Go to top of the page

Mechanical Properties

Current experimental evidence suggests that the mechanical properties of laboratory AM specimens may not be representative of those associated with parts. This is due primarily to differences in geometry and size, which influences the thermal histories experienced during fabrication, and consequently, microstructural features, surface roughness and more. Additionally, standards for mechanical testing methods, specimen design procedures, and post-manufacturing treatments may require revision for AM parts. Standardizing the AM process may only be accomplished by strengthening the current understanding of the relationships among process parameters, thermal history, solidification, resultant microstructure, and mechanical behavior of the part. Having the ability to predict variations in mechanical behavior based on resultant microstructure is a temporary solution for making AM a more reliable means for producing functional parts.

affect

Developing microstructure-property models is arguably the first necessary step toward design optimization and the more efficient, accurate estimation of the structural integrity of AM parts.

Porosity aspect ratio is different depending on build orientation