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Abstract
A kinematic algorithm is proposed to extend existing constructions of strain 
tensors from atomistic data to decouple elastic and plastic contributions to 
the strain. Elastic and plastic deformation and ultimately the plastic spin, 
useful quantities in continuum mechanics and finite element simulations, 
are computed from the full, discrete deformation gradient and an algorithm 
for the local elastic deformation gradient. This elastic deformation gradient 
algorithm identifies a crystal type using bond angle analysis (Ackland and 
Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship 
between bond angles to determine the local deformation from an ideal 
crystal lattice. Full definitions of plastic deformation follow directly using 
a multiplicative decomposition of the deformation gradient. The results 
of molecular dynamics simulations of copper in simple shear and torsion 
are presented to demonstrate the ability of these new discrete measures to 
describe plastic material spin in atomistic simulation and to compare them 
with continuum theory.

Keywords: copper, atomistics, plastic spin, deformation gradient

(Some figures may appear in colour only in the online journal)

1.  Introduction

Modern problems in materials science and engineering involve physical phenomena at a num-
ber of length scales from the macroscopic down to the atomistic. Because of the necessity that 
models and theory at disparate length scales agree with each other in order to provide reliable 
predictions, as well as with experimental evidence, much research has been focused on the 
development of tools to link atomistic and continuum scales [2].
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One of the great challenges in connecting atomistic and continuum scales is the lack of 
common objective measures of deformation. While the deformation gradient has become the 
basis of understanding deformation in continuum mechanics, atomistic measures of deforma-
tion have only appeared relatively recently. While a number of useful measures now exist on 
the microscopic scales (including centro-symmetry [3] and slip vectors [4]), these measures 
are not used at continuum scales, and indeed, it is unclear if analogous measures exist which 
can be derived from continuum variables. The alternative has been to compute measures on 
the atomistic scale that are analogous to continuum quantities. A number of methods for com-
puting strain tensors exist in the literature [5–10].

The basis for understanding of strain in continuum mechanics, however, is the deformation 
gradient. From this tensor and straightforward extensions of it, the majority of continuum 
deformation variables can be determined. Algorithms to compute a tensor quantity in dis-
crete simulations corresponding to the continuum deformation gradient have been success-
fully implemented by Horstemeyer and Baskes [8], Gullett et al [6], Zimmerman et al [9] and 
Shimizu et al [11].

In addition to measures of the assumed elastic deformation, inelastic continuum mechan-
ics has made great gains in understanding the role of plasticity, including dislocation forma-
tion and motion, related to a macroscopic perspective of mechanical materials properties. 
Furthermore, the plastic spin has been shown to be a relevant continuum variable for large 
deformations of anisotropic materials [12–16]. The plastic spin, commonly defined as the 
continuum spin relative to the spin of the material, is relevant to large (finite) deformations of 
anisotropic materials [17]. An example of a large deformation is the forming of metal sheets, 
such as during the rolling process of materials. Rolling introduces preferred directions in the 
macroscopic behavior, which gives rise to an anisotropic behavior in plastic deformations. 
These preferred directions rotate with the evolution of plasticity giving rise to plastic spin [16] 
sometimes referred to as texture. See [18] for a review of texture and deformation induced 
anisotropy. The kinematics of the substructure are what define the material symmetries. Such 
kinematics are not necessarily identical to the kinematics of the continuum, and the plastic 
spin accounts for the difference between the two. For example, in the case of a single crystal, 
the substructure symmetries are specified by the crystal lattices director vectors. Under large 
strains these may have spin ω, also referred to as constitutive spin [19], while at the same time 
the macroscale continuum may have spin W. According to [14], the difference,

ω= −W Wp� (1)

is the plastic spin. We use boldface to denote vector or tensor quantities and the distinction 
between the two depends on the context. In this case both ω and W are second rank tensors. 
Although in this example of a single crystal we identified the substructure spin with the spin of 
the director vectors, the substructure spin concept could be generalized to an arbitrary internal 
state variable (ISV) that represents some directional anisotropy within the material [19]. The 
aforementioned formulation of the plastic spin concept is not the only one used in the litera-
ture. Another frequent formulation is to identify the plastic spin with the antisymmetric part 
of the plastic velocity gradient. Although in certain situations the two formulations coincide, 
in general, they are not equivalent. This appears to have caused some confusion in the litera-
ture as discussed by Van der Giessen [20]. Dafalias [19] attempted to rectify the situation by 
providing a more abstract definition with fewer ad hoc assumptions.

Starting in the 1950s, Nye [21], Bilby et al [22], and Kröner [23] proposed, within the 
context of crystal plasticity, the multiplicative decomposition of the deformation gradient F 
into plastic and elastic parts, =F F Fe p. Later, this idea was extended to general continuum 
plasticity by Lee and Liu [24]. Presently the multiplicative decomposition of the deformation 
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gradient serves as the starting point for practically any study in plasticity, including the plastic 
spin. Conceptually, the material first undergoes a plastic deformation via Fp into a relaxed 
intermediate configuration that is not necessarily compatible, followed by an elastic deforma-
tion via Fe that restores compatibility. In reality, plastic and elastic deformations occur simul-
taneously. Nevertheless, the intermediate configuration can be isolated, and therefore defined, 
as the resulting configuration after removing all stresses from the end configuration. In the 
context of such intermediate configuration, consider the plastic velocity gradient Lp derived 
based on the plastic deformation gradient Fp as follows,

= = +−L F F D W˙p p p p p1� (2)

/ [ ( ) ]≡ +D L L1 2p p p T� (3)

/ [ ( ) ]≡ −W L L1 2p p p T� (4)

where Dp and Wp are the symmetric and antisymmetric parts of Lp, respectively. The second 
rank tensor Dp represents the plastic rate of deformation, while Wp represents the plastic 
component of the continuum spin. In much of the literature Wp is called the plastic spin, which 
appears to be an overlapping, but not necessarily equivalent definition to the one given earlier 
according to equation (1). It is this definition (equation (2)) of the plastic spin, also known 
in the literature as the material plastic spin, to differentiate it from Wp from equation (1), for 
which we will find an atomistic approximation. While Tucker et al [10] used an atomistic 
representation of the full deformation gradient to model the total spin, the authors know of no 
method for approximating the plastic material spin on the atomistic scale. Of central impor-
tance in such an approximation (as identified in [10]) is a decoupling of elastic and plastic 
contributions to the deformation gradient.

In this paper, we develop a set of algorithms for calculating the per-atom elastic defor-
mation gradient for face-centered cubic (fcc), body-centered cubic (bcc), and hexagonal 
close-packed (hcp) crystal structures, determined using bond angle analysis [1]. This ten-
sor is then used in conjunction with the full deformation gradient, using the method of 
Gullett et al [6], to calculate the plastic deformation gradient on a per-atom basis. Once 
both components of the deformation gradient have been isolated, the plastic material spin 
can be derived from the time-varying plastic deformation gradient. Section 2 briefly reviews 
the theoretical treatment of the continuum level deformation measures and discusses the 
concept of plastic spin. In section 3, algorithms are detailed for computing the local elastic 
deformation gradient for every atom in the system. Section 4 demonstrates the reliability of 
these new measures using atomistic simulations of deformation in copper. Qualitative com-
parisons are then made to finite element simulations of torsion in copper [25]. Finally, the 
work presented is summarized and averaging approaches for comparison with continuum 
calculations are discussed.

2.  Continuum mechanics, plasticity, and the plastic spin

In this section, we will briefly summarize the continuum mechanics concept of the deforma-
tion gradient and its extension to continuum plasticity theory. Assuming a fixed Cartesian sys-
tem containing a continuous body with locations in the body described by a position vector, 
we can define an alteration of that body, χ, which maps the initial position of a part of the 
body to a new position after the deformation. The set of initial positions will be termed the 
reference configuration, Ω0, with position vectors, X and the new positions, termed the current 
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configuration, Ω1 with position vectors, x. The reference and current configurations are related 
through the deformation by:

( )χ=x X� (5)

If the body is continuous, we can define the local deformation at a point as the gradient of 
the alteration

≡
∂
∂

F
x
X

� (6)

in terms of a second order, two-point tensor, F as the deformation gradient. For an infinitesi-
mally small vector, Xd , it can also be shown from [6] that

=x F Xd d� (7)

From equation (7) the role of F is the mapping a differential vector, dX, at X in the refer-
ence configuration to xd , at x in the current configuration.

As mentioned above the deformation gradient is typically multiplicatively decomposed 
into two components: the elastic deformation gradient, representing reversible deformation 
(e.g. a deformation that would vanish if the sample were unloaded), and a plastic deformation 
gradient, representing the irreversible inelastic movement of atoms as the result of dislocation 
motion or other mechanisms.

Given the deformation gradient or its elastic and plastic parts, one can further specify a 
time derivative of the deformation gradient assuming a current configuration, and hence, a 
velocity gradient, as in equation (2). Again, we will consider below the anti-symmetric part of 
the plastic velocity gradient as the plastic material spin.

3.  Elastic deformation gradient algorithm

At the atomistic scale, the elastic deformation gradient should describe the change in the lat-
tice vectors for a given crystal structure from their initial values. If the lattice vectors of a unit 
cell are compared between the reference and current configurations, this will provide the same 
information as the continuum elastic deformation gradient, namely the elastic distortion of the 
lattice. We propose defining the elastic deformation gradient for a given atom in an atomistic 
simulation as the proportional change in orthogonal lattice vectors from the reference to the 
current configuration:

=
∆
∆

F
x
X

e� (8)

where ∆x is a lattice vector in the current configuration and ∆X is one in the reference con-
figuration. In the case where the axes of the reference configuration are aligned with the 
orthogonal lattice vectors of crystal lattice, the components of the elastic deformation gradi-
ent, Fij

e are given by:

=
∆

∆
F

x

X
ij
e ij

j
� (9)

where ∆xij is the ith component of lattice vector j in the current configuration and ∆Xj is the 
length of lattice vector j in the reference configuration. Assuming the three vectors ∆X lie 
along the coordinate axes, equation  (9) will give the elastic deformation gradient directly. 
Otherwise, as long as the ∆X are orthogonal, these components can be transformed into a 
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coordinate system rotated arbitrarily with respect to the crystal lattice by summing the projec-
tions of the components of equation (9) onto each of the axes as in the following,

∑=
∆ ∆

∆ +∆ +∆=

F
x X

X X X
ij
e

k

ik jk

k k k1

3

1
2

2
2

3
2� (10)

where ∆Xij is now the ith component of reference configuration lattice vector j. Here, the 
denominator is the square of the length of ∆Xj. Note that this definition will only work for 
orthogonal reference vectors ∆X and produces a distinct value of the deformation gradient for 
every unit cell, which means, in principle, F will be defined individually for every atom. The 
challenge that remains is accurately identifying the lattice constants for a given atom. While 
extension to non orthogonal ∆X is possible by defining a coordinate transformation between 
the system defined by these vectors and Cartesian coordinates, this has not been attempted 
here as orthogonal axes can be easily defined for typical metal crystal structures.

In order to do this, one must first identify the crystal structure of the atom in question. We 
have chosen to accomplish this using bond-angle analysis (BAA) [1]. This method was chosen 
both because of its effectiveness in identifying crystal structures common in metals as well as 
its commonality with our method, presented below, of determining lattice vectors using bond 
angles. If BAA indicates that an atom is in a given crystal structure, we can proceed know-
ing that certain bond angles will necessarily exist for the target atom. By probing the atoms 
which comprise these pairs, we can identify the three independent lattice vectors. Because of 
their unique character with regard to the bond angles present, individual algorithms must be 
developed for every crystal structure. Below we present our algorithms for BCC, FCC, and 
HCP crystals.

3.1.  Body-centered cubic

We define the lattice vectors of a BCC cell based on the location of second nearest neighbors. 
The bond angle between two distinct second nearest neighbors in an ideal cell will be either 
90 or 180 degrees. In the deformed cell, bond angle analysis will recognize these angles if 
they are between 78.8 and 101.2 degrees (90 degree ideal bond angle) or above 160.9 degrees 
(180 degrees). Sufficient deformation to either no longer consider a pair outside of this range 
or to include a bond angle between nearest neighbors will cause BAA to no longer recognize 
the cell as BCC, so the success of the BAA algorithm ensures the success in determining the 
lattice vectors. Second nearest neighbors are identified by the presence of 90 degree bond 
angles associated with that atom. Once all 6 s nearest neighbors have been identified, pairs 
can be constructed based on atoms with a 180 degree bond angle. The vector between each of 
these pairs is then defined as twice a lattice vector, Xi (see figure 1). It is possible for BAA to 
recognize a crystal as BCC even if not all of the second nearest neighbors are found. If this 
happens, it will still be the case that 90 degree angles will only occur between second nearest 
neighbors, and each of the 3 primitive axes will always contain at least 1 s nearest neighbor. 
In the event that one of the pair used to define a lattice vector is missing, the lattice vector is 
instead defined as the vector for the atom under consideration to the second nearest neighbor 
that is found on that axis.

3.2.  Face-centered cubic

Primitive vectors for atoms identified as face-centered cubic by BAA are chosen by first find-
ing the primitive vectors in the dual space. The twelve nearest neighbors of a face centered 

D Dickel et alModelling Simul. Mater. Sci. Eng. 24 (2016) 085010



6

cubic atom can be grouped into three groups of four coplanar atoms with 90 degree angles 
between adjacent members (see figure 2). As in the BCC case, atoms can be grouped based 
on the presence of 90 and 180 degree angles which BAA will only find among the set of four 
atoms in each { }1 0 0  plane. Once the nearest neighbors have been grouped into their coplanar 
sets, dual space primitive vectors are defined by the cross product of the two vectors between 
neighbors with a 180 degree angle. The magnitude of these vectors will each equal the area of 
the side of the unit cell to which the coplanar atoms belong.

= ×− −X N Ni
2 1 4 3� (11)

Figure 1.  Undeformed body-centered cubic structure. The solid colored atoms (red 
online) are the second nearest neighbors of the atom for which the deformation is being 
considered, identified by the 90 degree angle between them and used to define the lattice 
vectors.

Figure 2.  Undeformed face-centered cubic structure. The three planes used to determine 
the dual space vectors are outlined. The solid colored atoms are one set of coplanar 
atoms (denoted n1 through n4), from which a dual space vector can be determined. The 
vector X1 is found from the cross product of the vector connecting atom n1 and n2 and 
the vector connecting n3 and n4. Once all three dual space vectors, Xi have been found, 
the lattice vectors, Xi can be determined using equation (12).
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where Xi is the dual vector orthogonal to the particular plane, and the vectors, N connect 
coplanar atoms on opposite sides of the atom for which the vectors are being found (figure 2). 
The dual vectors can be transformed into the lattice vectors of the unit cell using the relation

( )
=

×
⋅ ×

X
X X

X X X
1

2 3

1 2 3� (12)

with cyclic permutations giving the relation for X2 and X3 as well. Note here that 
( )⋅ ×X X X1 2 3  is the volume of the cell centered on the atom in question.

3.3.  Hexagonally close packed

Bond angles of 180 degrees will only occur among atoms in the basal plane. In this way, the 6 
nearest neighbors in the basal plane can be identified. Similarly neighbors in the plane above 
and the plane below the target atom can be distinguished by the presence of bond angles with 

( )θ = −cos 5

6
. In the basal plane, we utilize the 3 vectors connecting neighbor pairs with a 

180 degree bond angle. One half of each of these vectors is a lattice vector in the basal plane, 
Ai (each of the three equivalent vectors, ⟨ ⟩1 0 0 0 , using Bravais–Miller notation). For the out-
of-plane vector, the 6 vectors connecting the lower plane atoms to upper plane atoms not 
directly above them (identified by the unique angle identified above) are averaged to give 

→
C. 

As was the case with BCC crystals, if not all twelve nearest neighbors are identified, lattice 
vectors for unpaired neighbors are defined between the atom in question and the unpaired 
neighbor.

Since the unit vectors in an HCP cell are not all equivalent as was the case with FCC and 
BCC, and since equation (10) assumes the reference primitive vectors are orthogonal, care 
must be taken to ensure that consistent directions are found for both the reference and current 
configuration. The ambiguity in choosing vectors will be discussed below for all three cases. 
For purposes of calculating the elastic deformation gradient in an HCP cell, we transform 
from our set of three vectors in the basal plane to vectors which will be orthogonal in an ideal 
crystal to simplify the analysis and to define it consistently for all three crystal types. To this 
end, the three in plane lattice vectors are reduced to two orthogonal vectors by selecting half 
of one of the vectors as X1, averaging the other two to define X2. The vector 

→
C, previously 

defined, is already orthogonal to X1 and X2 (see figure 3).

3.4.  Algorithm

Once orthogonal primitive vectors are defined for both the reference and current configura-
tion for any of BCC, FCC, or HCP crystals, the elastic deformation gradient can be computed 
from equation (10). However, since for BCC and FCC (and in plane for HCP), the vectors are 
all equivalent and thus can be arbitrarily mixed, the vectors in the current configuration must 
be mapped and oriented one-to-one with vectors in the reference configuration. This is done 
using the assumption that the elastic deformation is small and hence, a unit vector in the cur
rent configuration will correspond to the reference configuration vector with which it is most 
parallel (smallest angle between them). In the case of pure (non-rotational) strains this will 
always be the case for structures which can be correctly identified by bond-angle analysis. In 
the case of rotations greater than  ∼45 degrees, the algorithm will not correctly match primi-
tive directions between the reference and current configurations, since current configuration 
vectors will be matched to the reference configuration vector they align most closely with. 
However, by considering the deformation gradient for some large time t between reference 
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and current configurations as the product of a number of smaller deformations (see [6]) each 
occurring over time ∆t, where the rotation between configurations is small, the correct elastic 
deformation gradient can be computed since every individual deformation gradient will cor-
rectly match current unit vectors to the reference configuration.

Table 1 summarizes the algorithm for calculating the elastic and plastic deformation gra-
dients. After the elastic deformation gradient is determined, the full deformation gradient is 
found following the method of Gullett et al [6]. We note that other methods exist for com-
puting the deformation gradient (including that of Falk [26] and of Mott et al [7]). While, in 
principle, the decomposition using the elastic deformation gradient should work with any 
definition of the full deformation gradient, most suffer from limitations as described in [6] 
including difficulty in either computational expense or the appearance of fictious strains in 
accurately describing systems with large plastic flow or rigid body rotations. For this reason, 
and because it also calculates the deformation gradient on a per-atom basis, [6] has been used 
to complete the decomposition. A brief description of this method follows.

The deformation of an atom m is described by the relative motion of its neighbors. If atom 
n is located at position Xn in the reference configuration and xn in the current configuration, 
there exists a mapping between the displacements in the reference and current configurations, 
∆Xmn and ∆xmn:

∆ = ⋅ ∆x F Xmn m mn� (13)

where Fm is the deformation gradient at atom m. Fm is then selected to minimize the l2 norm, 
φm, of the difference between ∆xmn and ⋅ ∆F Xm mn. This is accomplished with the following 
definition of the deformation gradient

= −F AD 1� (14)

Figure 3.  Undeformed hexagonally close packed structure. The vector, →c  is determined 
from the average vector connecting the planes above and below the basil plane of the 
atom in question. The interchangeable lattice vectors Ai are found using opposite pairs 
of atoms in the Basil plane. These 3 vectors can be reduced to the two orthogonal 
vectors X1 and X2 for the calculation of the deformation gradient.
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where D and A are the ×3 3 matrices

w

w

D X X

A x X

n

mn mnT
n

n

mn mnT
n

∑

∑

= ∆

= ∆� (15)

and wn is a weighting function based on the distance to a given neighbor.
Given the elastic and total deformation gradients, the plastic deformation can then be found 

directly by solving the multiplicative decomposition of the deformation gradient for Fp:

= −F F Fp e 1� (16)

Given these quantities, extension to other continuum mechanics quantities is straightfor-
ward. Time derivatives are performed using a finite difference scheme between time steps. 
However, as will be discussed below, time averaging is necessary to derive coherent results 
for the plastic spin. We also note here that, as with the deformation gradient derived by 
Gullett et al [6], the quantities derived here are not defined as a general function of position 
in space. Rather, the deformation gradient as well as its elastic and plastic parts defined only 
for each atom at its atomic position. As such, spatial averaging would be necessary for direct 
comparison with continuum results.

4.  Application to molecular dynamics simulations

We begin by demonstrating the ability of the algorithms of section 3 to accurately determine 
the elastic deformation gradient for small strains away from equilibrium. All of the simula-
tions shown were performed in LAMMPS [27]. Figure 4 shows small FCC, BCC, and HCP 
crystal cells of copper under a small shear strain. With the top and bottom row of atoms held 
fixed, the system is heated to 300 K using a Nosé–Hoover thermostat. Then, a constant veloc-
ity is applied to the top row of atoms and the crystal is allowed to deform under this constant 
strain rate. The system is periodic in the z-direction (into the page) and fixed boundaries are 
used along the x-axis. Atoms along the boundary in the y direction are left free. While copper 
is only metastable under this potential in BCC and HCP arrangements and may not accurately 
describe the evolution of the system, the particular potential is irrelevant for the example given 
here, as long as no plastic deformation is observed. We merely demonstrate that the elastic 
deformation gradient for each crystal structure is consistent (up to some thermal noise) with 
the externally applied strain. We now discuss the algorithm presented in table 1 for the par
ticular examples given in figure 4.

Table 1.  The algorithm for the computation of the plastic deformation gradient for each 
individual atom.

Deformation gradient decomposition

1: Determine crystal structure of atom in reference and
current configuration using bond angle analysis [1]
2: Find lattice vectors in reference and current configuration (section 3.1–3.3)
3: Match lattice vectors between reference and current configuration
4: Compute Fe (equation (10))
5: Compute F [6]

6: Compute Fp from: = −F F Fp e 1

D Dickel et alModelling Simul. Mater. Sci. Eng. 24 (2016) 085010
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Figure 4.  Simply sheared FCC (a), BCC (b), and HCP (c) single crystals at a strain of 
5% (2.5% for BCC). The simulation was run at a temperature of 300 K with a strain 
rate of   −10 s10 1. All components of the elastic deformation gradient computed using 
the algorithm in table 1 are approximately zero for off diagonal component and one 
for diagonal components, except F21 which is approximately 0.1 (0.05 for BCC) as 
should be expected, corresponding to a strain of 0.05 (0.025). Atoms are colored 
by the measured value of Fe

21. The plastic deformation gradient is computed to be 
approximately the identity matrix as there is no plastic deformation present.

D Dickel et alModelling Simul. Mater. Sci. Eng. 24 (2016) 085010
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For every atom in the simulation, the crystal structure in the reference (undeformed) and 
current state is computed. Atoms along the boundaries are left undetermined because a crystal 
structure cannot be determined for them by BAA (hence they are left white in the figures). 
Then, using the methods of section 3 for the particular crystal structure, the lattice vectors 
for each atom are determined in both the reference and current configuration. Next, for each 
atom, these vectors are matched between the two configurations. In this case, where the net 
rotation is small, this is straight forward. However, if large enough shear strains were applied 
such that vectors might be mixed between reference and current configuration, intermediate 
time steps could be employed as the lattice vectors should change smoothly over time (see 
section 3.4). Finally, the deformation gradients (elastic and total) for each individual atom 
can be calculated using equation (10) and Gullett et al respectively. The plastic deformation 
gradient is then directly computed, on a per-atom basis, from these. This gives the correct 
elastic and plastic deformation gradient up to the point where BAA can no longer identify 
the crystal structure. In a real material, plastic deformation would normally become a factor 
before BAA will uniformly fail. To demonstrate the effectiveness of this method in decoupling 
elastic and plastic strain, we deform an FCC lattice of copper atoms under simple shear past 
the point of dislocation formation. The atoms are heated to 300 K with the bottom and top 
row of atoms fixed with some initial velocity. The motion of the atoms in the bulk is covered 
by a modified embedded atom method (MEAM) potential for copper [28]. The lattice is ori-
ented for double slip under the exerted strain. Figure 5 shows elastic and plastic deformation 
gradients at a strain of 20% for an entire crystal. It also shows the evolution of the relevant 
part of the elastic and plastic deformation gradient tensor for two different atoms. The first 
atom is not directly involved in any plastic deformation gradient (atom 841). As such, its 
plastic deformation gradient remains close to zero (this is due to a slight mismatch between 
the methods for calculating the full deformation gradient and the elastic deformation gradient. 
As can be seen in figure 5(d), this mismatch is small compared to the deformation caused by 
a single dislocation.) Atom 2161 has two distinct dislocations pass through it over the course 
of the simulation, creating the 2 jumps in Fp

21. Both atoms show a gradual increase in elastic 
deformation which drops as dislocations are formed to relieve the resulting stress. It should 
be noted here that for atoms whose crystal structure has changed, we do not have a method to 
define an elastic deformation gradient and, for purposes of these examples, assume that it is 
the identity tensor. This means that if the crystal structure has changed from the reference con-
figuration, all of the strain is considered plastic. It may be possible to relate primitive vectors 
between different crystal structures (for example using the Bain transformation between FCC 
and BCC crystals or close packed plane vectors in FCC to compare with HCP). The possibili-
ties of defining elastic strain between different crystal structures has not been considered here, 
however. The effect of dislocation motion can be seen in figure 5, where the onset of plasticity 
greatly reduces the elastic strain. We can also see the local effect of dislocation motion, reduc-
ing elastic strain in regions with increased plastic strain. The paths traced by dislocations can 
also be seen in the crossed lines of increased plastic deformation. Because the elastic (and 
hence the plastic) deformation gradient is only defined using the local atom neighbors, plastic 
deformation will only appear in atoms through which the core of the dislocation has passed. 
Figure 6 shows the effects of a loading and unloading cycle, showing the presence of plastic 
deformation even in a sample which is macroscopically unstrained. The system was sheared 
as above up to a strain of 25%. The net motion was then reversed and the top row of atoms 
returned to its initial position. As expected, plastic deformation remains in the unloaded con-
figuration, while the elastic deformation gradient (not shown) is close to zero for every atom. 
This can be directly compared with internal state variable models where the history of the 
material must be considered in determining its mechanical properties.
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Figure 5.  A slab of copper atoms sheared to 20% strain. The Fe
21 component of the 

elastic deformation gradient (a) is approximately uniform and increased strain is 
randomly distributed. The F p

21 component of the plastic deformation gradient (b) is 
considerably higher and concentrated in the path traced by dislocations that have moved 
through the sample (along ⟨ ⟩1 1 0  directions). Figures 5(c) and (d) show Fe

21 (c) and 
F p

21 (d) as a function of applied strain for 2 different atoms. The atom designated 841 
does not experience any plastic slip. Atom 2161 has dislocations move through it at 
two different times, indicated by the two steps in F p

21. Note: Because BAA is unable to 
determine the crystal structure of boundary atoms, the components of the deformation 
gradient cannot be found. In addition, the fixed atoms at the top and bottom also cannot 
be resolved by BAA above a certain strain, leading to a failure of the algorithm for Fp. 
These atoms are colored in white.

Figure 6.  The F p
21 component of the plastic deformation gradient of a single crystal slab 

of copper, deformed to 25% shear strain and returned to zero net strain. The evidence of 
dislocation motion (and on a continuum scale, work hardening) can be clearly seen by 
the increased magnitude of the plastic deformation gradient.
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Finally, having verified that the time independent strain quantities accurately reflect what 
would be expected from continuum mechanics, we can consider the more complicated case 
of plastic spin. However, we must first consider what the time derivative (equation (2)) will 
mean for our algorithm.

Tucker et  al [10] highlights different methods for calculating the velocity gradient. 
The first two of these methods involve using the instantaneous velocities of the parti-
cles directly, while the third uses the difference in F between time steps. In the case of 
a dislocation moving through a crystal (see for example: figure 5(b)), it is clear that the 
plastic deformation increases in discrete units (proportional to the Burgers vector) and 
so the plastic velocity gradient is only nonzero in the instant the core of the dislocation 
passes through the atom in question. Clearly, to compare to a meaningful continuum level 
quantity, instantaneous measures of the velocity gradient will no be useful and averaging 
should be done both spatially and temporally. To this end, the derivatives in equation (2) 
are computed using a simple backward difference method between consecutive times 
steps. Averaging can then, in principle, be taken over all the atoms in a given region to find 
a plastic spin over a region comparable to continuum results. Figure 7 shows this method 
as applied to the torsion of a copper pillar. The presence of spin can be seen around the 
path of dislocations in the pillar.

Figure 7.  A copper micropillar under simple torsion up to 30°. The plastic material spin 
can be observed by the color differentiation. Color indicates the plastic material spin 
in the z (vertical) direction. Spin is localized along the paths of dislocations as would 
be expected. It can also be observed that plastic material spin is not evenly distributed 
around the cylinder, but rather concentrated on opposite sides.
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5.  Conclusion

A new method for calculating the plastic material spin from discrete atomic data, using the 
total deformation gradient and a new algorithm for finding the elastic deformation gradient 
is presented. By decoupling the elastic and plastic contributions to deformation in atomistic 
simulation, additional quantities, such as the plastic material spin, can be compared between 
discrete and continuum length scales. The proposed calculation of the elastic deformation gra-
dient follows bond-angle analysis, using the bond angles present in a given crystal structure 
to define lattice vectors which can be compared between reference and current configurations.

The plastic deformation gradient, computed in this manner, will reflect the motion of dislo-
cations or other plastic defects through a given atom at some time in its history. The motion of 
a dislocation through an atom will appear as a jump in Fp. By time averaging over this discon-
tinuous jump, a plastic velocity gradient and, from there, a plastic spin, can be calculated. We 
reiterate here that the derived quantities, including elastic and plastic deformation gradients, 
and the plastic spin, are defined on a per-atom basis. In order for a meaningful comparison to 
be made between these values and a continuum quantity, spatial averaging must be performed. 
The two most direct methods are as follows: first, assuming a suitable length scale separation 
between the macroscopic and the microscopic, a given volume of atoms could be made tan-
tamount to a macroscopic continuum point, with the continuum variable being related to the 
simple average of the values within that volume element. As a second, and more robust option, 
the Irving–Kirkwood method [29–32] use a localization function to define a spatial support 
over which the average is computed. Such a localization could take the form

˜( ) ( )∑ω ω φ= −X X X
n

n i� (17)

Here, φ would be a weight function and ω̃ would be the spatially resolved plastic spin. A 
complete description of an atomistically derived plastic spin requires the use of such a kernel 
function and will be the subject of future work.

Since the formulation utilizes position vectors and neighbor lists, considering only nearest 
neighbors (and second nearest neighbors for BCC crystals), the computational complexity, 
excluding the generation of neighbor lists scales linearly with the number of atoms. Once both 
the total deformation gradient and the elastic gradient are constructed, all other local quanti-
ties from continuum plasticity theory can be computed directly.

Simple shearing of a copper slab showed the accuracy of the algorithm in decoupling elas-
tic and plastic deformation. The motion of dislocations increased the plastic deformation in 
their wake and relaxed the elastic deformation throughout the crystal. The simple torsion of a 
nanopillar of copper atoms was simulated to evaluate the computed plastic spin. The results 
demonstrate the ability of this method to determine both the elastic and plastic contributions 
to deformation in a regular crystalline metal.

Use of this method will help to strengthen the information bridge between discrete atomic 
simulation and continuum simulations on the smallest length scales. By introducing the con-
tinuum metrics into the atomistic scale, the ability to validate accurate continuum models, as 
well as a deeper understanding of the discrete mechanisms which facilitate meso- and macro-
scopic behavior will be greatly enhanced.
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