
 

 

Abstract — In the context of materials informatics, the 

support vector machines technique was used to analyze 

and classify a large dataset of vapor-grown carbon 

nanofiber (VGCNF)/vinyl ester (VE) nanocomposites into 

three classes of desired mechanical properties, i.e., high 

storage modulus, high true ultimate strength, and high 

flexural modulus. Resubstitution and 3-folds repetitive 

cross validation techniques were implemented and the 

resulting classification information was compared and 

analyzed through sets of confusion matrices. This 

classification proves to be useful to materials designers 

and engineers, since a qualitative assessment of the 

expected nanocomposite mechanical response is given 

when suitable changes are made to the formulation, 

processing, and environmental conditions. This 

classification accelerates the lead time for the 

development of VGCNF/VE nanocomposites for a specific 

engineering application. 
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1 Introduction 

The support vector machine (SVMs) technique [1] is 

considered one of the most widely used techniques in 

artificial intelligence community. This technique employs 

datasets of different sizes and dimensions and from 

different fields and domains. SVMs can be used for both 

supervised and unsupervised learning problems. 

Unsupervised learning ideally requires a large number of 

data vectors (points) within a particular dataset in order to 

adequately model a problem and avoid over-training 

(over-fitting). Supervised learning, however, can be 

utilized with a less number of data vectors, but some prior 

knowledge of the problem is needed in order to assist the 

SVMs model in generalizing and predicting the correct 

quantity given an unknown data vector [1]. SVMs can 

also assign linearly and nonlinearly separable data into 

two or more classes [1]. SVMs have recently been 

employed in the context of materials science and 

engineering to extend materials informatics [2-5]. This 

interdisciplinary study integrates computer and 

information science with other knowledge domains to 

facilitate knowledge discovery. For example, materials 

scientists can use materials informatics to interpret   

 

acquired experimental data through the use of SVMs and 

other machine learning approaches. It can also accelerate 

the research process and guide the development of new 

materials with desired mechanical properties. Materials 

informatics is being fueled by new and dynamic growth in 

the information technology sector and is driving the 

interest in SVMs, data mining, machine learning, 

information retrieval, and other knowledge representation 

or discovery schemes in the engineering disciplines [6]. 

AbuOmar, et al. [7] applied an artificial neural network 

(ANN) technique to a dataset associated with the 

viscoelastic response of a vapor-grown carbon nanofiber 

(VGCNF)/vinyl ester (VE) nanocomposite material 

system. The ANN was trained using the resubstitution 

method and the 3-fold repetitive cross validation (RCV) 

technique to provide a predictive model for these 

responses with minimal mean square error [7]. Roberts, et 

al. [8] presented a model that classifies different materials 

based on their microstructure. The core of the designed 

model is an SVMs classifier that identifies the appropriate 

class of given material sample based on microstructural 

characteristics such as Haralick variables, the Euler 

parameter, and the fractal dimension [8]. 

Swaddiwudhipong, et al. [9] utilized another important 

and efficient materials informatics technique, i.e., least 

squares support vector machines (LS-SVMs) [10]. Four 

LS-SVMs models simulated the relationship between the 

indentation load-displacement characteristics and elasto-

plastic material properties, which are subject to the law of 

power hardening. No iterative approaches were used and it 

was found out that LS-SVMs approach was robust in 

determining the parameters in this relationship. Hu, et al. 

[11] used materials informatics to resolve the problem of 

materials science image data sharing. An ontology-based 

approach was employed to develop annotation for non-

structured materials science data with the aid of semantic 

web technologies. Sabin, et al. [12] evaluated an 

alternative statistical Gaussian process model, which 

assumes a normal probability distribution over all of the 

training data and then interpolates to make predictions of 

microstructural evolution arising from static 

recrystallization in a non-uniform strain field. In this 

work, a specific class of advanced engineering materials 

was studied i.e., polymer nanocomposites [13]. These 

materials have multifunctional properties and are 

increasingly being used for aerospace, automotive, 

biomedical, fuel cell, catalysis, and other applications. For 

example, improved stiffness properties and energy 

Mechanical Property Classification of Vapor-Grown 

Carbon Nanofiber/Vinyl Ester Nanocomposites Using 

Support Vector Machines 
 

O. AbuOmar1,2, S. Nouranian2, R. King1,2, T.M. Ricks3, T.E. Lacy3 

1Department of Electrical and Computer Engineering, Mississippi State University, MS 39762, USA 
2Center for Advanced Vehicular Systems (CAVS), Mississippi State University, MS 39762, USA 

3Department of Aerospace Engineering, Mississippi State University, MS 39762, USA 

 

 
 

 



 

absorption characteristics are desired in automotive 

structural applications and nano-enhanced polymer 

composites meet these requirements [14]. They have been 

the subject of intensive research in recent years [15, 16]. 

AbuOmar, et al. [17] applied data mining and knowledge 

discovery techniques to a thermosetting VGCNF/VE 

nanocomposite material system [18-21] and include self-

organizing maps (SOMs) [22, 23] and clustering 

techniques [24, 25]. The SOMs were used to recommend 

VGCNF/VE nanocomposite systems exhibiting the same 

storage and loss modulus responses in order to minimize 

the material preparation cost. A clustering technique (i.e., 

a fuzzy C-means algorithm) was also applied to discover 

any pattern in the nanocomposite behavior after using 

principal component analysis (PCA) as a dimensionality 

reduction technique [26]. 

This study seeks to expand the current knowledge of 

the influence of formulation, processing, and 

environmental factors on the mechanical behavior of 

VGCNF/VE nanocomposites by including a wider range 

of measured mechanical properties, i.e., viscoelastic 

property data [18], compressive and tensile property data, 

and flexural property data [27]. This new dataset provides 

a more general insight into the mechanical behavior of 

VGCNF/VE nanocomposites for data mining purposes. 

Application of data mining and knowledge discovery 

techniques to a comprehensive dataset of mechanical 

responses of polymer nanocomposites is unprecedented 

and novel. In the context of materials informatics, the 

results of this study serve as a guideline for materials 

scientists and engineers to efficiently design or optimize a 

material system for a certain application. The major 

contribution of this paper is to apply SVMs technique to 

separate VGCNF/VE nanocomposite test data into various 

desired mechanical property classes. As a result, an 

unknown VGNCF/VE specimen (i.e., a configuration not 

represented by the current dataset) can be easily 

characterized and classified into its corresponding 

VGCNF/VE class without the need to conduct expensive 

and time-consuming experiments. This quick qualitative 

assessment significantly reduces the lead time on 

developing a new material system for a desired 

application.  

 

2 Materials and Methods 

All data used in this work were generated using 

various statistical experimental designs, such as a general 

mixed level full factorial and central composite design, 

and are described in detail elsewhere [18-21, 27]. 

Different datasets were merged into a larger one 

incorporating 240 viscoelastic data points, 60 flexural data 

points, 172 compression data points, and 93 tension data 

points for variously formulated and processed 

VGCNF/VE nanocomposites. Therefore, the new larger 

dataset has a total of 565 data points. Each data point 

corresponds to combinations of nine input design factors 

and nine output responses. The input factors of the new 

VGCNF/VE dataset are curing environment (air vs. 

nitrogen), use or absence of a dispersing agent, strain rate, 

mixing method (ultrasonication, high-shear mixing, 

combination of both), VGCNF weight fraction, VGCNF 

and type (pristine vs. oxidized), high-shear mixing time, 

sonication time, and temperature. The output factors (i.e., 

measured properties) are true ultimate strength, true yield 

strength, engineering elastic modulus, engineering 

ultimate strength, flexural modulus, flexural strength, 

storage modulus, loss modulus, and tan delta. Therefore, 

the effectiveness of the SVMs technique implemented in 

this study is that materials scientists and engineers can 

select the optimal manufacturing combination of input 

factors that yield a desired mechanical property response; 

namely high storage modulus response, high true ultimate 

strength response, or high flexural modulus response. The 

choice of the optimal combination is based on several 

industrial measures, among which is the inputs’ 

combination that has the minimum fabrication cost, the 

fastest or the most time-efficient combination, the 

combination that results in the best mechanical properties 

of the resulting VGCNF/VE nanocomposites, or a 

combination of two or more of these measures.  

Different data interpolation techniques were used to 

replace some of the missing and unknown data fields in 

the new dataset [28]. These techniques include linear 

interpolation which is a method of curve-fitting using 

linear polynomials, and spline interpolation where the 

interpolant is a spline (piecewise polynomial). However, 

spline interpolation is more precise than regular 

polynomial interpolations because of its low interpolation 

error regardless of the polynomial degree used for the 

spline. In addition, spline interpolation avoids the problem 

of Runge’s phenomenon, which occurs when using high 

degree polynomials for the interpolation process [28]. 

 

3 Theory/Calculation 

As mentioned in Section 2, this study incorporates 

nine input and nine output design factors. Therefore, the 

dataset represents an eighteen-dimensional (18-D) 

analysis case. Since curing environment, use or absence of 

dispersing agent, mixing method, and VGCNF type are 

considered qualitative factors, they are represented by a 

numeric code for the analysis purposes. All quantitative 

values were normalized using standardized scores since 

the original value ranges were dissimilar. 

Resubstitution and 3-fold repetitive cross validation 

techniques were used with the dataset to characterize the 

specimens that have desired VGCNF/VE properties. Each 

specimen was separated into an appropriate VGCNF/VE 

mechanical property class: specimens with high storage 

modulus (class 1), specimens with high true ultimate 

strength (class 2), and specimens with high flexural 

modulus (class 3). Before applying these techniques, a 

brief explanation of the SVMs operations, resubstitution, 

and repetitive cross validation techniques are introduced. 

 

3.1 SVMs Operations 

 The goal of an SVMs classifier is to find a separating 

hyperplane between the points belonging to two distinct 

classes and maximize the distance between these points to 

the hyperplane. This maximum distance is referred to as 

the margin. This concept is illustrated in Figure 1 [1] for 

linearly separable data. For nonlinearly separable data, the 



 

resulting hyperplane and margin has a complex, nonlinear 

form as shown in Figure 2 [1]. 

 

 

Figure 1. The SVMs model: the separating hyperplane 

along with the maximum margin for linearly separable 

data [1]. 

 

 
Figure 2. An example of the SVMs model for nonlinearly 

separable data [1]. 

 

3.2 Resubstitution method 

      The resubstitution method [29] is a computationally 

efficient technique in which the whole dataset is used to 

train the SVMs model, and the same dataset is used for 

testing (validation). This ensures that the SVMs model 

generalizes well when combinations of inputs and outputs 

are applied whose classes are not explicitly known. Good 

generalization is achieved when the apparent error (AE) is 

minimized [24]. 

The AE is defined as: 
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where N is the total number of samples, ti is the targeted 

class of the sample in binary classification (i.e. 1 if the 

sample belongs to one class and 0 if it belongs to the other 

class), and ai is the actual SVMs binary classification 

value (0 or 1). 

Although several SVMs architectures and training 

algorithms are available, the SVMs classifier for two 

nonlinearly separable data is the most commonly used one 

and was utilized in this study [1]. However, since this 

study deals with separating the VGCNF/VE specimens 

into three different distinct property classes, the designed 

SVMs model was implemented in three stages using a 

one-against-all (OAA) strategy [30]. For example, in the 

first stage, specimens belonging to class 2 and class 3 

were combined and compared against class 1. Finally, the 

classification information from these stages was combined 

in order to determine the three distinct property classes. 

This SVMs model assumed a non-linear relationship 

between the input-output variables and the corresponding 

class associated with each sample. 

 

3.3 Repetitive cross validation technique 

Repetitive cross validation (RCV) techniques can 

better train the SVMs model using available data. First, 

the available dataset is randomly partitioned into a 

training set and a test set. The training samples are further 

partitioned into two disjoint subsets: 1) the estimation 

subset, which is used to select the SVMs, and 2) the 

validation subset, which is used to test or validate the 

developed SVMs model [31]. In this way, the training 

samples can be used to assess the performance of various 

candidate SVMs models and thus the “best” one can be 

chosen [31]. Currently, there are four different RCV 

methods: holdout RCV, early-stopping method of training, 

multi-fold RCV, and leave-one-out RCV [32]. 

 

4 Results and discussion 

 The workflow of the classification process begins with 

applying the developed SVMs model to the VGCNF/VE 

data in which it was divided into training and test sets. 

Then two techniques were used for performance 

evaluation of the SVMs classifier; the resubstitution and 

the 3-folds RCV techniques. Finally, the results from both 

techniques were compared. In essence, the classifier 

ability to identify the percentage of test samples that 

belong to each of the desired mechanical properties (high 

storage modulus, high true ultimate strength, and high 

flexural modulus) was evaluated and analyzed. 

 In the SVMs analyses, classifications were compared 

and analyzed by using sets of confusion matrices 

(contingency tables) [33]. Additionally, a positive 

constant, C, was used to balance the margin size and the 

misclassification instances. The choice for C determines 

the number of support vectors and the overall performance 

of the SVMs model [1]. Three values of C were used in 

this study: 0.5, 10, and 100. Three kernel functions were 

also used in this study: a degree two polynomial, a dot 

product, and a hyperbolic tangent kernels. 

For the resubstitution method, the SVMs model was 

generally able to correctly classify 100% of the 

VGCNF/VE specimens into three different distinct 

property classes for all kernel functions used in this study 

regardless of the constant C. Although a minor 

classification error (5%) resulted when the hyperbolic 

tangent kernel was used for class 3, this error was 

considered to be acceptable as it did not affect the overall 

classification accuracy of the model. These high 

classification rates are due to the fact that all samples were 

used for training and testing so the amount of 

misclassified information was minimal. For the 3-fold 

RCV technique, the chosen sizes of training and testing 



 

sets were 80 and 40 data samples, respectively, for each of 

the three folds. 

Following the standard practice of the SVMs analysis, 

the inputs and outputs were normalized using standardized 

scores, as their original value ranges were completely 

different from each other. The classification performance 

of the 3-folds RCV technique was inferior to that of the 

resubstitution method. Since the class 1, class 2, and class 

3 sizes for the three folds in all stages were significantly 

lower than such classes when the resubstitution method 

was applied, some misclassification error is to be 

expected. Also, unlike the resubstitution method, the same 

samples were not used for training and testing in each fold 

resulting in some additional misclassification error.  

However, the resulted confusion matrices

 

Table 1. Classification information of the SVMs model when a polynomial kernel of degree 2 was implemented using 

both the resubstitution and 3-fold RCV methods. 

 Resubstitution method 3-fold RCV method 

Class 1 Class 2 Class 3 Average Class 1 Class 2 Class 3 Average 

Correct 

Classification Rate 
100% 100% 100% 100% 100% 75.00% 33.33% 69.44% 

Apparent Error 

Rate 
0% 0% 0% 0% 0% 25.00% 66.67% 30.56% 

 

Table 2. Classification information of the SVMs model when a dot product kernel was implemented using both the 

resubstitution and 3-fold RCV methods. 

 Resubstitution method 3-fold RCV method 

Class 1 Class 2 Class 3 Average Class 1 Class 2 Class 3 Average 

Correct 

Classification Rate 
100% 100% 100% 100% 100% 50.00% 47.50% 65.83% 

Apparent Error 

Rate 
0% 0% 0% 0% 0% 50.00% 52.50% 34.17% 

 

Table 3. Classification information of the SVMs model when a hyperbolic tangent kernel was implemented using both 

the resubstitution and 3-folds RCV methods. 

 Resubstitution method 3-fold RCV method 

Class 1 Class 2 Class 3 Average Class 1 Class 2 Class 3 Average 

Correct 

Classification Rate 
100% 100% 95.00% 98.33% 98.75% 50.00% 81.67% 76.81% 

Apparent Error 

Rate 
0% 0% 5.00% 1.67% 1.25% 50.00% 18.33% 23.19% 

 

showed that the SVMs classifier performed well for fold 3 

samples for all kernel functions at about 100% 

classification rate. In addition, reasonable classification 

rate was achieved for fold 2 when the hyperbolic tangent 

kernel was implemented at 75.00% and 58.33% was 

obtained for fold 2 samples when the polynomial kernel 

(degree 2) was implemented. The classification rates were 

lower for other cases. In addition, similar to the 

resubstitution method analyses, the classification results 

were independent of the value of the constant C. Another 

observation is that while 3-folds RCV technique was able 

to correctly classify specimens into class 1, mixed results 

were obtained when classifying specimens according to 

class 2 and class 3 and were observed to be dependent on 

the kernel function. For example, when a hyperbolic 

tangent kernel, the correct classification rate for class 3 

was observed to be 81.67%. This value dropped to 

33.33% when the degree two polynomial kernel was used. 

On average, the classification performance was the best 

when hyperbolic tangent kernel was implemented yielding 

a classification rate of 76.81%.  

The overall classification rates and apparent error 

rates for the three different kernels using both the 

resubstitution and 3-fold RCV methods are shown in 

Tables 1-3. Based on these results, the SVMs model was 

able to more correctly classify specimens belonging to 

class 1 than class 2 and 3. Additionally, the resubstitution 

method was determined to be superior to the 3-fold RCV 

method for this specific problem. For example, when the 

resubstitution method was implemented using the 

hyperbolic tangent kernel, the SVMs model was able to 

identify all samples (100%) that have the highest storage 

modulus responses and all samples that have the highest 

true ultimate strength responses where it was able to 

identify 95% of samples that have the highest flexural 

modulus responses    (Table 3). When the 3-fold RCV was 

implemented, the SVMs model was able to identify 

98.75% of test samples that have the highest storage 

modulus responses, 50% of test samples that have the 

highest true ultimate strength responses, and 81.67% of 

test samples that have the highest flexural modulus 

responses (Table 3). 

In addition, by choosing particular inputs’ 

combination based on one of the industrial optimal 

measures mentioned in section 2, this SVMs model is able 

to identify the desired mechanical property (one of the 

three desired mechanical response classes of high storage 

modulus, high true ultimate strength, or high flexural 

modulus) that will be resulted from this combination 

based on the selected industrial measure. Section 5 will 



 

elaborate more on the effectiveness of the developed 

SVMs model on the VGCNF industrial manufacturing 

process. 

 

5 Application to Materials Informatics 

Since this dataset encompasses a wide variety of 

mechanical testing methods, conditions, and material 

configurations, the resulting SVMs model can be used to 

effectively predict the mechanical response for previously 

untested material configurations. Such a capability 

reduces the need to perform further experiments and 

allows the materials scientists to quickly assess the 

viability of a new material configuration. For example, if a 

high storage modulus is desired, the optimal VGCNF 

weight fraction can be determined for given mixing 

conditions which are likely not located at one of the tested 

levels. Additionally, material and processing costs can 

likely be reduced by using material informatics principles. 

Since VGCNFs are often expensive and nanocomposite 

fabrication processes often take several hours, a range of 

VGCNF weight fractions and mixing times can be 

established over which adequate properties are obtained. 

A smaller amount of VGCNFs combined with shorter 

mixing times could ultimately reduce production costs by 

a significant amount.  

 

6 Summary and Conclusions 

A support vector machines (SVMs) technique was 

applied to a vapor-grown carbon nanofiber 

(VGCNF)/vinyl ester (VE) nanocomposite dataset as a 

proof of concept for materials informatics. This dataset 

consists of 565 different design points: 172 compression, 

93 tension, 60 flexure, and 240 viscoelastic points. Each 

treatment combination consisted of eighteen feature 

dimensions corresponding to the nine input and nine 

output design factors. The nine input factors of the 

VGCNF/VE dataset were curing environment (air vs. 

nitrogen), use or absence of a dispersing agent, strain rate, 

mixing method (ultrasonication, high-shear mixing, and 

combination of both), VGCNF weight fraction, VGCNF 

type (pristine vs. oxidized), high-shear mixing time, 

sonication time, and temperature. The output factors (i.e., 

measured properties) were true ultimate strength, true 

yield strength, engineering elastic modulus, engineering 

ultimate strength, flexural modulus, flexural strength, 

storage modulus, loss modulus, and tan delta. The SVMs 

model was trained using the resubstitution method and the 

3-fold repetitive cross validation (RCV) technique to 

classify each VGCNF/VE sample into one of three 

optimal property classes: high storage modulus, high true 

ultimate strength, high flexural modulus. The classifier 

was implemented in three stages using a one-against-all 

strategy. Three possible kernel functions were explored in 

this study: a polynomial kernel of degree two, a dot 

product kernel, and a hyperbolic tangent kernel. A set of 

confusion matrices was used to compare the different 

analysis methods. 

In general, the SVMs model using the resubstitution 

method was able to predict the optimal property classes 

with a minimal apparent error (AE) rate irrespective of the 

kernel function that was used. While the SVMs model 

using the 3-fold RCV method was able to accurately 

predict which data points belonged to the high storage 

modulus class, in general, the SVMs model using this 

method had significant FARs.  

Most importantly, the developed SVMs model is able 

to identify the desired mechanical property response value 

(high storage modulus, high true ultimate strength, or high 

flexural modulus) resulted from a chosen untested 

combination of the nine input factors mentioned in this 

study. The choice of the inputs’ combinations 

commensurate with particular optimal industrial 

measure(s) selected by materials scientists and engineers. 

This includes but is not limited to, the inputs’ combination 

that has the minimum industrial fabrication cost, the 

combination that yields the fastest manufacturing process, 

the combination that results in the optimal mechanical 

properties of the resulting VGCNF/VE polymer 

nanocomposites, or any two or more of these measures 

combined. In other words, if an inputs combination whose 

outputs responses are unknown is given to the developed 

SVMs model, then the desired mechanical property 

response will be easily retrieved based on this 

combination. 

The model’s ability to identify these desired 

mechanical property responses based on particular 

combination of input factors will result in faster VGCNF 

nanocomposites manufacturing lead time without the need 

to rely on intensive and time-consuming experiments. In 

addition, while this model only considers three classes, it 

can also be readily extended to include additional 

desirable material properties. This issue is the focus of 

ongoing research. 

The SVMs classifier applied in this study 

demonstrates the usefulness of data mining and 

knowledge discovery techniques in materials science and 

engineering. It is expected that more such techniques will 

be employed within the rising field of materials 

informatics in near future. 
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