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Smooth Yield Surface
Constitutive Modeling for
Granular Materials
In this paper, the authors present an internal state variable (ISV) cap plasticity model to
provide a physical representation of inelastic mechanical behaviors of granular materials
under pressure and shear conditions. The formulation is dependent on several factors:
nonlinear elasticity, yield limit, stress invariants, plastic flow, and ISV hardening laws to
represent various mechanical states. Constitutive equations are established based on a
modified Drucker–Prager cap plasticity model to describe the mechanical densification
process. To avoid potential numerical difficulties, a transition yield surface function is
introduced to smooth the intersection between the failure and cap surfaces for different
shapes and octahedral profiles of the shear failure yield surface. The ISV model for the
test case of a linear-shaped shear failure surface with Mises octahedral profile is imple-
mented into a finite element code. Numerical simulations using a steel metal powder are
presented to demonstrate the capabilities of the ISV cap plasticity model to represent
densification of a steel powder during compaction. The formulation is general enough to
also apply to other powder metals and geomaterials. [DOI: 10.1115/1.4034987]

1 Introduction

A constitutive model that captures the mechanical behavior of
granular and frictional materials (soils, sands, concrete, rocks, ice,
metal powder, etc.) can have different levels of complexity. A
physically based, microstructure sensitive constitutive model is
not only probably the most complex but also probably the most
accurate for use in predictions. In particular, capturing the
process–structure–property sequence requires that the physically
based cause–effect interactions be included within the constitutive
equations. During the densification process of granular materials,
when an increasing pressure is applied, an initially loose granular
material becomes increasingly cohesive, and its overall behavior
tends to be similar to that of porous and dense materials. Piccol-
roaz et al. stated that modeling the mechanical process of compac-
tion requires the description of the transition from a granular to a
dense or even a fully dense (zero porosity) state [1]. In the transi-
tion between granular and fully dense states of a given material,
the constitutive formulation faces the challenging problem of
granular and dense materials having completely different mechan-
ical behaviors, e.g., nonlinear elastic properties, cohesion, inter-
particle friction, pressure-sensitive yielding, plastic flow,

hardening laws, crack/fracture induced damage, differences in
strength in triaxial extension versus compression, and the Bau-
schinger effect. Capturing these behaviors typically necessitates
the use of fairly complicated and expensive nonlinear material
models [2–11].

Since the early developments in the 1950s and 1960s by
Drucker and Prager, plasticity theory has become an established
framework for modeling the mechanical behavior of different
metal and nonmetal materials [12]. Many critical state models
for soils mechanics have been proposed to address the effects of
stress state on geological types of materials, such as soils, sands,
rock, and concrete [13–15]. These models were then adapted to
partially saturated soils [16], pharmaceutical powders [17,18],
cosmetic powders [19], ceramic and hard metal powders and
most recently, for ductile metal powders [20,21]. For the case of
macromechanical modeling of metal powder compaction, the cap
model [22,23] and Cam-Clay model [24] are two of the most
popular constitutive models. One of the pioneering extensions of
metal plasticity theory to soil plasticity using the cap model was
performed by Refs. [22,23] when they extended the von Mises
yield criterion to capture the inelastic coupling between devia-
toric and volumetric behaviors of many porous media. The basic
cap model was first introduced when Ref. [25] proposed that the
volumetric plasticity behavior of soils might be successfully
modeled with a strain hardening compression cap surface that
closes off the open end of the Drucker–Prager failure envelope.
While preceding soil models and yield criteria, such as
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Mohr–Coulomb, had captured frictional confinement strengthen-
ing behavior, this strain hardening model was one of the first that
attempted to couple the deviatoric and volumetric compaction
deformation behaviors of granular media. The role of the cap
was to enhance the model in such a way as to include a represen-
tation of the phenomenon of soil compaction.

These models provide a powerful, yet adaptable way of repre-
senting many aspects of the dynamic stress–strain behavior of
geological materials. The Drucker–Prager cap model is truly a
unification of many classical plasticity models. For example, by
using appropriate material parameters, this cap plasticity model
can be instructed to behave precisely like a classical hardening or
nonhardening von Mises model, in which case the yield surface
becomes a cylinder centered about the (111) direction in the prin-
cipal stress referential.

In general for porous metals, many compaction models [26–28]
assume that tensile and compressive strengths are equal, partly
because these models have been developed for the study of ductile
fracture. Other models, such as the Cam-Clay model [24] or the
Drucker–Prager model [22] for soil mechanics, assume a vanish-
ing or a small cohesive strength between the particles. During the
compaction of metal powders, the interparticle cohesive strength
increases. Cohesion is a descriptive indication of interparticulate
bonding behavior of powders. Fleck [29] proposed a material
model with a variable degree of interparticle cohesion and intro-
duced the cohesion factor, g, for which fully sticking contacts are
obtained when g ¼ 1, and zero cohesive strength is present at
g ¼ 0. In the last stage of compaction when the particles are
mechanically bonded and the mechanism that controls the increas-
ing density is mostly plastic deformation, the porous aggregate
undergoes plastic hardening during plastic deformation arising
from geometric effects (density change) or strain hardening [28].
During compaction, an increase in the material cohesion along the
axis of the equivalent Mises stress is observed. In this work, the
authors assume this increase in the material cohesion is represen-
tative of the plastic hardening mechanisms in addition to bonding
due to diffusional effects.

The modeling of the mechanical process of compaction requires
a description of the transition from a granular to a dense or even a
fully dense state. Since granular materials are characterized by
mechanical properties much different from those typical of dense
solids, the constitutive model must describe a transition between
two distinctly different states of a material. In this case, yielding
becomes insensitive to pressure at high triaxialities, and the pow-
der aggregate is characterized by a ductile behavior of near fully
dense material. For example, Coube and Riedel [30] set a limit to
the maximum possible equivalent Mises to avoid its value to reach
unrealistically high stresses at the intersection of the cap and the
failure line.

A successful model for the representation of the inelastic
mechanical behavior should reflect the inter-particle cohesion,
the frictional, and the compressible-densification yielding char-
acteristics that have a major influence on the properties of the
granular material. The granular model also needs the ability to
describe the evolution of the porosity or density and the plastic-
ity of the brittle/ductile particles with complex-shape geometries
under multiaxial stress states. The density distribution is
dependent on the combination of many factors, such as geomet-
rical shape and mechanical properties of the aggregate. There-
fore, the formulation of a physically based constitutive model
needs to distinguish two different scales important during the
deformation processes:

� The deformation of the aggregate idealized as a continuum—
the classical macroscopic level.

� The deformation of the individual particles—the microscopic
level.

To have an accurate description of the different scales, the fol-
lowing mechanical properties as defined by Trasorras et al. [31]
should be part of the material model:

� Nonlinear elastic deformation of the granular aggregate.
� Nonlinear plastic deformation of the granular aggregate.
� Geometric hardening of the granular aggregate as a result of

densification and a very large reduction in volume.
� Plastic deformation of the particles according to the behavior

described by classical plasticity with isotropic hardening as
the granular aggregate is compacted.

� Strain hardening of the metal powder particles.

To allow hardening of the failure shear envelope, the model
should correlate the hardening of the overall aggregate with the
plastic hardening of the particles and the density of the compacted
material.

While numerical discretization techniques for plasticity models
have been presented in the literature, performing implicit integra-
tion and analysis of constitutive equations using cap models
remains a highly challenging task. One of the difficulties associ-
ated with most isotropic cap models is that the three independent
surfaces comprising the yield surface do not intersect smoothly. It
has been shown that the elastoplastic tangent operators at the
corner points on such yield surfaces are singular, giving rise to
potential numerical difficulties [32]. Many authors have devel-
oped cap model formulations by introducing yield surfaces
smoothly connected, which eliminate the “corner coding”
[2,3,33–35].

In this paper, a generalized ISV constitutive model for different
types of granular materials is presented that includes the afore-
mentioned essential qualities. The mathematical model is intro-
duced as a combination of the modified Drucker–Prager/Cap
model accounting for the lode-angle effect and a Mises type plas-
ticity model within an ISV constitutive framework. A formulation
for a smooth transitional surface between the shear failure enve-
lope and cap surface is also introduced and can be applied to dif-
ferent nonlinear shear failure shapes and octahedral profiles.
Furthermore, to avoid numerical singularities while dealing with
the corner points in the octahedral plane on the corners, a parame-
ter c is introduced in the Lode function CðhÞ; which “smooths”
the corners and makes them continuously differentiable. The fail-
ure envelope and the cap surface are defined as yield surfaces that
are functions of the three stress invariants. As the formulation
includes different mechanical properties of metal plasticity mod-
els, such as yield limit, rate sensitivity, isotropic hardening and
kinematic hardening, it can also be used for porous and dense
metallic materials. However, brittle/ductile fracture mechanisms
of particles occurring at severe loading conditions, such as high
shear loading, are not represented in this paper.

The approach herein differs from previous compaction models
in that it combines the transition yield surface function with a
modified lode angle definition to smooth corners of the octahedral
profiles, and thereby a smooth transition equation is established
for any shape and octahedral profile of the shear failure yield sur-
face in order to avoid any potential numerical difficulties. The
application to several different failure surface profiles is intro-
duced and the compaction model is calibrated to a common cop-
per steel powder. Densification of general granular materials is
not as high as that in metallic powders. During compaction, metal
powders deform and local plasticity at particle contacts allow for
higher densification, which is accounted for in the ISV constitu-
tive formulation presented in this work.

2 Plasticity for Granular Materials

To characterize the behavior of the granular aggregate, an ISV
modified Drucker–Prager/Cap plasticity model based on the origi-
nally proposed work by DiMaggio and Sandler [36] for soil
mechanics is used. This double surface plasticity model consists
of an elastic region in stress space, bounded by a shear-failure
surface, Fs, in the low pressure region and an elliptical yield cap
surface, Fc, in the high pressure region. The mechanical behavior
of granular media in compression can arise from adhesion and
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frictional sliding at particle interfaces, fracture of particles, and
plastic deformation of particles [37]. The yield/failure surfaces
used with this model are written in terms of the three stress invari-
ants: the hydrostatic stress,

p ¼ � 1

3
trace rð Þ (1)

the equivalent Mises stress,

q ¼
ffiffiffiffiffiffiffiffiffiffiffi
3

2
s : s

r
(2)

and the third devatoric stress invariant to reflect the behavioral
features in triaxial extension and triaxial compression,

r ¼ 9

2
s � s : s

� �1
3

(3)

The deviatoric stress tensor s is defined as

s ¼ rþ p1 (4)

where r is the Cauchy stress tensor and 1 is the second-order unit
tensor. Following standard conventions in soil mechanics, com-
pression and compaction are assumed to be positive. The third
invariant, r, influences only the Lode [38] angle, h, also called the
deviatoric polar angle, which determines the position (or triaxial
state) of the stress point in the octahedral (deviatoric) plane and is
defined by the following,

h ¼ � 1

3
sin�1 r3

q3

" #
(5)

with h 2 [�30 deg, 30 deg]. The Lode angle is a measurement
of the intermediate principal stress, the value of which is �30 deg
for triaxial compression and 30 deg for triaxial extension. The
Lode angle is introduced in the yield surface expression through
a Lode angle-dependent function, CðhÞ, which is discussed in
Sec. 2.1.

2.1 Cap Model. In the original cap model proposed by
DiMaggio and Sandler [36], the corner intersection or conditional
branching between the two surfaces associated with the cap
model, i.e., the failure envelope and cap yield surfaces, is a source
of potential numerical instabilities. To eliminate this corner
coding in the algorithm and have a better representation of experi-
mental data, many authors [2–4,35] have utilized a nondimen-
sional cap surface given by Pelessone [39] as

Fc p; pað Þ ¼ 1� H p� pa½ �
p� pa½ �2

2 pb � pa½ �2
¼ 0 (6)

This cap surface is multiplied with the failure surface to form a
smoothly varying and continuously differentiable capped-failure
function. In Eq. (6), H[�] is the Heaviside function defined by

H½x� ¼ 1 if x � 0

0 if x < 0

�
(7)

The cap hardening variable, pa, is an evolution parameter that rep-
resents the volumetric plastic strain driven hardening/softening
and controls the motion of the cap surface, and pb defines the
intersection of the cap surface with the pressure axis p (Fig. 1).
The resulting capped-failure function is used to obtain the overall
yield surface, which is given by Ref. [39] as

Fðp; q; paÞ ¼ q� FsFcðp; paÞ ¼ 0 (8)

where Fs is the shear failure yield surface.
In this work, the authors present a developed modified

Drucker–Prager shear failure yield surface of the smooth cap
model that accounts for the material’s density-dependent material
cohesion and interparticle friction in addition to the Lode angle
effect. The shear failure surface is defined as

Fsðp; q; hÞ ¼ CðhÞq� F�eðpÞ ¼ 0 (9)

with

F�eðpÞ ¼ FeðpÞ � ftðpÞ (10)

Here, the function CðhÞ depends on the Lode angle h to character-
ize the triaxial state of stress, FeðpÞ is a pressure-dependent func-
tion that defines the shape of the shear failure surface, and ftðpÞ
is a transition function that smoothly connects the shear failure
surface to the cap surface (the cap surface is described later in the
section) in such a manner that the final capped yield surface is a
continuously differentiable function. The function FeðpÞ is
given by

FeðpÞ ¼ d þ p tan b (11)

where the compaction material model parameters d and b
represent cohesion and angle of friction, respectively, of the
aggregate. Moreover, these parameters are allowed to vary
with the density q of the aggregate, which evolves during the
compaction/densification process as follows:

d ¼
0 if q < qd

d1 exp ½d2ðq� qdÞ� � d1 if q � qd

(
(12)

tan b ¼
b1 � b2qd if q < qd

b1 � b2q if p � qd

(
(13)

where qd , d1, d2, b1, and b2 are material parameters that can be
determined from experiments on cylindrical samples [30]. Note
that at low densities (q < qd), material cohesion d is considered
to be zero, and the interparticle friction b is considered to be
constant.

2.2 Transitional Surface. The transitional function ftðpÞ is
introduced in the failure yield surface, Fs; to define a smooth tran-
sitional yield function that connects the failure envelope and the
cap surface. The pressure-dependent function ftðpÞ is defined by

ft pð Þ ¼
H p� pc½ �
2 pa � pcð Þ

p� pc½ �2
@Fe pð Þ
@p

(14)

Fig. 1 The ISV cap model showing the yield surface in the
meridional (q, p) plane
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with

@Fe pð Þ
@p

¼ tan b (15)

The function H½p� pc� is the Heaviside function

H½p� pc� ¼
1 if p � pc

0 if p < pc

(
(16)

The variable pc is defined by

pc ¼ pa � pd (17)

where pd is a material parameter initially set to a very small value.
To have a smooth cap model, the failure envelope surface must be
continuous with the cap yield surface, and therefore must verify
the null-derivative condition at p ¼ pa given by

@Fe pð Þ
@p

����
p¼pa

¼ 0 8pa (18)

It is noted that the procedure to obtain a continuously differen-
tiable failure surface, which includes the shear failure surface Fs

(Eq. (9)) along with the cap yield surface Fc (as defined in
Eq. (21)), through the usage of transition functional, ftðpÞ, is dif-
ferent from the procedure used in previous works (as shown in
Eq. (8)). This approach also allows the use of a nonlinear shear
failure surface continuously connected to the cap surface, exam-
ples of which are shown later in the section.

Sandler and Rubin [40] proposed a relationship called the iso-
tropic cap hardening law to define the evolution of the cap’s
motion along the pressure axis with respect to the corresponding
volumetric plastic strain

�ep
vol ¼ Wð1� exp ½�c1ðpb � pbj0Þ

c2 �Þ (19)

where W is the maximum plastic volumetric strain (at hydrostatic
compression “lockup”), c1 and c2 are material shape factor param-
eters, and pbj0 is the initial value of pb. Using the conservation of
mass, the relative density (ratio of apparent density to theoretical
“maximum” density), q, is derived from the plastic volumetric
strain �ep

vol as follows:

q ¼ q0 exp ð�ep
volÞ (20)

where q0 is the initial density or tap density.

2.3 Cap Yield Surface. The cap yield surface, Fc, has an
elliptical shape in the meridional (q; p) plane (Fig. 1) and is
written as

Fc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C hð Þ2q2 � 1

R2
p� pa½ �2

r
� F�e pað Þ ¼ 0 (21)

where R is the cap eccentricity that controls the ellipsoidal shape
of the cap. The cap hardening variable pb that controls the motion
of the cap surface is related to pa as follows:

pb ¼ pa þ RF�eðpaÞ (22)

Finally, parameter R, which determines the ellipticity of the cap
surface, is related to the density of the aggregate through the S-
shaped sigmoid function described as follows:

R ¼ R0 þ
a

1þ exp
qc � q

b

� �c (23)

where R0 is the initial cap eccentricity (the lower asymptote), a is
the difference between the upper and lower asymptotes, qc is the
value of the density q at the point of inflection of the curve, and b
and c exercise further control over the shape of the curve. Note
that hardening caused by the density changes under pressure/shear
loading not only expands the yield curve in the stress space but
also causes the shape change as R is not a constant in our frame-
work. This is in contrast with the previous works by Fossom and
Brannon [3] in which R was assumed to be a constant.

Coube and Riedel [30] considered in their initial powder com-
paction model the cap eccentricity R, the material cohesion d, and
the internal friction b to depend on the volumetric plastic strain.
Coube and Riedel [30] also allowed in their second powder com-
paction model two material parameters, internal friction b and
material cohesion d, to be internal state variables and functions of
both volumetric and equivalent plastic strain rates. The evolution
equations of these variables exhibit a more pronounced softening
on the failure line, and the objective of this formulation is to
describe the cracking as a process of strain localization.

2.4 Other Shear Failure Surfaces. The transitional surface
ftðpÞ defined in Eq. (13) can also be used in conjunction with shear
failure yield surfaces of different shapes, such as the hyperbolic
form and a general exponent form (Figs. 2 and 3), to smoothly
connect to the cap surface yield surface Fc (Eq. (20))

� hyperbolic form:

Fs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðd0j0 � ptj0 tan bÞ2

q
� FeðpÞ þ ftðpÞ ¼ 0 (24)

FeðpÞ ¼ d0 þ p tan b (25)

@Fe pð Þ
@p

¼ tan b ) ft pð Þ ¼
H p� pc½ �
2 pa � pcð Þ

p� pc½ �2 tan b (26)

F�e pað Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0 � pa �

pc

2

� �
tan b

� �2

� d0j0 � ptj0 tan b
	 
2

s
(27)

� general exponent form:

Fs ¼ aqb � FeðpÞ þ ftðp; paÞ ¼ 0 (28)

FeðpÞ ¼ pþ pt (29)

@Fe pð Þ
@p

¼ 1 ) ft pð Þ ¼
H p� pc½ �
2 pa � pcð Þ

p� pc½ �2 (30)

F�e pað Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
pa þ pt �

pc

2

� �
b

s
(31)

Fig. 2 Hyperbolic-shaped shear failure yield surface smoothly
connected to a cap surface in the meridional (q, p) plane

011010-4 / Vol. 139, JANUARY 2017 Transactions of the ASME

Downloaded From: https://materialstechnology.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jemta8/935710/ on 07/10/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



A three-dimensional view of the linear, hyperbolic, and exponent-
shaped shear failure surfaces smoothly connected to the cap
surface is obtained by revolving the yield surface line in the
meridional plane around the p-axis of pressure (Fig. 4).

2.5 Elastic Modulus. The cap model is used when the mate-
rial being studied contains enough porosity (or highly compliant
second phase inclusions) so that the inelastic volume reduction
becomes possible through irreversible reduction of void space.
Intuitively, one might expect the elastic moduli to stiffen as voids
collapse. Many researchers have observed that the granular mate-
rial model can be improved by updating the elastic and plastic
properties (elastic moduli, cap eccentricity, material cohesion,
internal friction, green strength) with the densification variable q
(or the effective volumetric plastic strain �ep

vol). The elastic
Young’s modulus, E, the shear modulus, G, and the bulk elastic
modulus, K, can be deduced from the tests as a function of the
density, q, and the Poisson’s ratio, �, can be derived from the
shear and bulk moduli [41]. The elastic modulus as a function of
the density is given by

E ¼ E0 þ E1qð Þ exp
q
q0

� �� �c

(32)

where E0, E1, q0, and c are material parameters and q is the
density (g/cc).

Fig. 3 Exponent-shaped shear failure yield surface smoothly
connected to cap surface in the meridional (q, p) plane

Fig. 4 Three-dimensional representation of the linear-, hyperbolic- and exponent-
shaped shear yield surfaces smoothly connected to the cap surface with a Mises,
Gudehus, William–Warnke, and Mohr–Coulomb octahedral profiles
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2.6 Octahedral Profiles. In the material characterization of
geomaterials, a triaxial extension (TXE) on cylindrical samples is
obtained when the radial (or lateral) stress, rr , is increased while
the axial stress, ra, is held constant, and the reverse is true for
triaxial compression (TXC) tests. The triaxial laboratory tests on
geomaterials exhibit the interesting phenomena that for a given
mean stress, p, the triaxial extension tests will fail at a lower shear
failure stress than the triaxial compression tests [42].

The triaxial stress state is usually characterized by the third
invariant of the deviatoric stress tensor. Hence, in addition to the
first and second stress invariants p and q, constitutive models
are also function of the third stress invariant, r, through a Lode
angle-dependent function CðhÞ to reproduce more realistic failure
in triaxial compression and extension (Fig. 5). Fossum and Bran-
non [3] have summarized in their Sandia Geomodel three different
Lode angle-dependent functions:

(1) Gudehus (an efficient smoothed profile, with restrictions on
convexity):

C hð Þ ¼ 1

2
1þ sin 3hþ 1

W
1� sin 3hð Þ

� �
(33)

(2) Willam–Warnke (a relatively inefficient smooth profile
with no convexity constraints):

C hð Þ¼ 4 1�W2ð Þcos2a�þ 2W�1ð Þ2

2 1�W2ð Þcosa�þ 2W�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1�W2ð Þcos2a�þ5W2�4W

p
(34)

where a� ¼ ðp=6Þ þ h
(3) Mohr–Coulomb (distorted hexagon polygon):

C hð Þ ¼ 2
ffiffiffi
3
p

3� sin h
cos h� sin / sin hffiffiffi

3
p

� �
(35)

where / is determined from the user-supplied strength ratio
sin / ¼ 3ðð1�WÞ=ð1þWÞÞ

As shown on Fig. 6(a), the Gudehus and William–Warnke
options both correspond to fully differentiable yield functions
with no vertices. The Mohr–Coulomb option (which is available
principally for comparisons with analytical solutions) is differen-
tiable everywhere except at triaxial states where yield surface ver-
tices require special numerical handling. To avoid these numerical
singularities, we have introduced a parameter c and replaced h

with �h in the Lode function CðhÞ [43] so that the deviatoric
section can be shaped with a smoothing effect on the corners (see
Fig. 6(b)). The replaced parameter �h is given as

�h ¼ 1

3
sin�1 sin 3ch½ � (36)

The upper limit of the parameter c is one (no effect) and the
von Mises (circular) deviatoric section emerges when c ¼ 0. The
three-dimensional graphical representation of the shear failure
surface smoothly connected to the cap surface with a Mises octa-
hedral profile can also be made with the different octahedral pro-
files that are Gudehus, William–Warnke, and Mohr–Coulomb
(Fig. 4).

3 Material Model Calibration

The plasticity model with a linear shaped shear failure surface
and a Mises octahedral profile as described above (see Fig. 1) was
implemented into ABAQUS/EXPLICIT [44] via the user material sub-
routine VUMAT. A constant die wall friction value of 0.25 was
used for the simulation. To calibrate the material parameters, dif-
ferent experimental tests are performed on cylindrical samples
[45]. The material cohesion and interparticle friction were deter-
mined from compression and Brazilian tests at different densities.
The cap eccentricity evolution, as function of density, was opti-
mized using compaction simulations of cylindrical aggregates by
comparing finite element values of hoop strains on the external
surface of the die to strains measured during compaction experi-
ments. The elastic Young’s modulus, E, and the bulk elastic mod-
ulus were deduced from resonant frequency tests as a function of
density. All the experimental tests were combined to determine
the evolution of the yield surface with respect to the relative
density (% of theoretical “maximum” density). The calibrated
material parameters are included in Table 1.

3.1 Cap Hardening—Compressibility Curves. The cap
hardening describes the compressibility of the particulate
material. It corresponds to the relationship between the plastic
volumetric strain e�p

vol and the stress tensor first invariant pb, which
is represented in the cap model as the intersection of the cap sur-
face with the pressure p axis (see Fig. 1). The compressibility
curve is ideally obtained from an isostatic compression of a loose
powder specimen in an instrumented high pressure isostatic cham-
ber. In the current study, two different FC-0205 copper steel pow-
ders were tested: Powder 1 and Powder 2 with 0.6% and 1.0%

Fig. 5 Yield surface profile in the octahedral plane

Fig. 6 Octahedral shear failure envelopes plotted at allowable
values of strength ratio (a) with no smoothing and (b) with
smoothing parameter, c 5 0:995
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Acrawax, respectively. The powder was enclosed in a flexible
cylindrical container and tests were conducted at different
pressures 70, 140, 210, 280, and 350 MPa using a cold isostatic
pressing (CIP) equipment. After the powder aggregates were
removed from the flexible container, each was cut into four
pieces, and the density of each piece was measured using the
immersion method [46]. The average densities of the aggregates
are shown in Fig. 7 for each isostatic compaction test. An apparent
density of 3.29 g/cc at zero pressure was considered in the calibra-
tion of material parameters, which explains the gap between the
calibrated curve and data points at low pressure. The calibration
process permits the determination of three important cap model
parameters, W, c1, and c2, where W is a measure of the maximum
achievable volumetric plastic strain.

3.2 Cohesion and Interparticle Friction—Brazilian and
Compression Tests. To determine the material cohesion and
interparticle friction parameters, d and b, compression and
Brazilian disk tests were performed on cylindrical green samples
of different densities ranging from 5.2 to 7.3 g/cc [30]. The Brazil-
ian tests were performed according to ASTM D3967-95a [47]:
standard test method for splitting tensile strength of intact rock
core specimens. The compression tests were performed according
to ASTM E9-89a [48] Standard Test Methods of Compression

Testing of Metallic Materials at Room Temperature. The fracture
stresses, rc and rt, were measured, respectively, in the compres-
sion and Brazilian tests with different degrees of stress multiaxial-
ity (Fig. 8).

Table 1 Powder compaction model parameters

Model Variables Value Description

Density and elasticity qt 7.44 Theoretical density (g/cc or g cm�3)
q0 3.1 Initial or tap density (g/cc or g cm�3)
E0 30.0 Initial Young’s modulus (MPa)
E1 60.0 Elastic parameter (MPa g�1 cm3)
� 0.28 Poisson ratio
c 2.1 Exponent parameter

Failure envelope d1 0.08 Material cohesion parameter (MPa)
d2 0.5625 Material cohesion parameter
b1 6.3 Interparticle friction parameter
b2 5.26 Interparticle friction parameter
qd 0.4922 Relative density threshold

Cap surface W 0.86 Cap hardening parameter
c1 0.168 Cap hardening parameter (1/MPa)
c2 0.413 Cap hardening parameter
paj0 0.00025 Cap hardening parameter (MPa)
R0 0.405 Initial cap eccentricity
a 0.695 Difference between the upper and lower asymptotes
b 2.0 Shape parameter of the eccentricity curve
c 1.0 Shape parameter of the eccentricity curve
qc 0.97 Relative density at the point of inflection

Fig. 7 Density–pressure compressibility curves associated
with cap hardening for FC-0205 steel powders from isostatic
compaction tests

Fig. 8 Failure stress versus green density for FC-0205 steel
cylindrical samples

Fig. 9 Material cohesion (d) versus green density for FC-0205
steel cylindrical samples
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The equivalent Mises stresses, qc and qt, and the hydrostatic
stresses, pc and pt, were calculated from the interpolation of the
fracture stresses [30]:

pc ¼
rc

3
; qc ¼ rc and pt ¼

2rt

3
; qt ¼

ffiffiffiffiffi
13
p

rt (37)

to determine the ordinate (d) and slope (tan b) of the straight
line failure envelope in the ISV cap model at different densities
(Figs. 9 and 10).

3.3 Young’s Modulus—Resonant Frequency Tests. Using
the resonant frequency method [49], the Ultra RS laboratory in
France determined the Young’s modulus E of FC-0205 rectangular
bars sized 3.2 cm� 1.7 cm� 0.64 cm with green densities ranging
from 5.6 to 7.2 g/cc. The Poisson’s ratio is assumed constant and
equal to 0.28. The bulk modulus K and shear modulus G were
derived from the Young’s modulus E and Poisson’s ratio v functions
of density [41]. Figure 11 shows variations of the Young’s modulus
with respect to the density (g/cc) for an iron-based powder.

3.4 Cap Eccentricity—Closed-Die Compaction Tests. The
finite element method is an efficient numerical tool to improve the
fundamental understanding of the mechanics of compaction
but requires appropriate constitutive relations in terms of the
evolution of suitable state variables for the full range of possible
compaction mechanisms. It is a complementary technique to
characterize a material parameter that is not directly measurable
from testing [50]. To determine the cap eccentricity parameter in
the ISV cap model, experimental and numerical simulations were
performed on closed-die compaction of cylindrical powder aggre-
gates. The cap eccentricity parameter was calibrated indirectly
from the hoop strain. As shown in Fig. 12(b) strain gauges were
attached to the external surface of a 5 cm diameter steel die to
measure the hoop strain. Gauges 3 and 4 were located at the same
distance from the bottom of the die but at different angles along
the circumference. Compaction tests were performed on several
FC-0205 powder cylinders of 1.7 cm diameter with different
heights (2.54 cm, 3.8 cm, 5.0 cm, and 6.3 cm). The cap eccentricity
parameter, R, which can be derived from the ratio of axial and
radial stresses, was determined with an inverse method by com-
paring the numerical hoop strains to the measured hoop strains at
different location on the die (Figs. 12(a) and 12(b)). The radial
stress, exerted by the powder on the die wall, was calibrated by
modifying the cap eccentricity parameter R in order to fit the
strain gauge with the highest hoop strain as illustrated in Fig. 13.
Differences in hoop strain (for densities up to 6.50 g/cc) between
the experiment and finite element analysis are attributed to due to
die wall friction, which was assumed to be constant in the finite
element analysis model but varies in the experiment. After an iter-
ative series of simulations, the cap eccentricity was calibrated for
each powder as shown in Fig. 14.

Fig. 10 Interparticle friction (tan b) versus green density for
FC-0205 steel cylindrical samples

Fig. 11 Comparison of the elastic Young’s modulus E as func-
tion of the porosity for the FC-0205 steel powder with the
AS1000 metal powders (data from Ref. [51])

Fig. 12 (a) Hoop strain contours on the cylindrical die after simulated compaction of a FC-0205
copper steel powder and (b) strain gauges located on cylindrical die to measure hoop strain
during compaction of FC-0205 powder
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3.5 Hydrostatic-Mises Stress—pq-Plots. The previous Brazil-
ian, compression, compressibility, and resonant frequency results
were used to determine the failure line and cap surface for the
FC0205 copper steel powder at different densities. Figure 15

shows the procedure to build the pq-plots (i.e., in the meridional
plane) using data from the different tests. The compressibility
curve, failure envelope, and Young’s modulus curve were used as
input data in finite element analyses that were performed to deter-
mine of the cap surface. Several trial-and-error iterations were
needed in the case to calibrate experimental hoop strain versus
density curves with numerical results to find the appropriate
eccentricity of the cap surface at different densities. Figure 16
shows the equidensity lines in the p-q stress space, which corre-
spond to the evolution of the failure envelope and cap surface of
the ISV cap compaction model during densification. A smooth
transition surface does not appear on the pq-plots because of the
small value of the parameter pd (see Figs. 1–3).

4 Conclusions

A cap plasticity ISV model applied to the compaction of granu-
lar materials was introduced. To describe the different mechanical
states of the granular media from loose to fully dense, the consti-
tutive equations were developed using an ISV plasticity model
with a Modified Drucker–Prager/Cap model at the continuum
scale. A transitional function in the shear failure envelope was
introduced to smoothly connect the failure yield surface to the
elliptic cap surface and avoid future numerical instabilities. The

Fig. 13 Comparison of measured and finite element hoop
strains for a 6.35 cm FC-0205 copper steel cylindrical sample

Fig. 14 Calibrated cap eccentricity versus green density for
FC-0205 steel powders

Fig. 15 Procedure to build pq-plots from different experiments

Fig. 16 Isodensity curves in the p-q meridional plane repre-
senting the evolution of the ISV cap model with respect to rela-
tive density (% theoretical) for FC-0205 steel powders
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transitional function can be used with any shape of shear failure
yield surface, such as the linear, hyperbolic, and exponent form,
and also with different octahedral profiles. The model was finally
calibrated for a common copper steel metal powder using experi-
mental tests on cylindrical samples.
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