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Abstract A Fungean solid is derived for membranous
materials as a body defined by isotropic response functions
whose mathematical structure is that of a Hookean solid
where the elastic constants are replaced by functions of state
derived from an implicit, thermodynamic, internal energy
function. The theory utilizes Biot’s (Lond Edinb Dublin Phi-
los Mag J Sci 27:468–489, 1939) definitions for stress and
strain that, in one-dimension, are the stress/strain measures
adopted by Fung (Am J Physiol 28:1532–1544, 1967) when
he postulated what is now known as Fung’s law. Our Fungean
membrane model is parameterized against a biaxial data set
acquired from a porcine pleural membrane subjected to three,
sequential, proportional, planar extensions. These data sup-
port an isotropic/deviatoric split in the stress and strain-rate
hypothesized by our theory. These data also demonstrate
that the material response is highly nonlinear but, other-
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wise, mechanically isotropic. These data are described rea-
sonably well by our otherwise simple, four-parameter, mate-
rial model.
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Distortional strain · Finite deformation · Proportional
loading · Tangent moduli

1 Introduction

A theoretical framework for implicit elastic solids was devel-
oped in a recent paper by Freed and Einstein (2013). In
that document, Green strain and the second Piola-Kirchhoff
stress were selected for the conjugate state variables. The
theory presented in this paper is based after our earlier work,
but herein Biot (1939) strain and stress have been selected
as the primitive variables. After their isotropic and devi-
atoric constituents are established and the resulting gov-
erning constitutive equation for an implicit elastic solid is
put forward, a material model is constructed and applied
to the visceral pleura, the membrane encasing the lung.
Prior biomechanical studies of this particular tissue have
been reviewed by Humphrey et al. (1987) and Humphrey
(1998).

Our theory is described in terms of the engineering stress
T = sym(RTP) and strain E = U − I tensors of Biot
(1939) where R and U are the rotation and (right) stretch
tensors from a polar decomposition of the deformation gra-
dient, and where P is the first Piola-Kirchhoff stress. In R

2,
these tensors are referred to as the surface tension and areal
strain. Surface tension and areal strain-rate are decomposed
into additive isotropic and deviatoric components, follow-
ing a procedure advanced by Freed and Einstein (2013) and
obey
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T = T̄ + τ U−1 where τ = 1
2 tr(TU), (1)

dE = dĒ + 1
2 dη U where dη = tr

(
U−1 dE

)
(2)

so that tr(T̄ U) = 0 and tr
(
U−1 dĒ

)
= 0. Here U and U−1

serve as the covariant and contravariant metrics of defor-
mation, just as C (= U2) and C−1 (= U−2) served as the
covariant and contravariant metrics of deformation in our
prior study (Freed and Einstein 2013), and wherein Green
strain and the second Piola-Kirchhoff stress were selected
for establishing strain and stress. Scalars τ and dη are the
isotropic variables quantifying surface pressure and the areal
rate of dilatation. Tensors T̄ and dĒ are the deviatoric vari-
ables quantifying surface tension and areal strain-rate, which
are traceless because of the definitions for τ and dη.1 Tensor
Ē = ∫

dĒ is not deviatoric; it is called areal distortion.
A first-order differential equation is used to describe the

constitutive response of our theory, wherein stress-rate is a
homogeneous function in strain-rate and therefore indepen-
dent of time (Noll 1955; Freed and Einstein 2013), viz.,

dT = M : dE (3)

where, as Noll has pointed out, such constitutive models
can have responses that depend upon the paths traveled
in state space. For materials that can be described by the
isotropic/deviatoric splits of Eqs. (1, 2), the tangent modulus
M has a general tensorial structure of

M = dτ

dη
U−1 ⊗ U−1 − τ U−1 � U−1

+ dT̄

dĒ
:
(
I � I − 1

2 U ⊗ U−1
)

, (4)

where ⊗ and � are the outer and inner tensor products. Spe-
cific formulæ for τ, dτ/dη, and dT̄/dĒ will establish specific
constitutive responses for suitable material descriptions.

The constitutive structure of Eqs. (3, 4) is general. It
applies for both elastic and inelastic materials whenever
Biot’s measures for strain and stress are adopted. For an
implicit, Rajagopal, elastic solid of a rate type described
by isotropic and deviatoric energy functions Wi (η, τ ) and
Wd(Ē, T̄), derived following a methodology put forward by

1 Deviatoric, as the terminology is used here, implies that the trace
of a field is zero when contracted with its metric of deformation, in
a geometric sense. Whenever one employs the thermodynamic conju-
gate fields of Almansi strain and Cauchy stress, Eulerian fields, it is
well known that the metric of deformation is simply the identity tensor
I. Whenever one employs the conjugates of Green strain and the sec-
ond Piola-Kirchhoff stress, Lagrangian fields, it is well known that the
metric of deformation is the right Cauchy-Green deformation tensor C.
Likewise, whenever one employs Biot’s conjugate fields for stress and
strain, the metric of deformation for tensor contraction is the stretch
tensor U. This fact is less known, because Biot’s measures for stress
and strain are less widely used.

Freed and Einstein (2013), one is eventually led to

dτ

dη
=

(
∂2Wi (η, τ )

∂τ 2

)−1 (
1 − ∂2Wi (η, τ )

∂τ ∂η

)
(5)

and

dT̄

dĒ
=

⎛
⎝∂2Wd

(
Ē, T̄

)

∂T̄ ∂T̄

⎞
⎠

−1

:
⎛
⎝I � I −

∂2Wd

(
Ē, T̄

)

∂T̄ ∂Ē

⎞
⎠ (6)

where the thermodynamic potential functions Wi (η, τ ) and
Wd(Ē, T̄) are implicit because they depend upon both con-
jugate variables, viz., strain and stress. There is a proper ther-
modynamic basis for implicit elasticity (Rajagopal 2003) and
such theories allow a linearized strain to be a nonlinear func-
tion of stress, an important feature for modeling biological
materials.

The implicit theory of elasticity constructed here and that
of Rajagopal and Srivinasa (2007) are described by differen-
tial equations, e.g., Eqs. (3–6). This is not requisite of implicit
elasticity. The original elastic theories of Rajagopal (2003)
are implicit descriptions expressed in terms of stress and
strain. These two mathematical approaches are not totally
equivalent. Each has unique features that can be brought to
bear when constructing a model for a material.

2 Models

The Cayley-Hamilton theorem applied to a 2 ×2 matrix, say
M, requires

M2 − tr (M) M + 1
2

(
(trM)2 − tr

(
M2

))
I = 0

where it is readily verified that 1
2 ((trM)2 − tr(M2)) = det M.

For two separate 2 × 2 matrices, the Cayley-Hamilton theo-
rem requires

MN + NM − tr (M) N − tr (N) M

+ (tr (M) tr (N) − tr (MN)) I = 0

for any M and N. The latter reverts to the former when-
ever M = N. Additional formulæ arising from the Cayley-
Hamilton theorem pertaining to three separate 2×2 matrices
can be found in, e.g., Spencer (1971 pp. 296–7).

From the above, derived from the Cayley-Hamilton the-
orem, any isotropic response function that depends upon a
single, mixed, tensor field in R

2, say M, can be described in
terms of at most two, independent, scalar invariants, viz.,

I1 = tr(M) and I2 = det(M) = 1
2

(
(trM)2 − tr

(
M2

))
.

(7)

Any isotropic function expressed in terms of two, distinct,
mixed, tensor fields in R

2 has five independent invariants:

123

Author's personal copy



A membrane model from implicit elasticity theory

those of Eq. (7) pertaining to each tensor, say M and N, and
one additional invariant arising from their interaction, viz.,

I1 = tr(M), I2 = det(M), I3 = tr(N), I4 = det(N),

I5 = tr(M) tr(N) − tr(MN). (8)

Two-dimensional, implicit, elastic models are described in
terms of these five invariants. Three-dimensional, implicit,
elastic models require ten invariants (Spencer 1971; Freed
and Einstein 2013). A significant reduction in complexity is
afforded whenever one adopts the Wong and Shield (1969)
approach of using invariants defined over R

2 to construct a
membrane model. One expects the additional invariants over
R

3, when specialized for membranes, will produce higher-
order effects in the response, effects that are neglected in this
initial study.

2.1 Hookean membrane

The implicit, isotropic, Hookean membrane has a functional
dependence described in terms of the surface pressure τ and
its two invariants for surface tension T̄ that, in accordance
with Eq. (7), take on forms of 2

I1 = tr
(
T̄U

)
= 0 and I2 = − det

(
T̄U

)
= 1

2 tr
(
T̄UT̄U

)

(9)

where U enters into the construction as the metric of defor-
mation used for indical contraction, e.g., tr(T̄UT̄U) =
T̄ I J UJ K T̄ K LUL I . Recall that the first invariant is zero
because the deviatoric surface tension is traceless, by def-
inition, cf. Eq. (1). The classic formulation of linear elastic-
ity is captured in terms of the remaining second invariant by
considering the quadratic energy functions

Wi (τ ) = τ 2/2E (10)

Wd

(
T̄
)

= I2/2μ = tr
(
T̄UT̄U

)
/4μ (11)

where E and μ are the elastic and shear moduli. The elastic
modulus in R

2 corresponds to E = A dτ/dA, A being an
element of area experiencing a uniform surface pressure τ

over a region in R
2. This contrasts with the bulk modulus κ

from classical elasticity where κ = V dP/dV, V being an
element of volume experiencing a uniform bulk pressure P
over a region in R

3.
Inserting the isotropic energy function (10) into its gov-

erning constitutive Eq. (5) leads to

dτ =
(

1

E

)−1

dη = E dη ∴ τ = E η (12)

2 The sign of the active invariant has been switched to yield positive
values during extensions.

while substituting its associated deviatoric energy function
(11) into its governing constitutive Eq. (6) leads to

dT̄ =
(

1

2μ
U � U

)−1

: dĒ = 2μ U−1 � U−1 : dĒ. (13)

When these two constitutive formulæ are placed into Eq. (4),
the tangent modulus M becomes

M = (2μ − τ) U−1 � U−1 + (E − μ) U−1 ⊗ U−1. (14)

This modulus reduces to the tangent modulus of a classic
Hookean solid under conditions of infinitesimal deforma-
tion: when it is in a state of plane stress, when stretches are
infinitesimal, i.e., U ≈ I, and when there is minimal pres-
sure, viz., |τ | � μ. Under these conditions M simplifies to
2μ I�I+(E−μ) I⊗I, which is the classic Hookean solid from
linear elasticity. In plane stress, E − μ is the Lamé constant
that, in three-dimensional analysis, becomes λ = κ − 2

3 μ

with κ being the bulk modulus.
The inverse to the symmetric tangent modulus M is a

symmetric tangent compliance, i.e., C = M
−1, that for an

isotropic Hookean membrane becomes3

C = 1

2μ − τ

(
U � U − E − μ

2E − τ
U ⊗ U

)
. (15)

In the classic Hookean solid, under a state of plane stress,
the leading coefficient in C would be (1 + ν)/E where ν

is Poisson’s ratio, which is a material property in a linear
elastic solid. (It is a response function in nonlinear materials.)
Equating coefficients leads one to the observation

ν = E − 2μ + τ

2μ − τ

that becomes ν = (E − 2μ)/2μ whenever τ = 0, agreeing
with its interpretation in linear elasticity. Poisson’s ratio is
therefore a response function in our finite theory of elasticity;
it is modulated by pressure τ .

The response of a Hookean membrane will be stable in
the sense of Hill (1957) provided that dE : M : dE > 0
whenever dE �= 0, which leads to

(E − μ)
(

tr
(
U−1dE

))2 + 2μ tr
(
U−1dE · U−1dE

)

> τ tr
(
U−1dE · U−1dE

)
(16)

given that dE �= 0. Instability becomes a possibility when-
ever the surface pressure τ exceeds, in a certain sense, the
elastic cohesion of the material, approximately E + μ, at
which point the material would disintegrate. This outcome
of our nonlinear Hookean solid does not follow from linear
elasticity.

3 To verify C : M = I � I requires identities: U−1 ⊗ U−1 : U ⊗ U =
2 U−1 ⊗ U, U−1 ⊗ U−1 : U � U = U−1 ⊗ U, U−1 � U−1 : U ⊗ U =
U−1 ⊗ U and U−1 � U−1 : U � U = I � I.
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2.2 Fungean membrane

A general, implicit, elastic solid admits a potential function
for internal energy that depends upon both stress and strain
(Rajagopal 2003). As such, in accordance with Eqs. (1, 2, 8),
an isotropic, implicit, elastic membrane defined over R

2 can
depend upon, at most, the surface pressure τ , the dilatation
η, and the following five invariants4

I1 = tr
(
T̄U

)
= 0, I2 = 1

2 tr
(
T̄UT̄U

)
,

I3 = − tr
(
U−1Ē

)
, I4 = − det

(
U−1Ē

)
,

I5 = tr
(
T̄Ē

)
(17)

where knowledge of T̄ being deviatoric, and hence of I1 = 0,
and of Ē not being deviatoric, and hence of I3 �= 0, has been
used to reduce this set of invariants to its simplest form.

A Fung elastic solid, as defined by (Freed and Einstein,
2013, Defn. 4), is any implicit elastic solid whose mixed
derivatives in stress and strain, namely ∂2Wi/∂τ ∂η and
∂2Wd/∂T̄ ∂Ē in Eqs. (5, 6), are first-order in their respec-
tive measures for stress. A Fung elastic solid, so defined, has
a natural coupling between its compliance contribution, i.e.,
∂2Wi/∂τ 2 and ∂2Wd/∂T̄ ∂T̄, and its Fungean effect, viz.,
∂2Wi/∂τ ∂η and ∂2Wd/∂T̄ ∂Ē, that arises from the poten-
tial structure of our theory. Freed and Einstein (2013) call
this coupling the Rajagopal effect in honor of Rajagopal’s
(2003) seminal work in implicit elasticity.

The simplest Fungean membrane that one can conceive
adds a coupled term to each of its two, quadratic, energy
functions (10, 11) describing a Hookean membrane. These
additional terms are first-order in areal strain and second-
order in surface tension, in accordance with our definition of
a Fungean solid. The only admissible combination of invari-
ants that permits this extra term in the deviatoric energy is
I2 I3. Consequently, one is lead, in a natural way, to consider
potential functions for the stored elastic energy of

Wi (η, τ ) = τ 2

2E
(1 − αη) , (18)

Wd(Ē, T̄) = I2

2μ
(1 − β I3)

= 1

4μ
tr

(
T̄UT̄U

) (
1 + β tr

(
U−1Ē

))
(19)

where α and β are coined the Fung isotropic and devia-
toric parameters in honor of Fung’s (1967) 1D empirical law:
dT = E(1 + α̂T ) dλ where T is traction and λ is stretch.5

4 The sign of these invariants have been manipulate to yield positive
values during extensions.
5 This paper presents the first nonlinear theory of elasticity, known to
the authors, that incorporates the engineering stress and strain measures
of Biot (1939) into a material model of the Fungean type that, in one-

Parameters α and β are dimensionless. This model has two
parameters to describe each energy contribution; hence, it is
a four-parameter model.

These two energy functions introduce the notion of a lim-
iting state of areal strain. This idea originates, to the best
of our knowledge, with a 1D material model introduced by
Carton et al. (1962). Their model was expressed in terms of a
compliance. Later, Fung (1967) introduced an equivalent 1D
model expressed in terms of a modulus. Today, this notion is
widely referred to as Fung’s law.

When the isotropic energy function in Eq. (18) is sub-
stituted into its governing constitutive Eq. (5), an evolution
equation for surface pressure or, alternatively, for areal dilata-
tion ensues, viz.,

dτ = E + ατ

1 − αη
dη or, equivalently, dη = 1 − αη

E + ατ
dτ (20)

depending upon which variable is the independent variable
of the boundary value problem being considered. This is a
separable, first-order, differential equation whose solution is
(E + ατ)(1 − αη) = E so that

τ = E η

1 − αη
or η = τ

E + ατ
(21)

depending upon which variable is being controlled. Dilata-
tion is strain-limited in the sense of Carton et al. (1962),
because τ → ∞ as η → 1/α from below.

Substituting the deviatoric energy function (19) into its
governing constitutive Eq. (6) produces an evolution equation
for the deviatoric surface tension of

dT̄ = 2μ

1 + β tr
(
U−1Ē

) U−1 dĒ U−1 (22)

where the fact that T̄ ⊗ U−1 : dĒ = tr(U−1 dĒ) T̄ = 0 has
been used, which vanishes because of Eq. (2). Equation (22)
is traceless, tr(U dT̄) = 0, because tr(U−1dĒ) = 0 by defi-
nition. This is consistent with the very fact that tr(U T̄) = 0
via its definition in Eq. (1).

Collectively, these two constitutive functions combine
with Eq. (3) to produce a symmetric tangent modulus for
this Fungean membrane of

M = (2μ̃ − τ) U−1 � U−1 +
(

Ẽ − μ̃
)

U−1 ⊗ U−1 (23)

whose inverse is the symmetric tangent compliance

C = 1

2μ̃ − τ

(
U � U − Ẽ − μ̃

2Ẽ − τ
U ⊗ U

)
. (24)

Footnote 5 continued
dimension, constitutes the actual measures for stress and strain used by
Fung (1967) in his empirical model/law.
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wherein

Ẽ = E + ατ

1 − αη
= E

(1 − αη)2 = (E + ατ)2

E
(25)

and

μ̃ = μ

1 − β I3
= μ

1 + β tr
(
U−1Ē

) (26)

are elastic tangent moduli, with τ and η following from
Eq. (21), and Ē from integrating

∫ t
0 (dĒ(t ′)/dt ′) dt ′ with dĒ

being established in Eq. (2).
Equations (3, 23, 25, 26) comprise an implicit elas-

tic membrane model requiring four material parameters:
E, μ, α, and β. A deformation of equibiaxial extension will
be independent of parameters μ and β, while a deformation
of simple shear will be independent of parameters E and α.
This Fungean membrane reduces to our Hookean membrane
whenever α � β � 0 or, equivalently, whenever Ẽ � E and
μ̃ � μ.

In terms of their modulus and compliance tensors, the sin-
gle feature that distinguishes this four-parameter Fungean
membrane from the two-parameter Hookean membrane that
it generalizes is: elastic constants E and μ in the Hookean
model have been replaced with elastic tangent functions Ẽ
and μ̃ in the Fungean model. These functions were derived
from theory, firmly based upon thermodynamic principles.
They are not ad hoc! The authors expect this feature will
strongly affect the future utility of our theory when model-
ing biological tissues, and even some man-made elastomers
(cf. Freed 2013). A similar result was acquired by Rajagopal
(2003) where he derived a Navier-Stokes model with a pres-
sure dependent viscosity from a thermodynamically admis-
sible, implicit constitutive construction.

The material response of this Fungean membrane will be
stable whenever Eq. (16) is satisfied, with the elastic tangent
moduli Ẽ and μ̃ replacing the elastic material constants E
and μ found therein.

3 Proportional biaxial experiments

In a proportionally loaded planar membrane that does not
experience rotation, tractions are imposed on specimens at a
fixed ratio of φ causing the components of the Lagrangian
surface tension (Biot (1939) stress in 2D) to be described by

T =
[

T 0
0 φT

]
, T ≥ 0 and 0 ≤ φ ≤ 1, (27)

with axial tensions of T1(t) = T = f1(t)/�2(0) and T2(t) =
φT = f2(t)/�1(0) and axial stretches of λ1 = �1(t)/�1(0)

andλ2 = �2(t)/�2(0), wherein f1(t) and f2(t) are the current
forces being applied in the 1- and 2-directions acting normal
to initial lengths of line of �2(0) and �1(0) that parallel the

2- and 1-directions. The constant of proportionality, φ, is
truly a constant only in terms of the components of surface
tension T. Unless the material response is linear, no like con-
stant of proportionality will exist between components of
other stress measures (except the first Piola-Kirchhoff stress)
nor of the various deformation fields.

In this regard, areal strain (Biot’s (1939) strain measure
E = U − I in 2D) and its rate have components of

E =
[

λ1 − 1 0
0 λ2 − 1

]
and dE =

[
dλ1 0
0 dλ2

]
(28)

the latter decomposing, according to Eq. (2), into an areal
rate of dilatation of

dη = dλ1

λ1
+ dλ2

λ2
integrating to η = ln λ1 + ln λ2 (29)

and a deviatoric strain-rate of

dĒ = 1

2

[
dλ1 − λ1 dλ2/λ2 0

0 dλ2 − λ2 dλ1/λ1

]
(30)

that integrates to

Ē = 1

2

[
λ1 − 1 0

0 λ2 − 1

]

− 1

2

∫ t

0

[
λ1(t ′) dλ2(t ′)/λ2(t ′) 0

0 λ2(t ′) dλ1(t ′)/λ1(t ′)

]

(31)

where it readily follows that tr(U−1dĒ) = 0, even though
tr(U−1Ē) �= 0. The integral appearing in the above expres-
sion for Ē is coupled between its orthogonal stretches λ1 and
λ2 and therefore cannot be solved, analytically, except for
the important special case where λ1 = λ2, i.e., equibiax-
ial extension. A Poisson response arises from our theory for
strain. It is independent of constitutive expression.

4 Experiments on porcine visceral pleura

Fresh porcine lungs obtained from juvenile pigs from a
local slaughterhouse were transported to the laboratory in
phosphate buffered saline (PBS) on ice. The visceral pleura
(the membrane encasing the lung) from the posterior right
middle lobe of the lung was dissected and trimmed into a
25 mm × 25 mm square sample with one edge aligned along
the longitudinal and the other along the circumferential. Two
loops of 000 polyester suture were then attached to each side
of the square sample via four stainless steel hooks (a total
of eight suture loops used). The square pleural membrane
sample was mounted into a custom mechanical testing sys-
tem. Biaxial stretching was implemented with the samples
immersed in PBS (pH 7.4) at room temperature. A detailed
description of the biaxial test system can be found in Grashow
et al. (2006) and Liao et al. (2008).
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Briefly, the orthogonal forces were monitored by two load
cells. Four markers were placed in the center of the membrane
sample for real-time tissue deformation tracking using a CCD
camera (cf., e.g., Sacks 2000; Humphrey 2002). Lagrangian
membrane tension (force per unit initial length) was used
for load control. No spatial rotations of the specimens were
observed. A trial experiment found that the pleural membrane
was able to withstand tension levels up to 35 N/m before
tearing took place at the hook sites; thus, a target maximum
tension was set at 30 N/m.

An equibiaxial preconditioning protocol took place over
10 cycles ranging between 0:0 and 30:30 N/m, after which
the tension-stretch curves were observed to be repeatable.
The following three protocols were then executed sequen-
tially. For the equibiaxial protocol, the pleural membrane
was loaded to a tension level of Tlongitudinal:Tcircumferential =
30:30 N/m. For proportional biaxial protocols (non-equi-
biaxial), the pleura was loaded to tension levels Tlongitudinal:
Tcircumferential = 30:15 N/m and 15:30 N/m. To illustrate the
difficulty in performing such experiments, the mean con-
stants of proportionality controlled for the animal 2 proto-
cols were φ(30:30) = 0.955 ± 0.122, φ(30:15) = 0.557 ±
0.323, and φ(15:30) = 0.507 ± 0.104, with reported errors
of ±1 standard deviation (SD), and where 0 ≤ φ ≤ 1. The
greatest variability existed at the lowest states of tension, viz.,
those well within the compliant toe region.

4.1 Data

The Hookean and Fungean models derived above were each
acquired from a thermodynamic potential function that rep-
resents the internal energy stored in the material caused by
external work being done on the material. In our presenta-
tion, the total work done has been decomposed into separable
isotropic and deviatoric contributions. Figure 1 presents the
two conjugate variables describing isotropic behavior plot-
ted against the isotropic work done in our experiments, while
Fig. 2 presents the four deviatoric invariants plotted against
the deviatoric work done. For our experiments, the isotropic
work that was done was about an order in magnitude greater
than the deviatoric work that was done.

The data presented in Figs. 1 and 2 were quantified using
formulæ taken from Eqs. (27–31). The work being done was
ascertained by integrating dWi = τ dη and dWd = tr(T̄ dĒ).
Distortion Ē was integrated from dĒ according to Eqs. (30,
31). In both cases, numeric integration was accomplished
using the trapezoidal rule. When integrating work over an
interval, the tension terms were computed as averages over
the interval, whereas the areal strain-rate terms took on their
discrete values at the endpoints of the interval.

All three protocols contributed to the isotropic response in
Fig. 1. The response of each variable suggests the existence of
a master response curve, with reasonable variability appear-
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Fig. 1 Plots of the two isotropic state variables, surface pressure τ

(top) and areal dilatation η (bottom), against the isotropic work done
Wi = ∫

τ dη for the 15:30, 30:15, and 30:30 protocols imposed on a
porcine pleura tissue sample taken from animal 2

ing in the data. These data provide experimental evidence
that the isotropic and deviatoric energies are truly separable,
as our theoretical formulation supposes. If there were to be
an isotropic/deviatoric coupling (but none is observed), then
one would expect there to be three, distinct, experimental,
response curves present in Fig. 1, one for each protocol, but
that is not what we found. Within experimental noise, only
one experimental response curve is observed. Isotropic and
deviatoric work are separable. Isotropic work is observed to
be sensitive to both of the physical variables, viz., τ and η,
for this material.

There is no deviatoric response in the equibiaxial experi-
ment (the 30:30 N/m protocol) observed in Fig. 2, nor should
there be according to our theory. Means for the various devi-
atoric response data, along with their ±1 SD errors, are
reported in the caption of Fig. 2. The two strain-invariant
plots in Fig. 2, its upper-right and lower-left plots, are practi-
cally the same, and therefore, these data would be incapable
of distinguishing any difference that might arise between
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Fig. 2 Plots of the four nonzero invariants, viz., I2 (upper left), I3
(upper right), I4 (lower left), and I5 (lower right) from Eq. (17), against
the deviatoric work done Wd = ∫

T̄:dĒ for the 15:30 and 30:15 pro-
tocols imposed on a porcine pleura tissue sample taken from ani-
mal 2. When applied to the 30:30 protocol, all data for these four

deviatoric-based invariants reside around the origin of their respec-
tive plots (in accordance with theory) with means and SD errors of
Wd = −0.00117 ± 0.00190 N/m, I2 = 0.141 ± 0.106 N2/m2, I3 =
1.32 × 10−5 ± 1.22 × 10−5, I4 = 1.07 × 10−5 ± 1.26 × 10−5, and
I5 = 0.00175 ± 0.00158 N/m for these experimental data sets

invariants I3 and I4 in a model, where I3 = − tr(U−1Ē)

and I4 = − det(U−1Ē) from Eq. (17). This begs the ques-
tion: are I3 and I4 equivalent, in a theoretical sense, or is
this just happenstance for these data? This remains an open
question.

The 15:30 N/m protocol was the last leg run in a sequen-
tial series of three proportional extensions that comprise the
loading sequence for this experimental data set. Several slip-
stick events were recorded in the tangential stretch response
of this last leg, causing the stretch/tension curve to retro-
grade several times at the lower loads. These discrete events
affected the integrated results for distortion and deviatoric
work; consequently, data from this leg were not used for
parameterization purposes.

4.2 Fungean model characterization

The internal energy functions for a Fungean membrane, viz.,
Eqs. (18, 19), have parameters that quantify Hookean behav-
ior in a neighborhood around zero tension, and asymptotic
behavior, like Carton’s (1962), that limits areal strain as the
tension becomes unbounded. These two features of the model
allow for a simple and straightforward graphical technique
for parameterizing, whose outcome is recorded at the top of
Table 1.

Table 1 Parameterization of the Fungean membrane model defined by
Eqs. (18, 19) against experimental data for a porcine pleural membrane
excised from animal 2

Work done Moduli (N/m) Fung parameters Adjusted R2

Isotropic E = 15 α = 1.8 –

Deviatoric μ = 40 β = 250 –

Isotropic E = 5.5 α = 1.6 0.982

Deviatoric μ = 35 β = 250 0.978

The top set of parameters were secured from a straightforward graphical
technique. The bottom set of parameters, acquired after the first set, were
obtained from a nonlinear optimization algorithm that uses an interior
trust region (Coleman and Li 1996)

In a neighborhood around zero tension, the response is
Hookean in that Wi � τ 2/2E and Wd � I2/2μ. Exper-
imental data plots of τ 2 versus Wi = ∫

τ dη and of I2 =
1
2 tr(T̄UT̄U) versus Wd = ∫

T̄ : dĒ are presented in Fig. 3.
The tangents in Fig. 3 were drawn by eye. Their corre-
sponding values for E and μ are recorded at the top of
Table 1.

At the most extreme states of tension, the response pre-
dicted by our Fungean model becomes asymptotic to a lim-
iting state in areal strain, in accordance with the ideas of
Carton et al. (1962). Specifically, from Eq. (18) η � 1/α,
and from Eq. (19) I3 � 1/β. Experimental data plots of η
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Fig. 3 Isotropic (top) and deviatoric (bottom) response plots where
the work done is contrasted against an appropriate measure of tension
squared. Hookean solids have data that describe straight lines in such
figures. The initial response is Hookean. Data are for porcine pleura
taken from animal 2. Parameters that associate with the slopes drawn
here are recorded in the upper part of Table 1

versus Wi and of I3 = − tr(U−1Ē) versus Wd are presented
in Fig. 4. The asymptotes in Fig. 4 were drawn by eye. Their
corresponding values for α and β are recorded at the top of
Table 1.

Alternatively, after parameter estimates were made by this
graphical technique, estimates were also secured using a
nonlinear optimization algorithm for model parameteriza-
tion. This technique employed an interior trust region, and
it also allowed for parameter constraints (Coleman and Li
1996). Results from this approach to parameterization are
displayed in Fig. 5, whose values are recorded in the bot-
tom part of Table 1. They are different, yet close to those
obtained graphically. Graphical values should provide rea-
sonable estimates from which an algorithmic optimizer can
be started. Our Fungean membrane model correlates these
data well, especially considering there are only two parame-
ters per response domain.

Numerical optimization techniques employed here are
not ideal, because the model has no quality in it to rep-
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Fig. 4 Isotropic (top) and deviatoric (bottom) response plots where the
work done is contrasted against an appropriate measure of areal strain.
Implicit solids have data that approach an asymptotic limit in strain in
the sense of Carton et al. (1962). Parameters that associate with the
asymptotes drawn here are recorded in the upper part of Table 1

resent how the response is supposed to transition between
its two end behaviors: Hookean in the infinitesimal regime
and, at the other extreme, limitless tension as areal strain
approaches its asymptotic limit. Consequently, any opti-
mizer will incorrectly adjust these model parameters, which
accurately describe the two end responses, in an effort
to best fit the data that lie in between. This issue, and
how to best resolve it, continues to be investigated by the
authors.

One could add a feature to our model that would address
this transition behavior. We have resisted doing so for two
reasons, although tempted. First, one would loose our sim-
ple correspondence to a Hookean membrane model where
the elastic constants therein are replaced with elastic tangent
functions. Second, there is so much natural variability in tis-
sue response, sample to sample within an individual, individ-
ual to individual within a species, and species to species that
any added value brought about by such model refinements
is, in some sense, a vain pursuit.
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Fig. 5 The upper set of curves in each figure are the experimental con-
tributions for the state-space responses pertaining to the isotropic (a)
and deviatoric (b) energies measured from the 15:30, 30:15, and 30:30
protocols. The lower set of curves in each figure are their projections
onto the τ 2 versus η and I2 versus I3 planes, showing a limiting state
in strain, as predicted by our theory. The deviatoric response for the

30:30 protocol resides around the origin (in accordance with theory)
with means and SD errors of Wd = −0.00117 ± 0.00190 N/m, I2 =
0.141 ± 0.106 N2/m2, and I3 = 1.32 × 10−5 ± 1.22 × 10−5 for these
experimental data sets. The model fits use the parameters in the bottom
part of Table 1

5 Discussion

The fact that the longitudinal and transverse responses from
the equibiaxial experiments presented in Fig. 6 lie one atop
the other provide experimental evidence that the mechanical
response for the pleural membrane is isotropic. This agrees
with the experimental findings of Humphrey et al. (1987),
which were performed on a canine sample. What is immedi-
ately apparent when comparing our Fig. 6 and their Fig. 1 is
the large animal-to-animal and species-to-species variabil-
ity that exists in the limiting state of equibiaxial stretch,
i.e., ηmax = 1/α, which spans a range of approximately
λmax ∈ [1.3, 1.7] in just these three data sets, thereby impli-
cating a large variability in α of at least α ∈ [0.9, 1.8]. This
is true of other tissues, too, e.g., large variability in the lim-
iting state of stretch is observed in bioprosthetic heart-valve
tissues reported on by Vesely (1996). The curves present
in Fig. 6 represent optimal fits of Eq. (21) to the experi-
mental data, where E was forced to be the same between
them.

The idea of constructing an elastic theory for isotropic
membranes using the smaller set of invariants defined over
R

2, as considered in the early literature on the topic and
adopted herein, instead of using a larger set of invariants
defined over R

3, but specialized for membranes, appears
to have originated in a paper by Wong and Shield (1969).
Holzapfel and Ogden (2009) have argued the point that “there
is a significant difference between the planar specialization
of a three-dimensional strain-energy function and an a priori
two-dimensional strain-energy function.” This is especially
true for anisotropic materials. In this paper, however, the
material of study exhibits mechanical isotropy, even though
it has a heterogeneous fibrous microstructure.

We agree with their statement “in a two-dimensional the-
ory a significant part of the three-dimensional constitutive
law is missing.” In fact, invariants that generate stress and
strain induced anisotropies, specifically S̄�C−1 +C−1 � S̄
and ĒG �C+C · ĒG in our three-dimensional model (Freed
and Einstein 2013), do not arise here in our two-dimensional
model. Therein, C and C−1 are the deformation metrics of
Green and Cauchy, S is the second Piola-Kirchhoff stress
and EG denotes Green strain.

The Fungean model in this paper remains mechanically
isotropic, with the classic elastic constants of a Hookean
solid becoming elastic tangent functions in this model. This
is because the tensorial dependence of M is in terms of the
two, isotropic, outer and inner, tensor products U−1 ⊗ U−1

and U−1 �U−1 present in the isotropic Hookean model. The
stress and strain induced anisotropies mentioned above, as
direct consequences of implicit elastic theory, are topics left
for future research, both experimentally and theoretically.
To construct a Fungean material model for an anisotropic
membrane, one would need to consider either those planar-
specialized invariants that exist over R

3, which have been
neglected in our construction over R

2, or introduce, as a min-
imum, a third tensor into the invariant construction process,
e.g., the case of transverse isotropy (cf. Spencer 1971, 1972).

The strain-limiting terms 1/(1 − αη) and 1/(1 − 2β I3)

present in Ẽ and μ̃ of our Fungean model are what Freed and
Einstein (2013) refer to as Rajagopal effects. The exponential
effect of E + ατ is what they refer to as a Fung effect.

There is no parameter in our Fungean model that pro-
vides information regarding how the behavior is to transition
from a Hookean response into a saturated Carton response.
In other words, there is nothing in this model that allows for
adjustment in the shape of the heel region in a typical uni-
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Fig. 6 Longitudinal and transverse responses of two porcine pleura
subjected to equibiaxial extensions. For animal 1, the displayed curve
is described by parameters α = 1.2 and E = 8 N/m. For animal 2, it is
described by parameters α = 1.8 and E = 8 N/m. The elastic modulus
E was selected to be the same for both animals, only permitting α to
vary between them. Parameters μ and β are insensitive to equibiaxial
extension

axial experiment done on tissue. If our simple model fails
to describe data from a data set of interest to you over this
region of transition, then these data that lie in the in-between
heel region will likely confuse your efforts to employ an
automated optimization algorithm.

Although we advise against this temptation, if one has a
need to model the heel region of a stretch/tension curve with
greater fidelity than Eqs. (18, 19) permit, one might want to
consider

Wi (η, τ ) = τ 2

2E
(1 − αη)m &

Wd(Ē, T̄) = I2

2μ
(1 − β I3)

n

where m and n would modulate the shape of the heel region,
with m = n = 1 reducing the above model to our original
model (18, 19).

6 Summary

An elastic theory for membranes has been derived and
applied to porcine pleura. The theory is novel in that it is
based upon an additive dilatoric/deviatoric split in a differ-
ential change of deformation, in particular, of the right stretch
tensor. A consequence of this hypothesis is that the elastic
energy stored internally by the material, caused by external
work being done on it, splits into independent isotropic and
deviatoric contributions—a conjecture that is supported by
the experimental data presented in this paper.

The theory is also novel in that its mathematical structure,
derived from thermodynamics, is implicit; its internal energy
function can depend upon both stress and strain. For specific
choices in its two energy functions, a Fungean membrane
has been shown to exist whose tangent moduli have the same
tensorial structure as those of a Hookean membrane, with its
elastic constants being replaced by elastic tangent functions.
The resulting constitutive formulæ produce exponential-like
responses indicative of behaviors exhibited by soft biological
tissues whose extracellular constructions consist of collagen
fibers.

A sequence of proportional biaxial experiments done on a
visceral pleural membrane validate the model. These experi-
ments found the membrane to be mechanically isotropic, and
the mechanical work done on it to be separable into indepen-
dent isotropic and deviatoric contributions.

This technique of splitting the work into isotropic and
deviatoric constituents greatly facilitates parameter estima-
tion in that there are just two parameters for each energy con-
tribution. One for the small-deformation Hookean response.
The other for the large-deformation asymptotic response.
Where the model may be wanting is that it has no para-
meters to adjust for the material response that lies between
these two limiting states. By splitting the data into isotropic
and deviatoric responses, as we have done in Figs. 1 and
2, the two facets of our model can be parameterized in an
uncoupled approach that maximizes parameter sensitivity to
the data. A separate issue has to do with parameter variabil-
ity. A standard deviation in error between data sets deter-
mined from multiple tissue samples will be much greater
for the Fungean parameters α and β than for the Hookean
parameters E and μ. How much and what its impact would
be on material modeling in applications has not yet been
studied.
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