [For02]. In addition, certain MPI-2 features are also supported.
On this system, MPI uses the first interconnect it can detect and configure correctly. By de-
fault, if MPI is run across multiple hosts, or if multiple binaries are specified on the mpirun

command, the software searches for interconnects in the following order (on IRIX systems):
XPMEM, GSN, MYRINET, TCP/IP. There is only one interconnect configured for the en-
tire MPI job, with the exception of XPMEM. If XPMEM is found on some hosts, but not
on others, one additional interconnect is selected. However, this was not the case in our
examples as the MPI had access only to a single 16-CPU host, so all communication utilized
shared memory buffers.

The parallel execution time is the sum of communication time, computation time
and idle time (time spend by a processor waiting for data to become available or points to
become eligible for execution). The computation time is the run time of the algorithm itself,
whereas the communication time contains both the time of the actual communication between
processors as well as the additional time needed by the dynamic scheduling algorithm. This
additional time is a known overhead of every dynamic scheduling technique so we need to
keep it to a minimum. We have measured it in our test cases in order to get the percentage
of this time over the full communication time. We found this to vary according to the
example in question, but in all cases it was between 7% to 30% of the total (measured)
communication time. Specifically, for case study I (Floyd-Steinberg) this was between 15%-
25%, for case study II (Transitive Closure) around 7%-9% and for case study III (artificial
snippet) around 20%-30%. We believe these values are acceptable since we employ a dynamic
decentralized fine grain scheduling algorithm. We have not measured this overhead for case
study IV (FSBM) because in this case the absence of dependencies results in a negligible
overall communication percentage (see Fig. 5.18 for details).

The speedup, denoted Sn, is defined as the sequential execution time (T1) over the
parallel execution time (Tn): Sn = T1

Tn
. Figures 5.11, 5.13, 5.15 and 5.17 depict the obtained

speedup vs. the number of processors, both for the shared-memory system and for the
distributed-memory system described above. Note that the parallel time is the average of
tens of runs for each test case.
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I. Cronus vs. Berkeley UPC

Berkeley UPC is an open-source implementation of the language Unified Parallel C [LB].
Unified Parallel C (UPC) is an extension of the C programming language designed for high
performance computing on large-scale multiprocessors, PC clusters, and clusters of shared
memory systems. The programmer is presented with a single shared, partitioned address
space, where variables may be directly read and written by any processor, but each variable
is physically associated with a single processor. The UPC execution model is similar to that
used by the message passing style of programming (MPI or PVM). This model is called
Single Program Multiple Data (SPMD) and it is an explicitly parallel model in which the
amount of parallelism is fixed at program startup time. It works by translating UPC code
to equivalent C-only code that, in a way similar to Cronus, relies on a runtime library
for communication and data allocation primitives. The underlying communication library is
GASNet [Bon], which supports an extensive range of target architectures and communication
methods (MPI, native SMP, UPD over Ethernet etc.). Internally, communication in GASNet
is heavily based on the Active Messages Paradigm [vECGS92].

Clearly, Berkeley UPC is a more generic system than Cronus and its runtime library
is designed to handle a much broader range of problems. On the other hand Cronus’
runtime library has been optimized exclusively for general loops, which implies that it should
perform much better than a generic solution. For testing this hypothesis, we compared
the performance of Cronus’ generated program to the performance of a UPC-generated
equivalent for the same test cases on a distributed memory cluster of workstations. We used
the SDS scheduling algorithm for both programs, so in fact the parts of Cronus that deal
with SDS had to be ported to UPC. This was a purposeful decision, since what we wanted
to measure was how the two platforms perform in terms of communication and data locality
handling. We used the same cluster as for the other case studies. The results are shown in
Fig. 5.22.

II. Experiments and Results

In every experiment, both the shared-memory and the distributed memory systems were
dedicated. This means that no other load existed in the systems except for our own experi-
ment, and allowed us to achieve the best performance on these systems, using our platform.
Obviously, if there are other loads in the system, the results will not be as good as the ones
presented here.

In Fig. 5.11 we show the speedup with respect to the number of processors for the Floyd-
Steinberg case. One can see that the speedup of the parallel code ranges from 3.95 (out of the
ideal 4) to 15.70 (out of the ideal 16) in the shared-memory case and 1.18 (out of 4) to 4.21
(out of 16) in the distributed-memory case. In Fig. 5.11 (last chart) we compare the speedup
obtained on the shared-memory system with the one obtained on the distributed-memory
system, for a 2000 × 2000 index space. This confirms our prediction that Cronus performs
much better in shared-memory systems, when the application is communication-intensive.
This is depicted in Fig. 5.12 where one can see that the percentage of the parallel time used
for communication is much higher on a distributed system. In Fig. 5.19 we show how much
of the measured communication time from Fig. 5.12 is spent on real communication (i.e.,
MPI primitives) and how much is attributed to the scheduling overhead.

Fig. 5.13 gives the results for the Transitive Closure algorithm; the speedup of the parallel
program ranges from 3.40 (out of the ideal 4) to 13.74 (out of the ideal 16) in the shared-
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Figure 5.11: Speedup comparison for Floyd-Steinberg
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Figure 5.12: Communication vs. computation percentages for Floyd-Steinberg
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Figure 5.13: Speedup comparison for Transitive Closure
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Figure 5.14: Communication vs. computation percentages for Transitive Closure
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Figure 5.15: Speedup comparison for artificial code snippet
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Figure 5.16: Communication vs. computation percentages for artificial code snippet
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Figure 5.17: Speedup comparison for FSBM
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Figure 5.18: Communication vs. computation percentages for FSBM
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Figure 5.19: Real communication vs. scheduling overhead percentage for Floyd-Steinberg
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Figure 5.20: Real communication vs. scheduling overhead percentage for Transitive Closure
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Figure 5.21: Real communication vs. scheduling overhead percentage for artificial code snippet

memory system, and 1.64 (out of 4) to 8.70 (out of 16) in the distributed-memory system. As
before, the speedup obtained on the shared-memory system is plotted against the speedup
obtained on the distributed-memory system, for a 2000 × 2000 index space (Fig. 5.13, last
chart). Fig. 5.14 shows the communication and computation percentages of this example
on both systems. One can see that the improvement in communication percentage of the
shared-memory system over the distributed-memory system is not as obvious as in the Floyd-
Steinberg case. This is due to the nature of the problem, which is more computationally-
intensive. In Fig. 5.20 we show how much of the measured communication time from Fig.
5.14 is spent on real communication (i.e., MPI primitives) and how much is attributed to the
scheduling overhead.

Fig. 5.15 gives the results for the artificial code snippet; the speedup of the parallel
program ranges from 3.74 (out of the ideal 4) to 9.54 (out of the ideal 16) in the shared-
memory system, and 3.66 (out of 4) to 8.27 (out of 16) in the distributed-memory system. As
before, the speedup obtained on the shared-memory system is plotted against the speedup
obtained on the distributed-memory system, for a 2000 × 2000 index space (Fig. 5.15, last
chart). Fig. 5.16 shows the communication and computation percentages of this example on
both systems. One can see that the improvement in communication percentage of the shared-
memory system over the distributed-memory system is fairly obvious. This is due to the fact
that the artificial code snippet has more dependence vectors than the rest of the test cases,
and benefits more when executed on a shared-memory system. In Fig. 5.21 we show how
much of the measured communication time from Fig. 5.14 is spent on real communication
(i.e., MPI primitives) and how much is attributed to the scheduling overhead.

Fig. 5.17 depicts the speedup of the FSBM parallel code, which results in speedup of 3.92
(out of 4) to 15.79 (out of 16) in the shared-memory case, and 2.93 (out of 4) to 11.59 (out
of 16) in the distributed-memory case. Again, the results for the 2000 × 2000 index space
are compared (Fig. 5.17, last chart). One can see there is medium performance gain between
the shared- and distributed-memory systems for this particular test case. This is due to the
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Figure 5.22: Performance comparison of parallel codes generated by Cronus and UPC

fact that FSBM does not have any loop-carried dependencies. The difference in performance
is caused mainly by the characteristics of the system, and not only by the interconnection
network. This can be seen in Fig. 5.18.

Comparative results of Cronus vs. UPC for FS, TC and FSBM, respectively, are summa-
rized in Fig. 5.22. All test cases were tested on a distributed memory cluster of workstations.
We measured the improvement of Cronus over UPC according to the following formula:

TUPC − TCRONUS

TUPC
(5.3)

where TCRONUS and TUPC are the parallel times measured with Cronus and UPC, respec-
tively.

Fig. 5.22 gives the improvement percentage vs. the number of processors used. It is clear
that Cronus outperforms UPC in all test cases. This figure shows that a common pattern
emerges in every test case: as the number of processors increases, the improvement percentage
converges to a constant number. In particular, it converges to 90% for Floyd-Steinberg, to
50% for Transitive Closure and to 50% for FSBM.

III. Interpretation of the Results

For every test case we experimented with different index space sizes and different number of
processors. The results confirm our prediction that the shared-memory system outperforms
in all cases the distributed-memory systems (by a factor ranging from 6% to 60%). This
is justified by the fact that the communication overhead is minimized on shared-memory
systems. Another conclusion that can be drawn from the results is that the weight of the
problem’s loop body plays a major role in the performance of the parallel code, regardless of
the architecture. The superior performance of the FSBM parallel code is due to the fact that
it has the heaviest loop body of the three case studies, whereas the performance of the Floyd-
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Steinberg parallel code is the poorest of all three due to its very light loop body. Moreover,
the Floyd-Steinberg parallel code with UPC support performed much worse than the other
two test cases, which is again attributed to its light loop body and intensive communication.

Our philosophy is that simplicity and efficiency are the key factors for minimizing the
runtime of the parallel program. In our approach, the compilation time is kept to a minimum
because the index space is not traversed and the issue of what iteration to compute next is
solved at runtime. We decided to make this trade-off because the successor concept is very
simple and efficient, and it does not incur a large time penalty. This penalty is significantly
small when compared to the computationally intensive loop bodies we target.

The conclusions that can be drawn regarding dynamic scheduling are:

• Making scheduling decisions at run time for loops with dependencies is possible and
efficient

• Even with blocking send/receive communication primitives, the results are very close
to the ideal speedup

• Using blocking communication has the advantage of accuracy of the data exchanged

5.3.3 Evaluation of the DMPS(A) Scheme

DMPS(A) is implemented in C and relies on the distributed programming framework offered
by the mpich 1.2.6 implementation of the Message Passing Interface (MPI) [Pac97] for
exchanging messages.

We used a heterogeneous distributed system that consists of 10 computers, and selected
one of them as master. In particular, we used: (a) 4 Intel Pentiums III 1266MHz with 1GB
RAM (called ‘zealots’), assumed to have V Pk = 1.5 (one chosen to be master); and (b) 6 Intel
Pentiums III 500MHz with 512MB RAM (called ‘kids’), assumed to have V Pk = 0.5. The
virtual power for each machine type was determined as a ratio of processing times established
by timing a test program on each machine type. The machines are interconnected by a Fast
Ethernet, with a bandwidth of 100 Mbits/sec.

We present two cases, dedicated and non-dedicated. In the first case, processors are
dedicated to running the program and no other loads are interposed during the execution.
We perform measurements with up to 9 slaves. In the second case, at the beginning of
the execution of the program, we start a resource expensive process on some of the slaves.
Due to the fact that scheduling algorithms for DOACROSS loops are usually static and no
other dynamic algorithms have been reported so far, we are not able to compare with similar
algorithms. We perform three series of experiments for the dedicated and non-dedicated case:
(1) DMPS(CSS), (2) DMPS(TSS), and (3) DMPS(DTSS) and compare the results for
two real-life case studies. We run the above series for m = 3, 4, 5, 6, 7, 8, 9 slaves in order to
compute the speedup. We compute the speedup according to the following equation:

Sp =
min{TP1

, TP2
, . . . , TPm}

TPAR
(5.4)

where TPi
is the serial execution time on slave Pi, 1 ≤ i ≤ m, and TPAR is the parallel

execution time (on m slaves). Note that in the plotting of Sp, we use V P instead of m on
the x-axis.
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I. Experiments and Results

We used the Heat Conduction computation for a domain of 5000 × 10000 grid points, and
the Floyd-Steinberg error diffusion computation for a image of 10000 × 20000 pixels, on
a system consisting of 9 heterogeneous slave machines and one master, with the following
configuration: zealot1 (master), zealot2, kid1, zealot3, kid2, zealot4, kid3, kid4, kid5, kid6.
For instance, when using 6 slaves, the machines used are: zealot1 (master), zealot2, kid1,
zealot3, kid2, zealot4, kid3. The slaves in italics are the ones loaded in the non-dedicated
case. As mentioned previously, by starting a resource expensive process on these slaves, their
ACP is halved.

An illustration of the dependence patterns for the Heat Conduction and Floyd-Steinberg
applications is given in Fig. 5.23. The iterations in a chunk are executed in the order imposed
by the dependencies of each application. Whenever a synchronization point is reached, data
is exchanged between the processors executing neighboring chunks.

Table 5.3 shows comparative results we obtained for the heat equation, for the three series
of experiments: DMPS(CSS), DMPS(TSS) and DMPS(DTSS), on a dedicated and a
non-dedicated heterogeneous cluster. The values represent the parallel times (in seconds) for
different number of slaves. Three synchronization intervals were chosen by the user, and the
total ACP ranged according to the number of slaves from 3.5–7.5.

Fig. 5.24 presents the speedups for the heat conduction equation on a grid of 5000×10000
points, for one time step (i.e. loop=1), for chunks sizes computed with CSS, TSS and DTSS
and synchronization interval 150, on a dedicated cluster and a non-dedicated cluster.

Comparative results for the Floyd-Steinberg case study on a dedicated and a non-dedicated
heterogeneous cluster are given in Table 5.4. The values represent the parallel times (in sec-
onds) for different number of slaves. Three synchronization intervals were chosen by the user,
and the total ACP ranged according to the number of slaves from 3.5–7.5.

Fig. 5.25 presents the speedup results of the Floyd-Steinberg algorithm, for the three
variations. The size of the 2D frame was 10000 × 20000 pixels. Chunks sizes were computed
with CSS, TSS and DTSS and synchronization interval chosen to be 100, on a dedicated
cluster and a non-dedicated cluster.

II. Interpretation of the Results

As expected, the results for the dedicated cluster are much better for both case studies. In
particular, DMPS(TSS) seems to perform slightly better than DMPS(CSS). This was ex-
pected since TSS provides better load balancing than CSS for simple parallel loops without
dependencies. In addition, DMPS(DTSS) outperforms both algorithms. This is because
it explicitly accounts for the heterogeneity of the slaves. For the non-dedicated case, one
can see that DMPS(CSS) and DMPS(TSS) cannot handle workload variations as effec-
tively as DMPS(DTSS). This is shown in Fig. 5.24. The speedup for DMPS(CSS) and
DMPS(TSS) decreases as loaded slaves are added, whereas for DMPS(DTSS) it increases
even when slaves are loaded. In the non-dedicated approach, our choice was to load the slow
processors, so as to incur large differences between the processing power of the two machine
types. Even in this case, DMPS(DTSS) achieved good results.

The ratio commputation
communication

along with the selection of the synchronization interval play a key
role in the overall performance of our scheme. A rule of thumb is to maintain this ratio ≥ 1
at all times. The choice of the (fixed) synchronization interval has a crucial impact on the
performance, and it is dependent on the concrete problem. h must be chosen so as to ensure
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Figure 5.23: Dependence patterns for Heat Conduction and Floyd-Steinberg.



106 Implementation and Experimental Validation

Table 5.3: Parallel execution times (sec) for Heat Conduction equation on a dedicated & non-dedicated
heterogeneous cluster

the ratio commputation
communication

is maintained above 1, even when Vi decreases at every scheduling

step. Assuming that for a certain h, commputation
communication

≥ 1 is satisfied, small changes in the value
of h do not significantly alter the overall performance. Notice that the best synchronization
interval for the heat equation was h = 150, whereas for the Floyd-Steinberg better results
were obtained for h = 100. The performance differences for interval sizes close to the ones
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Figure 5.24: Speedups for the heat equation on a dedicated & non-dedicated heterogeneous cluster

depicted in Fig. 5.24 and 5.25 are small.

The main contribution of this section is extending three previous schemes by taking into
account the existing iteration dependencies of the problem, and hence providing a scheme
for inter-slave communication. The method was tested with two real-life applications: Heat
Conduction equation and Floyd-Steinberg dithering. The results demonstrate that this new
scheme is effective for distributed applications with dependence loops.

5.3.4 Evaluation of S, W and SW

The self-scheduling schemes, along with the S, W and SW mechanisms were implemented in
C, and the communication between the master and slaves, as well as the inter-slave commu-
nication were implemented using MPI. The experiments were performed on a heterogeneous
Linux cluster of 13 nodes (1 master and 12 slaves). The cluster consists of two machine
types: (a) 7 Intel Pentiums III 800MHz with 256MB RAM (called ‘twins’), with virtual
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Table 5.4: Parallel execution times (sec) for Floyd-Steinberg on a dedicated & non-dedicated heteroge-
neous cluster

power V Pk = 1; and (b) 6 Intel Pentiums III 500MHz with 512MB RAM (called ‘kids’), with
virtual power V Pk = 0.8. In order to obtain the virtual power of each slave we ran 10 times
a test problem (which involved nested loops with floating point operations) serially on each
computer and averaged the measured execution times. Although this is a simple model, it
is appropriate for the type of applications we study, namely nested loops with floating point
operations. The machines are interconnected by a 100Mbits/sec Fast Ethernet network.

We experiment on the non-dedicated cluster. In particular, at the beginning of execution,
we start a resource expensive process on some of the slaves, which halves their ACP. We ran
three series of experiments:
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Floyd-Steinberg, non-dedicated heterogeneous cluster
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Figure 5.25: Speedups for Floyd-Steinberg on a dedicated & non-dedicated heterogeneous cluster

#1: for the synchronization mechanism (S)

#2: for the weighting mechanism (W)

#3: for the combined mechanisms (SW).

We ran the above series for m = 4, 6, 8, 10, 12 slaves. The results given in the following
subsections are the average of 10 runs for each experiment. We used the following machines:
twin1(master), twin2, kid1, twin3, kid2, twin4, kid3, twin5, kid4, twin6, kid5, twin7, kid6.
In all cases, the overloaded machines were the kids (written in boldface). When m = 4, the
first four machines are used from the above list, when m = 8 the first eight machines are
used, and so on.
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Table 5.5: Problem sizes for Floyd-Steinberg and Hydro test cases

Problem size small medium large

Floyd-Steinberg 5000 × 15000 10000 × 15000 15000 × 15000

Upper/lower threshold 500/10 750/10 1000/10

Hydro 5000 × 5 × 10000 7500 × 5 × 10000 10000 × 5 × 10000

Upper/lower threshold 500/10 750/10 1000/10

Experiment #1

For the first series, we experimented on two real-life applications: Floyd-Steinberg and Hydro.
For each application we used three problem sizes, given in Table 5.5, in order to perform a
scalability analysis with respect to the problem size. In each case, Us was taken as the
largest dimension, whereas Uc was taken as the second largest dimension. For each of these
applications we compared the parallel execution times against the serial execution times.

We scheduled each test case using the five self-scheduling algorithms, i.e., CSS, FSS, GSS,
TSS and W-TSS, to which we applied the synchronization mechanism S. The algorithms
were implemented as described in Section 4.4.2. For CSS we used the chunk size Uc

2∗m in order
to ensure that slaves receive work twice. To avoid excessive synchronization overheads and
large idle times we used lower and upper bounds (see Table 5.5) on the size of the chunks
given by the self-scheduling algorithms.

The synchronization interval h for both test cases is given by formula (4.1), where M
= 3 ∗m was used. In order to show that M must be at least 3 ∗m we ran multiple tests with
different values for M, ranging from 1∗m to 10∗m, in order to assess the impact of the chosen
M on the parallel execution times. The results for both applications with dependencies are
given in Figure 5.26. One can see that a good performance can be obtained if M≥ 3 ∗ m.

Both the Floyd-Steinberg and Hydro applications have unitary dependence vectors, i.e.,
unitary projection lengths along the chunk dimension uc. This yields a relatively small volume
of communication, making easy to maintain the ratio communication

computation
well below 1. The results

for all problem sizes are shown in Fig. 5.27.

We plotted the parallel and serial times vs the virtual power of the cluster. With 4 slaves
VP is 3.6, with 6 slaves VP is 5.4, with 8 slaves is 7.2, with 10 slaves VP is 9 and with 12
slaves is 10.8. The serial time was measured on the fastest slave type, i.e., twin.

The results show that the synchronization mechanism can be applied to all existing self-
scheduling algorithms, yielding their synchronized–only versions, which can efficiently par-
allelize real-life DOACROSS loops. One can notice that S-CSS, S-FSS, S-GSS, and S-TSS
give significant speedups over the serial execution (see Table 5.6), proving the efficiency of
the transformed algorithms. In all cases, SW-TSS, which explicitly accounts for system’s
heterogeneity, shows an even greater speedup over all synchronized–only algorithms. The
two charts at the bottom of Fig. 5.27 illustrate the serial and parallel times on 12 processors
for both applications. The serial times increase faster than the parallel times as the problem
size increases in both cases. This implies that the larger the problem size, the more processors
can be effectively employed in the parallel execution. This yields larger speedups for larger
problem sizes. This was anticipated since with larger index spaces and for the same task
granularity, a greater degree of parallelism becomes available.
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Figure 5.27: Parallel times of the synchronized–only algorithms for Floyd-Steinberg and Hydro case
studies
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Table 5.6: Speedups for Floyd-Steinberg and Hydro test cases

Test case VP S-CSS S-FSS S-GSS S-TSS SW-TSS

3.6 1.45 1.57 1.59 1.63 2.86
5.4 2.76 2.35 2.33 2.47 4.35

Floyd-Steinberg 7.2 2.81 2.92 3.09 3.10 5.39
9 3.41 3.50 3.49 3.70 6.27

10.8 3.95 4.07 4.27 4.34 7.09

3.6 1.64 1.33 1.42 1.47 2.61
5.4 2.02 2.10 2.16 2.28 4.04

Hydro 7.2 2.53 2.57 2.72 2.75 4.73
9 3.01 3.07 3.33 3.29 5.43

10.8 3.49 3.49 3.72 3.69 6.16

Experiment #2

For the second series of experiments, we used the Mandelbrot fractal computation algorithm
(a DOALL loop), on the domain [-2.0, 1.25] × [-1.25, 1.25], for different window sizes: 7500×
10000, 10000 × 10000 and 12500 × 12500. The computation involves unpredictably irregular
loop tasks. We scheduled the Mandelbrot set with CSS, FSS, GSS, TSS and compared their
performance against their weighted versions W-CSS, W-FSS, W-GSS, W-TSS. In this series,
the weighting mechanism is expected to facilitate the scheduling algorithms to distribute the
work to slaves more evenly and to improve the overall performance. This is confirmed by
the experimental results, depicted in Fig. 5.28. One can see that in all cases the weighted
algorithm clearly outperforms the non-weighted algorithm.

The gain of the weighted over non-weighted algorithms is also given in Table 5.7, com-
puted as

TA−TW−A

TA
, where TA is the parallel time of the non-weighted algorithm A and TW−A

is the parallel time of the weighted algorithm W-A. We are also interested in establishing
an adequate confidence interval for the performance gain in each case. As it is common in
practice, we consider 95% confidence. The algorithm with the least parallel time is SW-FSS
for all problem sizes; the performance gain of SW-FSS over FSS ranges from 18% to 53%.
With 0.95 probability the performance gain lies in the interval 42 ± 8%. However, the al-
gorithm with the best overall performance gain is GSS, ranging from 50% to 57%. With
0.95 probability the gain lies in the interval 53 ± 6%. As shown in Fig. 5.28, the difference
in performance of the weighted algorithms is much smaller than the performance difference
between their non-weighted versions.

In order to examine the effect of the weighting mechanism on load balancing, Table 5.8
provides the total computation times of each slave together with the total number of iterations
it was assigned, for the computation of the Mandelbrot test-case. The total computation time
of each slave is the time it spends performing actual work. In the ideal case, all slaves should
have exactly the same computation time, and a large divergence shows great load imbalance.

The data in Table 5.8 correspond to Fig. 5.28 (GSS vs W-GSS, the parallel times obtained
for four slaves with total V P = 3.6), and shows the difference between the non-weighted and
the weighted algorithm. In particular, Table 5.8 analyzes the parallel times of GSS and W-
GSS on each of the four slaves and the number of iterations computed by each slave. Note
that the parallel time plotted in Fig. 5.28 is close to the computation time of the slowest slave.
It is clear that with the non-weighted algorithm the computation times of each slave vary
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Figure 5.28: Parallel times of the weighted and non-weighted algorithms for Mandelbrot case study

Table 5.7: Gain of the weighted over the non-weighted algorithms for the Mandelbrot test case

Test Problem VP S-CSS S-GSS S-FSS S-TSS
case size vs SW-CSS vs SW-GSS vs SW-FSS vs SW-TSS

3.6 27% 50% 18% 33%
5.4 38% 54% 37% 34%

10000× 10000 7.2 43% 57% 52% 32%
9 48% 53% 52% 35%

10.8 43% 52% 52% 34%
3.6 27% 50% 18% 33%
5.4 38% 54% 37% 34%

Mandelbrot 12500× 12500 7.2 44% 57% 53% 30%
9 47% 54% 52% 35%

10.8 44% 52% 53% 34%
3.6 27% 50% 18% 33%
5.4 38% 54% 37% 34%

15000× 15000 7.2 45% 57% 53% 31%
9 49% 54% 52% 35%

10.8 46% 52% 54% 33%
Confidence Overall 40 ± 6 % 53 ± 6 % 42 ± 8 % 33 ± 4 %

interval (95%) 42 ± 3 %
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Table 5.8: Load balancing in terms of total number of iterations per slave and computation times per
slave, GSS vs W-GSS (Mandelbrot test case)

Slave GSS GSS W-GSS W-GSS

# Iterations Comp. time # Iterations Comp. time
(106) (sec) (106) (sec)

twin2 56.434 34.63 55.494 62.54
kid1 18.738 138.40 15.528 62.12
twin3 10.528 39.37 15.178 74.63
kid2 14.048 150.23 13.448 61.92

in relation to the computation power and load of the slave, i.e., slow and overloaded slaves
have larger total computation times. In the case of the weighted algorithm this variation is
reduced significantly. Also, with GSS, even though kid2 and twin2 were assigned 14.048×106

and 56.434× 106 loop iterations respectively, twin2 required 34.63 sec to compute these loop
iterations, in contrast with 150.23 sec required by kid2 (this is roughly the parallel time for
this case). This led to a huge load imbalance, which deteriorated significantly the algorithm’s
performance. Unlike GSS, W-GSS execution times for all slaves are about the same which
confirms that W-GSS indeed achieves good load balancing.

Experiment #3

For the third series of experiments we repeat the first series, applying now the W mech-
anism to all synchronized–only algorithms. In particular, we schedule the Floyd-Steinberg
and Hydro test cases with the following synchronized–weighted algorithms: SW-CSS, SW-
FSS, SW-GSS and SW-TSS. The results in Fig. 5.29 and 5.30 show that in all cases the
synchronized–weighted algorithms clearly outperform their synchronized–only counterparts.
One can notice that all SW algorithms give comparable parallel times.

The above results are also illustrated in Table 5.9, which shows the gain of SW-A over
S-A, computed as

TS−A−TSW−A

TS−A
, where TS−A is the parallel time of the synchronized–only

algorithm A and TSW−A is the parallel time of the synchronized–weighted algorithm SW-A.
Confidence intervals are also given in the same Table, both with respect to every algorithm
and overall confidence intervals per test case.

In Table 5.9, we show the algorithm with the highest gain for each application. Subse-
quently, in Table 5.10 we analyze the gain of SW-CSS over S-CSS for Floyd-Steinberg and
of SW-GSS over S-GSS for Hydro. This gain is attributed to better load balancing, which is
expressed in terms of the total computation time per slave. In particular: S-CSS and S-GSS,
respectively, assigned approximately the same number of iterations to all slaves; this led to
larger computation times for the slower slaves (i.e., kids) in comparison to faster slaves (i.e.,
twins). With SW-CSS and SW-GSS, respectively, the difference in the slaves’ computation
time is reduced because the number of iterations assigned to each slave has been adjusted
according to their available power.
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Figure 5.29: Parallel times of the synchronized–weighted and synchronized–only algorithms for Floyd-
Steinberg case study, for three different problem sizes: 15000× 5000, 15000× 10000 and 15000× 15000
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Figure 5.30: Parallel times of the synchronized–weighted and synchronized–only algorithms for Hydro
case study, for three different problem sizes 10000× 5 × 5000, 10000× 5 × 7500 and 10000× 5 × 10000
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Table 5.9: Gain of the synchronized–weighted over the synchronized–only algorithms for the Floyd-
Steinberg and Hydro test cases

Test Problem VP S-CSS S-GSS S-FSS S-TSS
case size vs SW-CSS vs SW-GSS vs SW-FSS vs SW-TSS

3.6 39% 47% 43% 45%
5.4 42% 43% 44% 44%

15000 × 5000 7.2 37% 40% 35% 40%
9 34% 27% 34% 36%

10.8 31% 23% 28% 35%
3.6 44% 46% 45% 42%
5.4 41% 42% 44% 45%

Floyd- 15000 × 7500 7.2 39% 45% 38% 42%
Steinberg 9 37% 40% 37% 38%

10.8 36% 30% 36% 38%
3.6 50% 46% 45% 43%
5.4 41% 48% 44% 43%

15000 × 10000 7.2 41% 42% 41% 42%
9 39% 43% 40% 41%

10.8 38% 36% 38% 39%

Confidence Overall 39 ± 2 % 40 ± 3 % 40 ± 2 % 41 ± 2 %
interval (95%) 40 ± 1 %

3.6 40% 46% 43% 44%
5.4 43% 44% 44% 44%

10000 × 5 × 5000 7.2 39% 37% 37% 41%
9 37% 29% 36% 38%

10.8 32% 23% 29% 34%
3.6 38% 46% 43% 44%
5.4 43% 45% 44% 46%

Hydro 10000 × 5 × 7500 7.2 40% 37% 39% 42%
9 37% 29% 38% 38%

10.8 35% 30% 35% 36%
3.6 40% 47% 45% 44%
5.4 42% 47% 44% 43%

10000 × 5 × 10000 7.2 40% 41% 41% 42%
9 39% 33% 38% 39%

10.8 37% 30% 37% 40%

Confidence Overall 39 ± 2 % 38 ± 4 % 40 ± 2 % 41 ± 2 %
interval (95%) 39 ± 1 %
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Table 5.10: Load balancing in terms of total number of iterations per slave and computation times per
slave, S-FSS vs SW-FSS

Test Slave # Iterations (106) Comp. time (sec) # Iterations (106) Comp. time (sec)

S-CSS S-CSS SW-CSS SW-CSS
twin2 59.93 19.25 89.90 28.88

Floyd- kid1 59.93 62.22 29.92 30.86
Steinberg twin3 59.93 19.24 74.92 24.06

kid2 44.95 46.30 29.92 29.08

S-GSS S-GSS SW-GSS SW-GSS
twin2 84.50 15.32 117.94 21.39

Hydro kid1 78.38 42.60 38.03 22.49
twin3 62.69 17.44 106.48 20.75
kid2 73.58 33.72 36.41 19.46

Conclusions

In this section we addressed the problem of load balancing and scheduling DOACROSS (or
DOALL) loops on heterogeneous non-dedicated distributed systems. We studied existing
self-scheduling schemes and proposed two mechanisms to improve their performance using
an extended master-slave model. Firstly, we tested the synchronization mechanism, which
enables the application of existing self-scheduling algorithms to loops with dependencies.
Secondly, we tested the weighting mechanism, which improves the load balancing capability
of these algorithms. We ran experiments from practical applications involving DOACROSS
loops and also a test with a DOALL loop with uneven tasks. The results show that the syn-
chronization mechanism enables the scheduling algorithms to obtain significant speedups for
the dependence loops. Furthermore, the weighting mechanism makes the existing algorithms
most suitable for heterogenous non-dedicated systems since significant gains were obtained
over the algorithms without weighting.

Although in this article we study the problem of scheduling DOACROSS loops with
uniform dependencies we expect that our results can be extended to apply to DOACROSS
loops with non-uniform dependencies. In the future we plan to study the scheduling problem
for non-uniform dependencies DOACROSS loops in distributed systems. We also plan to
further investigate the synchronization mechanism in terms of the number of synchronization
points required for achieving the best performance.

5.3.5 Verifying the Theoretical Model for Predicting the Optimal h for
CSS and W-CSS

In this section, we present the practical verification of the theoretical model we proposed, for
predicting the optimal synchronization frequency for DOACROSS loops. This model holds
for the simple version of the CSS self-scheduling algorithm, as well as for its weighted version
W-CSS.

I. Experimental environment

We implemented our model in C using the MPI message-passing interface. The experiments
were performed on two homogeneous clusters and one heterogeneous cluster:
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Table 5.11: Estimated computation and communication parameters

Exp. cd cc cp kids cp twins csched tm−s

[µs] [µs] [µs] [µs] [µs] [µs]

#1 99 0.69 0.526 - 500 1.253
#2 99 0.65 - 0.319 500 1.25
#3 99 0.69 0.526 0.319 650 1.25

#1: a homogeneous cluster of 11 Intel Pentiums III machines called ‘kids’ with 500MHz,
512MB RAM, with virtual power V P kid = 0.63.

#2: a homogeneous cluster of 7 Intel Pentiums III machines called ‘twins’ with 800MHz,
256MB RAM, with virtual power V P twin = 1.

#3: a heterogeneous cluster of 5 ‘kids’ and 6 ‘twins’ (one ‘twin’ was used as master).

We measured the virtual computational power of each worker by running a test problem
10 times (which involved nested loops with floating point operations) serially on each com-
puter and averaging the measured execution times. The machines are interconnected by a
100Mbits/sec Fast Ethernet network. The results given in the following subsections are the
average of 10 runs for each experiment. We used as a test case the Floyd-Steinberg algorithm.

We compare our model for the case when P = N with the model of Chen & Xue [CX99].
We chose to compare with their work because, to the best of our knowledge, they are the
only ones to address this problem for heterogeneous systems. They only do block assignment
of tiles, both on a homogeneous and a heterogeneous system, which corresponds only to our
P = N cases.

II. Estimation of Computation and Communication Parameters

To quantify the communication parameters we developed a benchmark program, that simu-
lates a small scale master-worker model with inter-node communication. It performs send and
receive calls between all pairs of workers for different sized messages. We chose to perform
data exchanges between all pairs of workers in order to simulate levels of network contention
similar to those of the actual application. We measured the average round-trip time for all
data exchanges. We then halve this averaged time and assume that the send (ts) and receive
(tr) times are equal. This is a simple but realistic assumption, since in most cases the send
and receive operations are executed in pairs between communicating workers. This allows us
to estimate the start-up time cd and transmission cost per unit and type of data cc to the
values are given in Table 5.3.5.

The computation cost per iteration is application- and processor-dependent. In our model
we assume that it is the same for every iteration of the same application. To accurately
quantify the computation per iteration cost we ran a small subset of the Floyd-Steinberg
application, on each processor type. We divided the total computation time with the total
number of iterations to obtain the cp for this application. The values for each machine type
(kids and twins) are given in Table 5.3.5.
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III. Experiments and Results

In the following series of experiments we find the actual optimal synchronization interval
which gives the minimum actual parallel time, denoted hm,a. We then compare hm,a with the
theoretical optimal value, denoted hm,t, which is obtained from formulas (4.6), (4.9), (4.11)
and (4.14), depending on the case. The maximum possible value of h is actually the size
of the synchronization dimension, i.e., Us. If h = Us it means there is no synchronization
between workers which leads to a serial execution. The difference between hm,t and hm,a is
measured as a percentage of Us, since this is the maximum value h could take.

Experiment #1. We used the homogeneous cluster of 10+1 kids. We ran the Floyd-
Steinberg application for an image size of 10k × 20k pixels.
(a) Initially, we examined the case when P = N and compared our results with the results
of Chen & Xue [CX99]. To compute Vi we used the following formula:

Vi =
Uc

P
(5.5)

Chen & Xue computed the vertical tile size using formula (4) in [CX99]: nopt
1 = N1/P .

This can be written in our terms as: V kids
i = Uc/P . Similarly, they computed the hor-

izontal tile size as nopt
2 =

√
P (αs+αr+γ(P−1))N2

(P−1)(N1tc+βs+βr) , which translates in our terms as hP =
√

P (cd+cd)Us

(P−1)(Ucckids
p +2cc)

. For the Floyd-Steinberg application on 10k × 20k pixels, their formulas

gave a vertical tile size equal to V kids
i = 1000, a horizontal tile size equal to hP = 29 and

a parallel time of TP = 10.8359s. The values obtained with our model in this case are:
chunk size equal to V kid

i = 1000, synchronization interval equal to hP = 30 and parallel time
of TP = 10.8361s. It is obvious that both Chen & Xue’s and our model predict that the
minimum execution time is obtained for approximately the same synchronization interval.

(b) We then studied the case P < N . Each worker was assigned k chunks, where k
assumed the values of 4 and 8. In this case Vi was computed according to following formula:

Vi =
Uc

kP
(5.6)

In Fig. 5.31 we plotted the theoretical vs. the actual parallel times, on the kids homoge-
neous cluster. The theoretical time was obtained using the constants from Table 1 (#1). The
curve representing the theoretical parallel time has a global minimum (i.e., the parallel time
is minimized for hm,t) and for every value of h greater than hm,t, the parallel time increases
approximately linearly, with a (very) small slope. Respectively, for every value of h less than
hm,t excessive synchronization occurs which results in performance degradation. As it can
be seen in Fig. 5.31, the actual parallel time confirms the theoretical pattern. The actual
parallel time is always greater than the corresponding theoretical time. The global minimum
of the actual parallel time is to the right of the theoretical global minimum. In all cases the
difference between these two values, hm,a and hm,t, and the actual time for each of these
intervals can be seen in Table 5.3.5.

The differences in Table 5.3.5 show that one can now run the parallel application using the
theoretical optimal synchronization interval hm,t, which in practice gives a parallel time very
close to the actual minimum parallel time. By using the synchronization interval given by eq.
(4.9), one can expect to deviate from the optimal actual parallel time less than +0.0069% as
demonstrated in Table 5.3.5, column 7.



122 Implementation and Experimental Validation

#  1 Homogeneous system (10 kids ) , 10k x 20k

Vi = 1000, k= 1

11.00

12.00

13.00

30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Synchronization interval h, hm,t = 30, hm,a =  30

P
a

ra
ll

e
l 

ti
m

e
 (

s
)

theoretical time actual time

#  1 Homogeneous system (10 kids ) , 10k x 20k

Vi = 250, k= 4

11.00

12.00

13.00

30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Synchronization interval h, hm,t =  60, hm,a =  55

P
a

ra
ll

e
l 

ti
m

e
 (

s
)

theoretical time actual time

#  1 Homogeneous system (10 kids ) , 10k x 20k

Vi = 125, k= 8

11.50

12.50

13.50

30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Synchronization interval h, hm,t =  80, hm,a =  70

P
a

ra
ll

e
l 

ti
m

e
 (

s
)

theoretical time actual time

Figure 5.31: Theoretical vs. actual parallel times, homogeneous system, 10 workers, k=1, 4 and 8

Experiment #2. We wanted to test our model in a second homogeneous cluster, with
different characteristics (i.e., processor speed, memory size), in order to confirm the validity
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Table 5.12: Theoretical and actual optimal synchronization intervals, actual time for both these intervals,
their difference, and deviation from the minimum actual parallel time

k hm,t hm,a Ta(hm,t) Ta(hm,a) |Ta(hm,t)−
|Ta(hm,t)−Ta(hm,a)|

Ta(hm,a) |hm,t−
|hm,t−hm,a|

Us
100

[s] [s] Ta(hm,a)| [s] hm,a|
Homogeneous cluster with 10+1 kids

1 30 30 12.4787 12.4787 0.00000 0.0000% 0 0.0000%
4 60 55 12.7500 12.6627 0.08730 0.0069% 5 0.0250%
8 80 70 12.8900 12.7982 0.09180 0.0072% 10 0.0500%

Homogeneous cluster with 6+1 twins
1 40 55 7.04723 7.03397 0.01326 0.0019% 15 0.0750%
4 75 70 7.18130 7.15514 0.02616 0.0037% 5 0.0250%
8 110 100 7.29295 7.28574 0.00721 0.0010% 10 0.0500%

Heterogeneous cluster with 5 kids and 5+1 twins
1 35 35 10.2356 10.2356 0.0000 0.0000% 0 0.0000%
4 65 100 10.6341 10.5301 0.1040 0.0099% 35 0.1750%
8 90 105 10.8348 10.7911 0.0437 0.0040% 15 0.0750%

of our theoretical model. Therefore, for this experiment, we repeated the measurements of
the first experiment, but on the 6+1 twins homogeneous cluster, using the Floyd-Steinberg
application for 8k × 16k pixels.

(a) Again we began with the case P = N and compared our results with the results of
Chen & Xue [CX99]. They computed the vertical and horizontal tile size [CX99] using these

formulas: nopt
1 = N1/P and nopt

2 =
√

P (αs+αr+γ(P−1))N2

(P−1)(N1tc+βs+βr) , respectively. Using our notation the

above formulas become: V twin
i = Uc/P and hP =

√
P (cd+cd)Us

(P−1)(Ucctwin
p +2cc)

, respectively. For the

Floyd-Steinberg application on 8k×16k pixels, their formulas gave a vertical tile size equal to
V twins

i = 1333, a horizontal tile size equal to hP = 39 and the parallel time of TP = 6.9987s.
Our values in this case were: chunk size V twin

i = 1334, synchronization interval hP = 40 and
parallel time TP = 6.9988s. Again, the results obtained by Chen & Xue are very similar to
our results.

(b) For the case P < N each worker was assigned k chunks, where k assumed again the
values of 4 and 8, and Vi was computed according to formula (5.6). Fig. 5.32 shows the
theoretical vs the actual parallel time. As with the previous case, the theoretical time was
obtained using the constants from Table 5.3.5 (#2). Note that the curve of the theoretical
parallel time follows the curve of the actual parallel time. The differences between hm,t and
hm,a and the differences between their corresponding actual parallel times are given in Table
5.3.5. Again, using as synchronization interval the value given by eq. (4.9), one can expect to
deviate from the minimum actual parallel time less than 0.0063% as demonstrated in Table
5.3.5, column 7.

Experiment #3. In this experiment, we tested our model in a heterogeneous cluster of 5
kids and 5+1 twins. We ran the Floyd-Steinberg application on an image size of 10k × 20k
pixels.

(a) For the heterogeneous case P = N the value of Vi differed for each node type. Chunks
were weighted according to the virtual power of a node and as a result twins workers got
larger chunks than kids workers. The chunks were weighted as follows:
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Figure 5.32: Theoretical vs. actual parallel times, homogeneous system, 6 workers, k=1, 4 and 8.
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Figure 5.33: Theoretical vs. actual parallel times, heterogeneous system, 10 workers, k=1, 4 and 8

V kid
i =

Uc

P
V P kid (5.7)

V twin
i =

Uc

P
V P twin (5.8)

In this case Chen & Xue compute the vertical tile size using formula (8) from [CX99]: ni
1 =
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N1
Ci

Pi=1
P Ci

. This formula, when written into our notation, becomes: V
αj

i = Uc
ViP

αj
Pj=1

ξ
(V P

αj P
αj )

.

The horizontal tile size is given by the formula ni
2 = nopt

2 =
√

P (αs+αr+γ(P−1))N2

(P−1)(N1tc+βs+βr)
, which in

our notation becomes hP =

√
Pj=1

ξ
P

αj (cd+cd)Us

(
Pj=1

ξ
P

αj−1)(Ucc
αj
p +2cc)

. For the Floyd-Steinberg application

and an image size of 10k × 20k, the vertical tile size for a twin worker is V twin
i = 1223, and

for a kid worker V kid
i = 776; the horizontal tile size is hP=N = 162 and the parallel time

T ht
P = 8.8273s. For the V twin

i , V kid
i and h values obtained with Chen & Xue’s model, our

model gives a theoretical parallel time of TP = 8.8316s. However, the optimal theoretical
parallel time predicted by our model is smaller than the above parallel time. Particularly, it
is TP = 8.4501s and is obtained for a synchronization interval of hP = 35. As can be seen in
Table 2, our model gives a better estimate of hm,t since the value obtained with our model
coincides with the experimentally computed value of hm,a = 35.

(b) For the case P < N each worker was assigned k chunks, where k assumed the values of
4 and 8. The value of Vi differed for each node type because chunks were weighted according
to the virtual power of their node. The chunks were computed as follows:

V kid
i =

Uc

kP
V P kid (5.9)

V twin
i =

Uc

kP
V P twin (5.10)

The theoretical and actual parallel times for this experiment are plotted in Fig. 5.33.
The theoretical time was obtained using the constants from Table 5.3.5 (#3). As it can be
seen, the curve of the theoretical parallel time follows the curve of the actual parallel time,
and the differences between hm,t and hm,a, and between their corresponding actual parallel
times are given in Table 5.3.5. The values in Table 5.3.5, column 7, show that using the
synchronization interval given by eq. (4.14), one can expect to deviate from the optimal
parallel time less than 0.0062%.

IV. Conclusions

In this section we presented the practical verification of the proposed theoretical model for
determining the optimal synchronization frequency for DOACROSS loops on homogeneous
and heterogeneous clusters. The accuracy of the proposed model is confirmed in all cases
by experimental results. The main contribution of this work is the fact that the formulas
(4.6), (4.9), (4.11) and (4.14) provide the means for calculating the optimal synchronization
interval. In every experiment, the theoretical optimal h is very close to the actual optimal h.
The performance loss due to the difference between the actual and the theoretical optimal h
is very small, in the range 5-10% for all our experiments. Moreover, the cost of finding the
optimal synchronization interval through extensive testing is clearly prohibitive and a poor
choice of the synchronization interval leads to increased performance penalty. Our model
improves on a previously existing model [CX99] on heterogeneous systems, whereas it gives
similar results on homogeneous systems.



CHAPTER6
Conclusions

This thesis presented several innovative static and dynamic scheduling algorithms for DOACROSS
nested loops with uniform data dependencies. All these algorithms were designed to paral-
lelize loops on high performance computing systems.

We show that computations can be efficiently assigned onto the minimum number of
processing elements, guaranteeing the optimal makespan [AKC+03a] (see §3.2). Then, we
show how to determine the minimum number of processors required for an optimal static
schedule [AKC+03b] (see §3.3). Subsequent efforts to minimize the communication cost, with
the aim of reducing the makespan, yield two static methods: an adaptive cyclic scheduling
method (ACS) [CAP05], that exploits the geometric properties of the iteration space in order
to arrive at an efficient geometric decomposition of the iteration space (see §3.4.1); and a chain
pattern scheduling (CPS) [CAD+05], similar to ACS, but performs a different assignment to
processors of the partitioned index space. Both methods aim at reducing the communication
cost by assigning chains of computations (created by the a certain dependence vector) to the
same processor, and mapping dependent chains on the same processor as much as possible.

We show how to automatically produce the equivalent parallel code from a given sequen-
tial program with nested DOACROSS loops, for shared and distributed memory architectures
[CAK+03] [ACT+04] [ACT+08] (see §4.2.1 and §4.2.2). The algorithms used for scheduling
are dynamic, based on the hyperplane method and on computational geometry methods. We
then show how a new dynamic multi-phase scheduling scheme [CAR+06] [PRA+06] is em-
ployed as a first effort towards scheduling DOACROSS nested loops with a coarse grained ap-
proach, on heterogeneous dedicated & non-dedicated clusters (see §4.3). Next, we propose two
mechanisms (synchronization and weighting) to improve the performance of self-scheduling
algorithms for nested loop, on heterogeneous systems [CRA+08] (see §4.4). Finally, we show
how to predict the optimal synchronization frequency for parallelizing DOACROSS loops
using self-scheduling algorithms, using our proposed parallel estimation model [CRA+07a]
[CRA+07b] (see §4.5).

6.1 Future Research Directions

1. Scheduling and Load Balancing for Grid Computing Environments
The main assumption in previous work on scheduling and load balancing schemes is that

the systems are clusters of heterogeneous workstations. However, grid computing environ-
ments can be used for high performance computations. Grid technologies enable sharing of
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computing resources, which may be heterogeneous computers on different sites. Scheduling
and load balancing of non-independent tasks in such systems is a serious challenge. Recently,
some scheduling and load balancing methods for independent tasks have been implemented
on grid environments. The exploration of new and general methods that efficiently harness
the power of computational grids is an open and active area of research, especially for ap-
plications with non-independent tasks. In the future, I would like to modify the existing
schemes and devise new scheduling and load balancing methods for non-independent tasks
with irregular workloads to run efficiently in grid environments. An immediate modification
would be developing hierarchical versions of the dynamic schemes presented in Chapter 4,
such that each grid site has one master, and inter-site communication is done through the
masters. Another aspect that must be considered in grid computing is heterogeneity of com-
munication links. Hence, another immediate modification to the dynamic schemes would be
to assign highly communicating tasks to nodes with fast(est) links and ideally, also with fast
processors. Depending on the nature and structure of the application’s tasks, task replication
could also be performed to avoid idle time and reduce (or save) the communication costs.

2. Resource Allocation and Scheduling for Large Scale Computations on Com-
putational Grids

The need for large-scale computations, whether they originate as scientific or engineering
applications, or for supporting large data-intensive calculations, leads to utilizing multiple
(clusters of) computers at different sites distributed across the Internet. Computational grids
are collections of distributed, possibly heterogeneous, resources which can be used as ensem-
bles to execute large-scale applications. Such a large scale computational system requires two
types of schedulers: global and local. Global schedulers distribute the tasks among the dif-
ferent sites, whereas local schedulers distribute the tasks among the computational nodes of
a particular site. Local schedulers employ scheduling and load balancing algorithms usually
devised for clusters. Global schedulers must be scalable and therefore should employ decen-
tralized scheduling and load balancing algorithms that take into account the differences in
network and processing speeds of the different sites, the number of sites involved in the com-
putation, and the dynamic characteristics of the resources (availability, capability). In the
future, I intend to modify existing algorithms devised for cluster environments to be used as
decentralized global scheduling algorithms both for independent and non-independent tasks.

3. Fault Tolerant Scheduling in Distributed Systems

Distributed systems are mainly characterized by different processing powers. Another
feature of interest for scheduling and load balancing is reliability, that is support for failure
detection and management. Failures include node faults (nodes go down, reboot, etc) and
network faults (links go down). A solution to the application-level fault tolerance problem
must meet the following requirements: (i) efficiency, without compromising performance; (ii)
the reliability level must be user controlled – greater reliability incurs a higher cost; and (iii)
minimal code changes in the application. Scheduling algorithms that detect failures and are
able to manage them are called fault-tolerant. The most common strategy is task replication.
In the future, I intend to investigate the existing fault tolerance strategies for scheduling
independent-tasks and apply them or devise new strategies for fault tolerant scheduling of
non-independent tasks in distributed systems.

4. Scheduling and Load Balancing Divisible Loads

Divisible load theory is a methodology involving the linear and continuous modeling of
partitionable computation and communication loads for parallel processing. It adequately
represents an important class of problems with applications in parallel and distributed system
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scheduling, various types of data processing, scientific and engineering computation, and
sensor networks. The loads that must be processed (processing load) can be indivisible or
divisible. The divisible loads can be split and assigned to many processors. But, the manner
in which this partitioning (or load division) can be done depends on its divisibility property,
that is, the property which determines whether a load can be decomposed into a set of smaller
loads or not. If loads are indivisible, they are independent, of different sizes, and cannot be
further subdivided. Thus, they have to be processed in their entirety in a single processor.
These loads do not have any precedence relations and, in the context of static/deterministic
scheduling, they give rise to bin-packing problems1 that are known to be NP-complete and
hence amenable only to heuristic algorithms that yield sub-optimal solutions. In the context
of dynamic/stochastic scheduling, these loads arrive at random time instants and have to be
assigned to processing nodes based on the state of the system.

Alternatively, a load may be modularly divisible in which case it is a priori subdivided
into smaller modules based on some characteristics of the load or the system. The processing
of a load is complete when all its modules are processed. Further, the processing of these
modules may be subject to precedence relations. Usually such loads are represented as task
interaction graphs whose vertices correspond to the modules, and whose edges represent
interaction between these modules and perhaps also the precedence relationships. Finally,
a load may be arbitrarily divisible which has the property that all elements in the load
demand an identical type of processing. These loads have the characteristic that they can be
arbitrarily partitioned into any number of load fractions. These load fractions may or may
not have precedence relations.

In the future, I intend to apply existing scheduling algorithms or devise new ones to sched-
ule and load balance applications with divisible loads (modularly divisible and/or arbitrarily
divisible), which constitute tasks with dependencies.

1The bin-packing problem is stated as follows: objects of different volumes must be packed into a finite
number of bins of capacity V in a way that minimizes the number of bins used.
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APPENDIXA
Solving the general equation for 2D
hyperplanes, computing minimum
and successor points

A.1 Solving the general equation a1x1 + a2x2 = k

We show here how we can find the solutions of equation a1x1+a2x2 = k, assuming they exist.
This can be done easily and efficiently using the tabular algorithm presented in [NZH91],
which is a modification of the Gaussian elimination method. We explain this technique using
the following example.

Example A.1.1 Suppose that we want to find the solutions of the equation 2x1 + x2 = 9
(recall Fig. 4.3(a)). For this we write:

2 1 9
1 0
0 1

⇒
1 1 9
1 0
−1 1

⇒
1 0 9
1 −1
−1 2

If the variables that are implicit in the array are u and v, where u, v ∈ Z, we get that
u = 9. The general solutions are given by x1 = u − v = 9 − v and x2 = −u + 2v = 2v − 9.
Similarly, we can find the solutions of the equation 2x1 + 5x2 = 21 (recall Fig. 4.3(b)).

2 5 21
1 0
0 1

⇒
2 3 21
1 −1
0 1

⇒
2 1 21
1 −2
0 1

⇒
1 1 21
3 −2
−1 1

⇒
1 0 21
3 −5
−1 2

Assuming that the variables that are implicit in the last array are u, v ∈ Z, we see that
u = 21. Consequently, the general solutions are x1 = 3u − 5v = 3 × 21 − 3v = 63 − 5v and
x2 = −u + 2v = 2v − 21.

In our case, we are only interested in 2D points that lie in the first quadrant, i.e., that
have both of their coordinates nonnegative. In view of this fact, the general solution (j1 +
la2

g
, j2 −

la1

g
) gives that j1 + la2

g
≥ 0 and j2 −

la1

g
≥ 0, which in turn implies that la2 + gj1 ≥ 0

and −la1 + gj2 ≥ 0 and finally that

−
gj1

a2
≤ l ≤

gj2

a1
(A.1)
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The above equation is very useful because the number of integers that lie in this interval
gives the cardinality of the hyperplane Πk(a1, a2). Furthermore, the minimum index point of
Πk(a1, a2) is computed by substituting the minimum value of integer l that satisfies inequality
(A.1). Symmetrically, the maximum index point of Πk(a1, a2) is computed by substituting
the maximum value of integer l that satisfies inequality (A.1).

Example A.1.2 Continuing Example A.1.1, we find the number of nonnegative solutions
of the equation 2x1 + x2 = 9, which amounts to finding the number of index points of the
hyperplane Π9(2, 1) (Fig. 4.3(a)). From equation (A.1) we get − j1

1 ≤ l ≤ j2
2 . Recall that

(j1, j2) is a solution of 2x1 + x2 = 9. From the previous example we know that x1 = 9 − v
and x2 = 2v− 9, where v ∈ Z. We can use the value v = 1, thus, getting j1 = 8 and j2 = −7.
Substituting these specific values for j1 and j2 we derive that −8 ≤ l ≤ −7

2 ⇒ −8 ≤ l ≤
−3.5 ⇒ l = −8 or l = −7 or l = −6 or l = −5 or l = −4. This means that there are 5 index
points that lie on the hyperplane 2x1 +5x2 = 21. From the general solution (j1 + la2

g
, j2 −

la1

g
)

we find that the minimum point, corresponding to the minimum value of l = −8, is (0, 9) and
the the maximum point, corresponding to the maximum value of l = −4, is (4, 1).

Finally, we find the number of nonnegative index points of the line 2x1 + 5x2 = 21
(Fig. 4.3(b)). From equation (A.1) we get − j1

5 ≤ l ≤ j2
2 . Recall that (j1, j2) is a solution of

2x1+5x2 = 21. From the previous example we know that x1 = 63−5v and x2 = 2v−21, where
v ∈ Z. We can use the value v = 1, thus, getting j1 = 58 and j2 = −19. Substituting these
specific values for j1 and j2 we derive that −58

5 ≤ l ≤ −19
2 ⇒ −11.6 ≤ l ≤ −9.5 ⇒ l = −11 or

l = −10. This means that there are two nonnegative index points that lie on 2x1 + 5x2 = 21.
From the general solution (j1 + la2

g
, j2 −

la1

g
) we find that the minimum point, corresponding

to the minimum value of l = −11, is (3, 3) and the maximum point, corresponding to the
maximum value of l = −10, is (8, 1).

This formulation also facilitates the easy calculation of the successor in 2D index spaces.
In the above example, we have found that hyperplane Π9(2, 1) contains 5 index points that
lie on the hyperplane 2x1 + 5x2 = 21. These points can be computed from the general
solution (j1 + la2

g
, j2 −

la1

g
) by substituting j1 = 8 and j2 = −7 and letting l take the values

−8,−7,−6,−5,−4. Index point (2, 5) corresponds to l = −6. Therefore, the successor of
(2, 5) is the index point corresponding to l = −5. Substituting l = −5 in the general solution
gives the index point (3, 3), which is indeed the successor of (2, 5).

A.2 Computing minimum points in n-dimensional hyperplanes

Finding the minimum point of a given hyperplane is an optimization problem. Moreover,
it exhibits the optimal substructure property, i.e., the optimal solution to the n-dimensional
case contains within it the optimal solution to the (n − 1)-dimensional case. Consequently,
the minimum point can be computed by a simple dynamic programming algorithm. The
pseudocode for this algorithm is given in Fig. A.1. Vector A contains the coefficients of
the family of hyperplanes and vector U contains the coordinates of the terminal point. For
instance, referring to Fig. 4.3(b) of Example A.2.1, A = {2, 5} and U = {105, 90}. Array
isMin is a 2-dimensional boolean array such that isMin[k][n] is true if the n-dimensional
hyperplane k has a minimum point. Array minPoint is a 2-dimensional array that stores
the minimum points, i.e., minPoint[k][n] contains the minimum point of the n-dimensional
hyperplane k. The concatenation of vectors is denoted by ◦, e.g., (3) ◦ (3) gives (3, 3). In a
symmetrical way, one can compute the maximum points of n-dimensional hyperplanes. In
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for (hPlane = 0; hPlane maxHPlane; hPlane++) {

posValue = min (hPlane / A[n], U[n]);

isMin[hPlane][1] = (A[n] * posValue == hPlane);

if (isMin[hPlane][1])

minPoint[hPlane][1] = (posValue);

}

for (dim = 2; dim  n; dim++)

for (hPlane = 0; hPlane  maxHPlane; hPlane++)

for (value = hPlane; value 0; value--)

if (isMin[value][dim-1]) {

remPoints = hPlane – value;

posValue = min (remPoints / A[n-dim], U[n-dim]);

if (A[n-dim]*posValue == remPoints) {

isMin[hPlane][dim] = true;

minPoint[hPlane][dim] = (posValue)  minPoint[value][dim-1];

break;

}

}

Figure A.1: Pseudocode for the dynamic programming algorithm that computes the minimum point

typical dynamic programming fashion, the algorithm in Fig. A.1 works bottom-up. This
means that given an n-dimensional index space, the algorithm begins by first computing the
minimum points for 1D hyperplanes moving up one dimension at a time until it computes
the minimum points for the n-dimensional hyperplanes of the given index space. The details
are explained in the following example.

Example A.2.1 Revisiting Example A.1.2, we show in Fig. 4.3 the minimum and the max-
imum points of the hyperplanes Π9(2, 1) : 2x1 + x2 = 9 and Π21(2, 5) : 2x1 + 5x2 = 21. The
former hyperplane (Fig. 4.3(a)) contains the following five index points (lexicographically or-
dered): (0, 9), (1, 7) < (2, 5) < (3, 3) < (4, 1); the minimum is (0, 9) and maximum is (4, 1).
The latter hyperplane (Fig. 4.3(b)) contains two index points: (3, 3), which is the minimum,
and (8, 1), which is the maximum.

We show now how the Algorithm of Fig. A.1 finds the minimum points. In order to find
the minimum points for the hyperplanes 2x1 + 5x2 = k, 0 ≤ k ≤ 21, we begin by considering
the family of 1D hyperplanes Π1

k(5), which is defined by the equation 5x1 = k, 0 ≤ k ≤ 21. A
1D hyperplane has a minimum point if and only if it contains an index point. So, in this case
finding the minimum point of a hyperplane (or establishing that the hyperplane contains no
index points) is trivial. For instance, the minimum point of Π1

0(5) is (0), but Π1
1(5) has no

minimum point because there is no integer l that satisfies the equation 5 · l = 1. In this way,
we can easily find the minimum points (if they exist) for the hyperplanes Π1

k(5), 0 ≤ k ≤ 21.
Suppose that we want to compute the minimum point jm = (j1, j2) of hyperplane Π21(2, 5).

The fact that jm belongs to Π21(2, 5) means that 2j1 + 5j2 = 21. The lexicographic ordering
implies that (j2) is the minimum point of Π1

r(5), for some r, 0 ≤ r ≤ 21. The algorithm
utilizes the knowledge of the previously computed minimum points for the 1D hyperplanes
Π1

k(5) in order to determine the value of r. This is done by starting from 21 and decrementing
by one until we find a candidate value for r. The first such possible value is 20, corresponding
to the 1D hyperplane Π1

20(5) with minimum point (4). This value is dismissed because there
is no integer l that satisfies the equation 2 · l = 21 − 20 = 1. So, we proceed to find the next
candidate value, which is 15, corresponding to to the 1D hyperplane Π1

15(5) with minimum
point (3). This value is acceptable because there exists an integer l that satisfies the equation
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for (dim = (n-1); dim  1; dim--)

if (pointJ[ dim ] < U[ dim ]) { 

for (i = 1; i < dim; i++)

successorJ [ i ] = pointJ [ i ];

for (value = pointJ[ dim ] + 1; value  U[ dim ]; value++) {

successorJ[ dim ] = value;

usedPoints = 0;

for (i = 1; i  dim; i++)

usedPoints += A[i] * successorJ[i];

remPoints = hPlane - usedPoints;

if ( remPoints  0 && isMin [ remPoints ] [ n-dim ] ) {

for (i = dim + 1; i  n; i++)

successorJ [ i ] = minPoint[ remPoints ] [ n-dim ];

break;

}

}

}

Figure A.2: Pseudocode for finding the successor of index point pointJ that belongs to hyperplane
hPlane and stores it in successorJ

2 · l = 21 − 15 = 6. Hence, the value of the first coordinate is 3 and the resulting minimum
point is the concatenation of (3) with the minimum point of Π1

15(5), that is (3, 3).

A.3 Computing successor points in n-dimensional hyperplanes

Finding the successor of an index point is straightforward once the minimum points are
known. The pseudocode of the algorithm for computing the successor in the general n-
dimensional case is given in Fig. A.2. It finds the successor of index point pointJ that belongs
to hyperplane hPlane and stores it in successorJ. Vectors A and U contain the coefficients
of the family of hyperplanes and the coordinates of the terminal point, respectively. Array
isMin is a 2-dimensional boolean array such that isMin[k][n] is true if the n-dimensional
hyperplane k has a minimum point. Array minPoint is a 2-dimensional array that stores
the minimum points, i.e., minPoint[k][n] contains the minimum point of the n-dimensional
hyperplane k. Let i = (i1, . . . , in) be an index point of hyperplane Πk(a1, . . . , an), other than
the maximum, and let j = (j1, . . . , jn) be its successor. The fact that i and j belong to
Πk(a1, . . . , an) means that a1i1 + . . .+anin = a1j1 + . . .+anjn = k. Moreover, i < j, meaning
that there exists an integer r, 1 ≤ r ≤ n such that i1 = j1, . . . , ir−1 = jr−1 and ir < jr.
So, in order to construct j we begin by finding those coordinates of i that can be increased,
leading to points greater than i, but still in hyperplane k. This is trivial because coordinate
r of i can be increased if ir < ur, where ur is the r-th coordinate of the terminal point
U = (u1, . . . , un). Notice that it is pointless to increase the n-th coordinate (the last one)
and we use this observation in the code. From all the possible coordinates we can increase,
we use the maximum because any other candidate coordinate less than the maximum would
result in an index point greater than the successor of i. That is the reason we begin our search
from right to left, that is from n − 1 to 1. After we pick the candidate coordinate, call it r,
we try to increase it by 11, until we find the successor. The remaining k − (a1j1 + . . . + arjr)
points must be distributed in the last (n − r) dimensions in a valid manner. The crucial

1Any increase greater than 1 may result in a point greater than the successor.
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observation here is that in order to construct the successor we must use the minimum point
of the (n − r)-dimensional hyperplane k − (a1j1 + . . . + arjr). Any other point will result in
j being greater that the successor.

Example A.3.1 Continuing the previous example, we explain how to find the successor of
point (3, 3) of hyperplane Π21(2, 5). Using the Algorithm of Fig. A.2 we try to increment the
first coordinate of (3, 3). We begin the search for the proper value from 4 = 3+1. This leaves
21 − 2 · 4 = 13 points for the second coordinate. Unfortunately, hyperplane Π1

13(5) has no
minimum point, so we must reject candidate value 4. Similarly, candidate values 5, 6 and 7
are rejected. Let us examine now how the algorithm works when we try value 8. In this case,
we check whether Π1

5(5) (5 = 21 − 2 · 8) has a minimum point. The answer is positive and
the minimum point is (1). Hence, the successor of (3, 3) is (8, 1).
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