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a b s t r a c t

In this study, data mining and knowledge discovery techniques were employed to validate their efficacy
in acquiring information about the viscoelastic properties of vapor-grown carbon nanofiber (VGCNF)/
vinyl ester (VE) nanocomposites solely from data derived from a designed experimental study. Formula-
tion and processing factors (VGCNF type, use of a dispersing agent, mixing method, and VGCNF weight
fraction) and testing temperature were utilized as inputs and the storage modulus, loss modulus, and
tan delta were selected as outputs. The data mining and knowledge discovery algorithms and techniques
included self-organizing maps (SOMs) and clustering techniques. SOMs demonstrated that temperature
had the most significant effect on the output responses followed by VGCNF weight fraction. SOMs also
showed how to prepare different VGCNF/VE nanocomposites with the same storage and loss modulus
responses. A clustering technique, i.e., fuzzy C-means algorithm, was also applied to discover certain pat-
terns in nanocomposite behavior after using principal component analysis as a dimensionality reduction
technique. Particularly, these techniques were able to separate the nanocomposite specimens into differ-
ent clusters based on temperature and tan delta features as well as to place the neat VE specimens (i.e.,
specimens containing no VGCNFs) in separate clusters. Most importantly, the results from data mining
are consistent with previous response surface characterizations of this nanocomposite system. This work
highlights the significance and utility of data mining and knowledge discovery techniques in the context
of materials informatics.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Data mining is a field at the intersection of computer science
and modern mathematical analysis [1–4]. It is used for discovering
patterns in large datasets using predictive modeling techniques,
where hidden data trends can be found [2]. The overall goal of
the data mining process is to extract information from a large com-
plex dataset and transform it into an understandable structure,
thus enabling knowledge discovery. This transformation of mas-
sive amounts of structured and unstructured data into information
and then into new knowledge using a myriad of data mining tech-
niques is one of the great challenges facing the engineering com-

munity. The use of data mining techniques in the context of
materials science and engineering is considered an important
extension of materials informatics [5–8]. This interdisciplinary
study integrates computer science, information science, and other
domain areas to provide new understanding and to facilitate
knowledge discovery. Materials informatics is a tool for material
scientists to interpret vast amounts of experimental data through
the use of machine learning approaches integrated with new visu-
alization schemes, more human-like interactions with the data,
and guidance by domain experts. It can also accelerate the research
process and guide the development of new materials with select
engineering properties. Material informatics is being fueled by
the unprecedented growth in information technology and is driv-
ing the interest in the application of knowledge representation/dis-
covery, data mining, machine learning, information retrieval, and
semantic technology in the engineering disciplines.

There are several recent published applications utilizing
material informatics and data mining. Hu et al. [9] used material
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informatics to resolve the problem of materials science image data
sharing. They presented an ontology-based approach that can be
used to develop annotation for non-structured materials science
data with the aid of semantic web technologies. Yassar et al. [10]
developed a novel computational model based on dislocation
structures to predict the flow stress properties of 6022 aluminum
alloy using data mining techniques. An artificial neural network
(ANN) model was used to back-calculate the in situ non-linear
material parameters and flow stress for different dislocation
microstructures [10]. Sabin et al. [11] evaluated an alternative sta-
tistical Gaussian process model, which infers a probability distri-
bution over all of the training data and then interpolates to make
predictions of microstructure evolution arising from static recrys-
tallization in a non-uniform strain field. Strain, temperature, and
annealing time were the inputs of the model and the mean loga-
rithm of grain size was its output. Javadi and Rezania [12] provided
a unified framework for modeling of complex materials, using evo-
lutionary polynomial regression-based constitutive model
(EPRCM), integrated in finite element (FE) analysis, so an intelli-
gent finite element method (EPR–FEM) was developed based on
the integration of the EPR-based constitutive relationships into
the FE framework. In the developed methodology, the EPRCM
was used as an alternative to the conventional constitutive models
for the material. The results of the analyses were compared to
those obtained from conventional FE analyses. The results indi-
cated that EPRCMs are able to capture the material constitutive
behavior with a high accuracy and can be successfully imple-
mented in a FE model.

Brilakis et al. [13] presented an automated and content-based
construction site image retrieval method based on the recognition
of material clusters in each image. Under this method, the pixels of
each image were grouped into meaningful clusters and were sub-
sequently matched with a variety of pre-classified material sam-
ples. Hence, the existence of construction materials in each
image was detected and later used for image retrieval purposes.
This method has allowed engineers to meaningfully search for con-
struction images based on their content. Sharif Ullah and Harib
[14] presented an intelligent method to deal with materials selec-
tion problems, wherein the design configurations, working condi-
tions, as well as the design-relevant information are not precisely
known. The inputs for this method were: (1) a linguistic descrip-
tion of the material selection problems (expressing the required
levels of material properties/attributes and their importance),
and (2) the material property charts relevant to the linguistic
description of the problem. The method was applied to select opti-
mal materials for robotic links and it was found that composite
materials were better than metallic materials for robotic links.

A class of advanced materials, nano-enhanced polymer compos-
ites [15], have recently emerged among the more traditional struc-
tural metals. Polymer nanocomposites have been used in a variety
of light-weight high-performance automotive composite structural
parts where improved specific properties and energy absorption
characteristics are required [16]. Though polymer nanocomposites
have recently been widely investigated [17,18], they have never
been studied in the context of material informatics. Therefore,
the purpose of this study is to apply data mining and knowledge
discovery techniques, as a proof of concept, to a thermosetting va-
por-grown carbon nanofiber (VGCNF)/vinyl ester (VE) nanocom-
posite system. Nouranian et al. [19–21] and Torres et al. [22]
developed a relatively large dataset for this material system suit-
able for data mining. This study seeks to use this dataset to demon-
strate the usefulness of knowledge discovery and data mining
techniques for nanocomposite material property characterization.

VGCNFs are commercially viable nanoreinforcements with
superb mechanical properties [23]. VEs are thermosetting resins
suitable for automotive structural composites due to their superior

properties in comparison with unsaturated polyesters [20–22,
24,25]. Incorporating VGCNFs into VEs may provide improved
mechanical properties relative to the neat matrix. These mechani-
cal properties, however, are dependent on the degree of VGCNF
nanodispersion in the matrix achieved during the mixing stage of
the process. Examples of good and poor nanofiber dispersion in
the matrix are given in Fig. 1, where two transmission electron
micrographs of VGCNF/VE specimens are compared. Large nested
groups of nanofibers (agglomerates) are a sign of poor VGCNF dis-
persion in the matrix, often resulting in inferior mechanical
properties.

Data mining and knowledge discovery techniques can help dis-
cover and map patterns in the physical, mechanical, and system
properties of VGCNF/VE nanocomposites, thereby aiding the nano-
composite design, fabrication, and characterization without the
need to conduct expensive and time-consuming experiments.

In this study, several unsupervised knowledge discovery tech-
niques were used to explore a large VGCNF/VE dataset [19]. The
dataset consisted of 240 data points each corresponding to the
combinations of five input design factors and three output re-
sponses, i.e., a total of eight ‘‘dimensions.’’ The dimensions in data
mining are the combination of both inputs and outputs of the
developed model. The dimensions of the VGCNF/VE dataset are
VGCNF type, use or absence of dispersing agent, mixing method,
VGCNF weight fraction, temperature, storage modulus, loss modu-
lus, and tan delta (ratio of loss to storage modulus), where the last
three dimensions correspond to measured macroscale material
properties. Kohonen maps [26,27], or self-organizing maps (SOMs),
were applied to the dataset in order to conduct a sensitivity anal-
ysis of all of these factors and responses. In addition, principal
component analysis (PCA) [28] was used to provide a two-dimen-
sional (2-D) representation of nanocomposite data. This facilitated
application of the fuzzy C-means (FCM) clustering algorithm
[29,30] to characterize the physical/mechanical properties of
VGCNF/VE nanocomposites.

2. Materials and methods

A brief summary of the statistical experimental design and test-
ing procedures to generate the VGFCNF/VE dataset is given here. A
more detailed discussion can be found in [19–21].

2.1. Statistical experimental design

The effect of five input design factors on the viscoelastic proper-
ties (storage and loss modulus) of VGCNF/VE nanocomposites were
investigated using a general mixed-level full factorial experimental
design [31]. These carefully selected factors, based on the state-of-
the-art formulation and processing procedures, included: (1)
VGCNF type (designated as A), (2) use of a dispersing agent (B),
(3) mixing method (C), (4) VGCNF weight fraction in parts per hun-
dred parts of resin (phr) (D), and (5) the temperature (E) used in
dynamic mechanical analysis (DMA) testing. Experimental design
factors and their associated levels are given in Table 1.

A total of 2 � 2 � 3 � 5 � 4 = 240 ‘‘treatment combinations’’
(different combinations of the factor levels in Table 1) were ran-
domized to eliminate bias in preparing the specimens. Each treat-
ment combination resulted in three specimens prepared from the
same material batch [20,21]. Each specimen was tested using a dy-
namic mechanical analyzer (single cantilever/flexure mode) to
measure average storage modulus, loss modulus, and tan delta
for each treatment combination. Storage and loss moduli are dy-
namic mechanical properties and indicative of the polymer nano-
composite’s stiffness and energy dissipation capability,
respectively.
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2.2. Materials and processing

A low styrene content (33 wt%) VE resin (Ashland Co., Derakane
441–400) and two VGCNF commercial grades, i.e., pristine PR-24-
XT-LHT and surface-oxidized PR-24-XTLHT-OX (Applied Sciences
Inc.) were utilized for nanocomposite specimen preparation
[20,21]. In addition, methyl ethyl ketone peroxide (MEKP) (US
Composites Inc.) and 6% cobalt naphthenate (CoNaph) (North
American Composites Co.) were selected as initiator and crosslink-
ing promoter, respectively. Air release additives BYK-A 515 and
BYK-A 555 (BYK Chemie GmbH) were used to remove air bubbles
introduced during mixing. A commercial dispersing agent BYK-
9076 (BYK-Chemie GmbH) was employed to improve VGCNF dis-
persion in the resin.

Test specimens were prepared from a batch of resin comprising
100 parts resin, 0.20 phr 6% CoNaph, 0.20 phr BYK-A 515, 0.20 phr
BYK-A 555, 0.00–1.00 phr VGCNFs (based on the design given in Ta-
ble 1), and a 1:1 ratio of BYK-9076 to VGCNFs. The VGCNF/resin
blend was mixed by either an ultrasonicator (ultrasonic processor
GEX750-5C, Geneq Inc.), high-shear mixer (model L4RT-A, Silverson
Machines Ltd.), or a combination of both, as dictated by the design
given in Table 1. Then the nanofiber/resin blend was degassed under
vacuum for 5–15 min at pressures of 8–10 kPa. The blend was ther-
mally cured for 5 h at 60 �C followed by 2 h post-curing at 120 �C.

2.3. Dynamic mechanical analysis (DMA)

Test specimens were cut from cured specimens for DMA and
polished using sandpaper. The storage and loss moduli were

measured over a temperature range of 27–160 �C using a dynamic
mechanical analyzer (TA Instruments, Model Q800) in the single
cantilever mode at an amplitude of 15 lm, a fixed frequency of
10 Hz, and a heating rate of 5 �C/min.

3. Theory/Calculation

The average storage and loss moduli from three repeat tests for
each of the 240 treatment combinations are given in [19]. This
study incorporates five input design factors, i.e., VGCNF type (A),
use of a dispersing agent or not (B), mixing method (C), VGCNF
weight fraction (D), and DMA testing temperature (E) and three
output responses, i.e., storage modulus, loss modulus, and tan del-
ta. Hence, the dataset represents an eight-dimensional (8-D) space
for analysis. Since factors A, B, and C are considered qualitative fac-
tors, they are represented by a numeric code for analysis purposes.
For two-level factors A and B, 0 and 1 are the coded values for the
first and second levels, respectively. For the three-level factor C,
�1, 0, and 1 are the coded values for the first, second, and third lev-
els, respectively (Table 1).

The logic behind data mining can be summarized as follows: (1)
identify dominant patterns and trends in the data by utilizing the
SOMs to conduct a sensitivity analysis; (2) apply a dimensionality
reduction technique, such as PCA, to the data in order to enable the
FCM clustering analysis of the data; (3) perform the FCM analysis
of the data; and (4) transfer the findings of data mining techniques
to the domain experts to validate the discovered data patterns and
trends.

Fig. 1. Transmission electron micrographs of two VGCNF/VE specimens, where a nested VGCNF structure (agglomerate) is shown in (a), indicating a poor VGCNF dispersion in
the matrix, and a better-dispersed system is shown in (b).

Table 1
The experimental design factors and their levels [19,21].

Factor designation Factors Level

1 2 3 4 5

A VGCNF type Pristine Oxidized – – –
B Use of dispersing agent Yes No – – –
C Mixing method USa HSb HS/US – –
D VGCNF weight fraction (phrc) 0.00 0.25 0.50 0.75 1.00
E Temperature (�C) 30 �C 60 �C 90 �C 120 �C –

a Ultrasonication.
b High-shear mixing.
c Parts per hundred parts of resin.
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On the basis of the above discussion, SOMs [26,27], PCA [28],
and the FCM clustering algorithm [29,30] were used with the
240 treatment combination dataset to discover nanocomposite
data patterns and trends and to identify the different system fea-
tures related to the specific material properties. SOMs were created
with respect to temperature, VGCNF weight fraction, storage mod-
ulus, loss modulus, and tan delta. After analyzing the SOMs, tem-
perature was identified as the most important input feature for
the VGCNF/VE nanocomposites because it has the highest impact
on the resulting storage and loss moduli responses. VGCNF weight
fraction was also an important feature. In addition, it was inferred
from the SOMs that some specimens tested at the same tempera-
ture tended to have several sub-clusters (groups). Each sub-cluster
had the same tan delta or VGCNF weight fraction values.

Before applying these techniques, a brief explanation of ANN
and unsupervised learning is presented.

3.1. Artificial neural networks (ANNs) and unsupervised learning

ANNs are a host of simple processors (neurons) that are inter-
connected in an organized fashion (architecture) and associated
with a learning algorithm that emulates a biological process [26].
There are numeric values (weights) associated with the intercon-
nections of the simple processors that are adjusted over time to
emulate learning. These weights encode knowledge about the
problem domain. The architectures (neurons and their intercon-
nections) provide a computational structure for simulating a bio-
logical neural network. Therefore, many of the architectures,
including the one used in this study, are based on findings from
the field of neuroscience [27].

Learning in an ANN can occur in either a supervised or an unsu-
pervised fashion [26]. A supervised approach uses a learning algo-
rithm that creates an input/output mapping based on a labeled
training set; thus, creating a mapping between an n-dimensional
input space and m-dimensional output space. In this case, the net-
work will learn a functional approximation from the input/output
pairings and will have the ability to recognize or classify a new in-
put vector into a correct output vector (generalization). An unsu-
pervised learning architecture, in contrast, presents the network
with only a set of unlabeled input vectors from which it must learn.
In other words, the unsupervised ANN is expected to create charac-
terizations about the input vectors and to produce outputs corre-
sponding to a learned characterization (i.e., knowledge discovery).

ANNs that use unsupervised learning will determine natural
clusters or feature similarity within the input dataset and to pres-
ent results in a meaningful manner [26]. Since no labeled training
sets are used in this approach, the outputs from the unsupervised
learning network must be examined by a domain expert to deter-
mine if the classification provides any new insight into the dataset.
If the result is not reasonable, then an adjustment is made to one of
the training parameters used to guide the network’s learning, and
the network is presented the patterns again.

3.2. Self-organizing maps (SOMs)

Kohonen [27] has proposed that humans process complex infor-
mation by forming reduced representations of the relevant facts.
An important aspect of this reduction in dimensionality is the abil-
ity to preserve the structural inter-relationships between input
and output factors. He proposed that the brain accomplished this
by a spatial ordering of neurons within the brain. This procedure
did not involve movement of neurons, but was achieved through
a change in the physiological nature of the neuron.

Kohonen maps are utilized to map patterns of arbitrary dimen-
sionality into 2-D or three-dimensional (3-D) arrays of neurons
(maps) [27]. A SOM may be thought of as a self-organizing cluster.

The basic components of a 2-D SOM for assessing VGCNF/VE fea-
ture data are shown in Fig. 2. The inputs are the dimensions of
the dataset being analyzed. Note that each element of the input
vector x is connected to each of the processing units on the map
through the weight vector wij. After training, the SOM will define
a mapping between the nanocomposite input data space and the
2-D map of neurons. The nanocomposite feature output yi of a pro-
cessing unit is then a function of the similarity between the input
vector and the weight vector. The nonlinear mapping of the SOM
utilizes a technique developed by Sammon [32] that preserves
the higher dimensional closeness on the map. In other words, if
two vectors are close to each other in the higher dimensional
space, then they are close to each other on the map.

In Fig. 2, a trained feature map and its response to a winning
output neuron, when excited by an original training pattern or
an unknown similar input vector pattern, is shown [26]. This figure
is a general illustration to show the logic of the SOM and the ANN
techniques. Knowledge about the significance of the area around
the winning neuron will then help the domain expert in knowledge
discovery.

The SOM training algorithm is typically implemented on a pla-
nar array of neurons as shown in Fig. 3 with spatially defined
neighborhoods (e.g., hexagonal or rectangular arrays, with six or
four nearest neighborhoods, respectively). Also, the map must con-
tain some method of compressing the data into a manageable
form. One important attribute of a SOM is that it performs data
compression without losing information regarding the relative dis-
tance between data vectors. A SOM typically uses the Euclidean
distance to determine the relative nearness or similarity of data
[23].

The idea of a spatial neighborhood, Nm, is used in measuring the
similarity between the input vector and values of the reference
vector represented by the vector of weights between the input
layer and all of the neurons on the map. Before training begins,
the weights are randomized and a learning rate and neighborhood
size are selected. Then, when a training vector is presented to the
network the neuron on the map with the most similar weight val-
ues is found. The weights of the winning neuron and the neighbor-
hood neurons are then adjusted (learning) to bring them closer to
the training vector. Over the course of the iterative training pro-
cess, the neighborhood size and learning rate are independently
decreased until the map no longer makes significant adjustments.
The result is that the neurons within the currently winning neigh-
borhood undergo adaptation at the current learning step while the
weights in the other neighborhoods remain unaffected. The

Fig. 2. Representation of the VGCNF/VE data analysis using ANN and a SOM. In the
processing unit, the input vector x is multiplied by the weight vector w to create a
mapping to the output vector y.
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winning neighborhood is defined as the one located around the
best matching neuron, m [23].

The operation of the SOM algorithm progresses as follows. First,
for every neuron i on the map, there is associated a parametric ref-
erence vector wi. The initial values of wi (0) are randomly assigned.
Next, an input vector x (Rn) is applied simultaneously to all of the
neurons. The smallest of the Euclidean distances is used to define
the best-matching neuron; however, other distance metrics may
be explored to determine their efficacy in clustering the codebook
vectors [23]. As the training progresses, the radius of Nm decreases
with time (t) such that Nmðt1Þ > Nmðt2Þ > Nmðt3Þ > . . . > NmðtnÞ, where
t1 < t2 < t3 < . . . < tn. In other words, the neighborhood of influence
can be very large when learning begins, but towards the end of
the learning process, the neighborhood may involve only the win-
ning neuron. The SOM algorithm also uses a learning rate that de-
creases with time.

In summary, the self-organization of the map proceeds as fol-
lows: (1) the map is presented with a sufficient number of training
patterns; (2) weights are only adjusted on the neurons in the win-
ning neighborhood; and (3) the adjustment is in proportion to the
activation received by each neuron in the neighborhood. This
weight adjustment enhances the same responses to a sufficiently
similar subsequent input. As a result, a map is obtained with
weights coding the stationary probability density function of the
pattern vectors used for the training. The map also displays the
data from a different viewpoint; instead of viewing the data as
an n-dimensional vector, it can be viewed as a 2-D plot. This is
where expert human analysis is enhanced. Instead of looking at
the n-dimensional input vector of a sample and trying to deter-
mine what its meaning is, one needs only to look at the location
of the sample on the map [24].

3.3. Principal component analysis (PCA)

Principal component analysis (PCA) is a method of identifying
patterns in data and expressing this data to highlight similarities
and differences [28]. These patterns can be hard to find in data of
higher dimensions, where visual representations are not available.
Therefore, PCA can be used as a powerful tool for analyzing data,
identifying patterns, and data compression.

After performing PCA, the number of dimensions will be re-
duced without much loss of the embedded information. PCA in-
cludes four main data processing steps. First, the mean, i.e., the
average across each dimension, is calculated. Second, the mean is
subtracted from each of the data dimensions. Third, the covariance
matrix [28] is calculated along with its eigenvalues and eigenvec-
tors. Finally, these eigenvectors and eigenvalues can be used to
choose the principal components and form a feature vector in order
to derive the new low-dimensional dataset.

3.4. Fuzzy C-means (FCM) clustering algorithm

Once data dimensions have been reduced to a 2-D or 3-D graph-
ical representation via PCA, several clustering algorithms can be
applied to discover patterns in the data. In the following section,
a summary of the FCM clustering algorithm, developed by Bezdek
and Ehrlich [30] is presented. Clustering is often associated with
the ‘‘membership’’ matrix U [30], which specifies the degree by
which a certain data vector x belongs to a particular cluster c.
The size of U is C � N, where C is the number of clusters and N is
the number of data vectors in the dataset. C is set initially to be
2 6 C 6 (N � 1).

U ¼

u11 u12 . . . u1N

u21 u22 . . . u2N

..

. ..
. . .

. ..
.

uC1 uC2 . . . uCN

2
66664

3
77775; ð1Þ

where uij ¼
1 if xj 2 Ai

0 otherwise

�
ð2Þ

uij is called a crisp 0–1 matrix and xj and Ai represent the data vector
j and the class i, respectively. The number of elements in a cluster is
given by the sum across a row of U, and

XC

i¼1

uij ¼ 1 for all j ¼ 1;2; . . . ;N; ð3Þ

Clustering can be described using an optimization scheme,
which involves formulating a cost function and then using iterative
and alternate estimations of the function. For example, the cluster
centers and membership matrix U can be initially computed and
then iteratively recalculated and updated.

FCM was created by Bezdek and Ehrlich [30] and is considered
an objective function-based clustering technique. Each cluster
using FCM has a prototype vi that distinguishes cluster i, where
the initial values of vi can be set randomly or by picking the fur-
thest points in the dataset or by picking exemplars from the data-
set. Thus, the overall prototype vector V has a size of (1 � C) and
can be denoted as

V ¼ fv1;v2; . . . ;vcg ð4Þ

The FCM cost function can be written as

JðU;VÞ ¼
XC

i¼1

XN

k¼1

uQ
ikdðxk;v iÞ; ð5Þ

where Q is a weighting exponent (1 6 Q <1) and d(xk, vi) is the dis-
tance measure between the data vector xk and the cluster i (repre-
sented by prototype i). Therefore,

urs ¼
1

PC
i¼1

dðxs ;vrÞ
dðxs ;v iÞ

� � 1
Q�1

: ð6Þ

For the Euclidean distance measure,

d2
ikðxk; v iÞ ¼ d2

ik ¼ ðxk � v iÞTðxk � v iÞ ¼ xT
k xk � 2xT

kv i þ vT
i v i: ð7Þ

Therefore,

v j ¼
PN

k¼1ðujkÞQ xkPN
k¼1ðujkÞQ

: ð8Þ

Now, for the Gustafon–Kessel (GK) distance measure,

dik ¼ jRij
1
D ðxk � v iÞTR�1

i ðxk � v iÞ
� �� �1

2
; ð9Þ

Fig. 3. Hexagonal grid used for SOMs showing 4 nearest neighbors.
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where dik is scaled by the hyper-volume approximation denoted by
jRij

1
D. Ri is the covariance matrix for class i:

@d2
ik

@v i
¼ �2jRij

1
DR�1

i ðxk � v iÞ; ð10Þ

Therefore,

v i ¼
PN

k¼1ðuikÞQ xkPN
k¼1ðuikÞQ

; ð11Þ

Ri ¼
PN

k¼1ðuikÞQ ðxk � v iÞðxk � v iÞTPN
k¼1ðuikÞQ

; ð12Þ

The GK distance measure in Eq. (9) uses a cluster-specific covari-
ance matrix, so as to adapt various sizes and forms of the clusters.
Thus, clustering algorithms that utilize GK distance measures try
to extract much more information from the data than the algo-
rithms based on the Euclidean distance measure [30]. Hence, the
GK distance measure was used in this study. Based on this develop-
ment, the pseudo code of the FCM algorithm is given as follows:

Compute C�N distance matrix;
Choose vj(0) as initial estimates of vj, j = 1, . . . ,C;
//Initial value of the iteration counter, t
t = 0;
//Update the membership matrix U
Repeat:

for i = 1 to N
for j = 1 to C

uji ¼
1

PC
k¼1

dðxi ;v jÞ
dðxi ;vkÞ

� � 1
Q�1

;

End for
End for
//Now, t = 1
t = t + 1;

//Prototypes Update
for j = 1 to C
solve:PN

i¼1uQ
ji ðt � 1Þ @dðxi ;v jÞ

@v j
¼ 0; with respect to vj and set vj equal

to the computed solution
End for
Test for convergence:Select termination criteria using, for

example, particular number of iterations or the difference
from t to t � 1 of the sum of prototype differences or other
appropriate criteria.

4. Results and discussion

In Fig. 4, a 10 � 10 SOM resulting from the 240 data points is
shown. Nanocomposite specimens tested at the same DMA tem-
perature tend to cluster together. For example, specimens tested
at 30 �C tend to cluster at the top of the map, whereas specimens
tested at 120 �C tend to cluster at the bottom. A mixture of speci-
mens tested at 60 �C and 90 �C are located in the middle of the
map.

In Figs. 5 and 6, two 10 � 10 SOMs for the VGCNF weight fraction
and the tan delta response are shown, respectively. In Fig. 5, speci-
mens with the same weight fraction tend to cluster together, but
this tendency is not consistent and is less than the clustering

tendency shown in Fig. 4 for temperature. However, if the cluster
at one temperature (say 30 �C on the top of Fig. 4) is considered
and compared to the corresponding cluster in Figs. 5 and 6, sub-
clusters with similar VGCNF weight fractions can be identified.
For example, the first seven 30 �C labels from the left in Fig. 4 have
corresponding weight fractions of 0.25, 0.25, 0, 0.50, 1.00, 1.00, and
0.5 phr and corresponding tan delta values of 0.03, 0.02, 0.03, 0.02,
0.02, 0.02, and 0.02. This means that within the nanocomposite
specimens tested at 30 �C, there are some specimens with similar
VGCNF weight fractions that tend to cluster together. For example,
specimens with a weight fraction of 0.25 phr as well as 1.00 phr are
mapped together (Fig. 5). Similarly, specimens that have a tan delta
value of 0.02 are mapped together (Fig. 6). This explains why some
of the specimens tested at the same temperature are separated by
blank hexagons from each other. Each group of specimens in Figs. 5
and 6 that were tested at the same temperature tend to have similar
VGCNF weight fractions or tan delta values. However, in Fig. 6, the
clustering for tan delta is more pronounced than that of the VGCNF
weight fraction and less than that of the temperature. This leads to
the conclusion that temperature is the dominant feature for the
treatment combinations and has the highest impact on the
responses.

Fig. 4. A 10 � 10 SOM with respect to temperature for the 240 nanocomposite
specimens used in the study (with all eight dimensions). The specimens tested at
the same temperature tend to cluster together.

Fig. 5. A 10 � 10 SOM with respect to VGCNF weight fractions. The clustering
tendency is less than that of the temperature in Fig. 4. However, within a certain
temperature cluster, the existence of sub-clusters with the same VGCNF weight
fraction is confirmed.
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In addition to the sensitivity analysis inferred from SOMs, the
different conditions needed to produce a particular response can
also be determined. In Fig. 7, a 10 � 10 SOM is shown indicating
the indices, which represent the numeric orders of the specimens
mapped. Each index corresponds to one treatment combination
out of 240 with specific values of VGCNF type, use of a dispersing
agent, mixing method, VGCNF weight fraction, testing tempera-
ture, storage modulus, loss modulus, and tan delta. The indices in
Fig. 7 can be used to extract information linking the different
dimensional combinations that produce certain response values.
For example, in Figs. 8 and 9, SOMs for the storage and loss moduli
are illustrated, respectively.

In Fig. 8, the storage modulus response values are shown. A
group of three specimens have a storage modulus of about
2.6 GPa, located at the third and fourth rows of the SOM. In
Fig. 7, these values correspond to specimen indices 73, 65, and
25. Clearly, different dimensional properties can be determined
to produce the same 2.6 GPa response value. These properties are
shown in Table 2, where the third row (highlighted) has a lower
tan delta value and higher storage modulus than the other two
specimens. Nanocomposite designers can use such information in
the selection of input factor levels.

Similarly, the loss moduli for a group of three specimens are all
about 104 MPa in the sixth and seventh rows of the SOM in Fig. 9.

These correspond to indices 10, 11, and 51 (Fig. 7). Again, different
dimensional properties can be prescribed to produce the 104 MPa
responses. These properties are shown in Table 3, where the first
row (highlighted) has a lower tan delta value and higher storage
modulus response than the other two specimens.

A PCA was run on the VGCNF/VE nanocomposite data. Fig. 10
shows a graphical representation for the PCA of the data. PCA re-
duced the number of data dimensions from eight to two and each
specimen was a given a specific 2-D representation (principal com-
ponent 1 and 2 axes) so that specimens that have similar proper-
ties were mapped together in the 2-D space. Thus, there are no
specific units associated with the abscissa and ordinate. This step
is fundamental so that clustering algorithms (Section 3.4) can be
applied to identify certain patterns in these nanocomposite data.
Such patterns can be used to explain certain physical/mechanical
behavior associated with the data without running additional
experiments.

The FCM was applied to the VGCNF/VE nanocomposite data
using the GK distance measures. In Fig. 11, the FCM results are
illustrated, where four clusters are chosen to represent the data
using the GK distance measure. The data points are divided into
four different clusters, each shown with a different color. In
Fig. 11a, the nanocomposite specimens tested at 90 �C and 120 �C
each form a separate cluster with average tan delta values of
0.049 and 0.148, respectively. The rest of the nanocomposite

Fig. 6. A 10 � 10 SOM with respect to tan delta values. The clustering tendency is
less than that of the temperature in Fig. 4. However, within a certain temperature
cluster, the existence of sub-clusters with the same tan delta value is confirmed.

Fig. 7. A 10 � 10 SOM illustrating the indices (numeric orders) of the 240
nanocomposite specimens [19].

Fig. 8. A 10 � 10 SOM based on the storage modulus response.

Fig. 9. A 10 � 10 SOM based on the loss modulus response; the values are rounded
to the nearest integer for simplicity.
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specimens tested at 30 �C and 60 �C, along with neat VE specimens
tested at 30 �C, form a single cluster with an average tan delta va-
lue of 0.025. The remaining neat VE specimens tested at 60 �C,
90 �C, and 120 �C form the fourth cluster. In Fig. 11b, a ‘‘scale data
and display image (imagesc) object’’ plot is presented to indicate
the number of clusters (each distinct set of bands in a row) and
the bands associated with each cluster. The bands reflect the den-
sities of data points within each cluster and correspond to the dis-
tances between the data points in Fig. 11a. These findings prove
that temperature is a dominant feature for the whole dataset.

In Fig. 12, the FCM results are illustrated where five clusters are
chosen to represent the data using the GK distance measure. The
nanocomposite and neat VE specimens tested at 30 �C form a clus-
ter with an average tan delta value of 0.025. Included in this cluster
is a fraction of the nanocomposite specimens tested at 60 �C. The
remainder of the nanocomposite and neat VE specimens tested at
60 �C, along with a fraction of the nanocomposite specimens tested
at 90 �C, are contained in a separate cluster with an average tan
delta value of 0.039. The rest of nanocomposite specimens tested
at 90 �C and a fraction of nanocomposite specimens tested at

120 �C form a third unique cluster with an average tan delta value
of 0.099. The rest of the nanocomposite specimens tested at 120 �C
form a fourth cluster with an average tan delta value of 0.148.
Lastly, Fig. 12a includes a fifth separate cluster that contains the

Table 2
Different dimensional (factorial) combinations required to produce a storage modulus of about 2.6 GPa.

VGCNF Type
(A)

Use of a Dispersing Agent
(B)

Mixing Method
(C)

VGCNF Weight Fraction (D)
(phr)

Temperature (E)
(�C)

Storage Modulus
(GPa)

Loss Modulus
(MPa)

Tan
Delta

Pristine Yes US1 0.25 30 2.577 79 0.031
Oxidized Yes US 0.25 30 2.566 73 0.028
Oxidized Yes US 0.75 30 2.641 66 0.025

a Ultrasonication.

Table 3
Different dimensional (factorial) combinations required to produce a loss modulus of about 104 MPa.

VGCNF Type
(A)

Use of a Dispersing Agent
(B)

Mixing Method
(C)

VGCNF Weight Fraction (D)
(phr)

Temperature (E)
(�C)

Storage Modulus
(GPa)

Loss Modulus
(MPa)

Tan
Delta

Pristine No US1 0.5 60 2.276 104 0.046
Pristine No US 0.5 90 1.621 104 0.064
Oxidized No US 0.5 90 1.614 102 0.063

a Ultrasonication.

Fig. 10. A 2-D graphical representation of the VGCNF/VE nanocomposite specimen
data (illustrated by circle points) using the PCA technique. This technique maps the
data from an 8-D space down to a 2-D space so that different clustering algorithms
can be applied. The values associated with the principal dimensions 1 and 2 are
random, but each specimen was given a 2-D coordinate so that specimens with
similar properties would be mapped together in the 2-D space.

Fig. 11. (a) Clustering results after applying the FCM algorithm and the GK distance
measure, when C = 4. Temperature labels are also included. (b) In the ‘‘scale data
and display image (imagesc) object’’ plot, four bands representing four clusters can
be identified.
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neat VE specimens tested at 90 �C and 120 �C. In Fig. 12b, an imag-
esc plot is presented, where five clusters can be identified. Again,
these results demonstrate that temperature is a dominant feature.

Using the GK distance measure, FCM works better for the 240
VGCNF/VE specimens when the selected number of clusters equals
four. For this case, specimens tested at different temperatures tend
to be located in separate clusters that distinguish each of these
temperatures. In addition, neat VE data specimens tested at 60–
120 �C tended to cluster together. These results suggest that the
FCM algorithm was able to identify VGCNF/VE specimens that have
similar properties and placed them into different clusters.

The SOM analysis allows a preliminary visual identification of
the different existing groups [24]. In contrast, the FCM clustering
approach identifies existing clusters and provides a mechanism
to assign VGCNF/VE specimens to the appropriate cluster. Further-
more, FCM allows objects to belong to several clusters simulta-
neously, with different degrees of membership. This feature is
not available in SOMs [27]. Hence, SOMs can be more helpful in
identifying the dominant feature(s)/dimension(s) in the dataset.
Other clustering algorithms (e.g., FCM) can be used to better iden-
tify cogent patterns and trends in VGCNF/VE data. In addition, dif-
ferent VGCNF/VE and/or neat VE specimens and their associated
viscoelastic properties can be identified and categorized within
their respective clusters. Each cluster can be identified based on
one or more of the input design factors of the VGCNF/VE system.

5. Materials informatics and validation of the results

The findings from this data mining research confirm the trends
established previously using a response surface methodology
[20,21] and are consistent with the viscoelasticity theory for poly-
mers [33]. In general, nanocomposite storage moduli drop steadily
as temperature increases up to the glass transition temperature
(Tg), where a sharp drop of several orders of magnitude occurs.
Analogously, the loss modulus increases with increasing tempera-
ture, reaching a maximum at Tg. The clustering of VGCNF/VE nano-
composite data for specimens tested at different temperatures (i.e.,
30, 60, 90, 120 �C) suggests distinguishably different viscoelastic
material behaviors at these temperatures (Figs. 4, 11 and 12). Of
course, the effect of temperature on nanocomposite storage and
loss moduli is much greater than that of the other factors and,
hence, clustering based on temperature is readily apparent.

The effect of VGCNF weight fraction on nanocomposite storage
and loss moduli was significant in previous studies [20,21]. Since
VGCNFs reinforce and stiffen the matrix, the nanocomposite stor-
age modulus increased with increasing VGCNF weight fraction un-
til a peak was reached near an optimal VGCNF weight fraction of
0.50 phr. However, due to the presence of large VGCNF agglomer-
ates caused by incomplete nanodispersion at higher weight frac-
tions, a steady increase in the storage modulus was not realized
once the nanofiber weight fraction exceeded 0.50 phr [20]. The loss
modulus typically decreases with increasing VGCNF weight frac-
tion [20,21]. However, due to VGCNF agglomeration and poor dis-
persion in the polymer matrix, stress concentrations and frictional
sliding in the entangled VGCNF networks cause a more complex
viscoelastic nanocomposite behavior [21]. Using data mining, the
effect of nanofiber weight fraction on nanocomposite viscoelastic
properties was clearly identified (Fig. 5) consistent with previous
response surface model results [20,21]. The clustering of neat VE
specimens indicates that a sharp difference exists between the vis-
coelastic responses of these specimens versus that for the VGCNF/
VE nanocomposites. Using a response surface methodology [21], a
�20% increase in the storage modulus was observed by introducing
VGCNFs into neat VE.

6. Summary and conclusions

Knowledge discovery techniques were applied to a vapor-
grown carbon nanofiber (VGCNF)/vinyl ester (VE) nanocomposite
dataset as a case study for materials informatics. This dataset
had been generated by a full factorial experimental design with
240 different design points. Each treatment combination in the de-
sign consisted of eight feature dimensions corresponding to the de-
sign factors, i.e., VGCNF type, use of a dispersing agent, mixing
method, VGCNF weight fraction, and testing temperature as the in-
puts and storage modulus, loss modulus, and tan delta as the out-
put responses. Self-organizing maps (SOMs) were created with
respect to temperature, tan delta, VGCNF weight fraction, storage
modulus, and loss modulus. After analyzing the SOMs, temperature
was identified as the dominant feature for the VGCNF/VE nano-
composites having the highest impact on the viscoelastic material
responses. VGCNF weight fraction was also a dominant feature. In
addition, it was inferred from the SOMs that some specimens
tested at the same temperature tended to have several sub-clus-
ters. Each sub-cluster had the same tan delta or VGCNF weight
fraction values. Analyzing the SOMs with respect to storage and
loss moduli demonstrated that VGCNF/VE specimens with differ-
ent features could be designed to match a desired storage and/or
loss modulus.

Finally, another data analysis was performed using the principle
component analysis (PCA) technique. Then, the fuzzy C-means

Fig. 12. (a) Clustering results after applying the FCM algorithm and the GK distance
measure, when C = 5. Temperature labels are also included. (b) In the ‘‘scale data
and display image object (imagesc)’’ plot, five bands representing five clusters can
be identified.
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(FCM) algorithm with the Gustafon-Kessel (GK) distance measure
was applied to the resulting new dataset. The FCM clustered the
specimens based on temperature as well as tan delta values. In
addition, the FCM was able to recognize neat VE specimens tested
at 30, 60, 90, and 120 �C and placed most of them in one cluster. In
other words, when four clusters were selected and the GK distance
measure was applied, neat VE specimens tested at 60–120 �C were
placed in one cluster. In contrast, when five clusters were selected
and the GK distance measure was applied, neat VE specimens
tested at 90 and 120 �C were placed in one cluster. This reflects
the fact that the viscoelastic properties of each neat VE specimen
in both groups are similar. However, the FCM algorithm worked
better when the number of clusters equals four, because more neat
VE specimens tend to cluster together at the selected
temperatures.

In summary, the main contributions of this study are:

� Developing a sensitivity analysis structure using SOMs in order
to discover the most and least dominant features of the VGCNF/
VE system, whether they are input design factors or output
responses.
� Developing a tool for identifying VGCNF/VE specimen designs

leading to the same storage and loss moduli. This will facilitate
tailoring of nanocomposite viscoelastic properties and, in turn,
minimize fabrication costs by the domain experts.
� Developing a methodology to better identify cogent patterns

and trends in VGCNF/VE data. Each cluster can be identified
based on one or more of the input design factors of the
VGCNF/VE system.

The knowledge discovery techniques applied here demonstrate
the dominant features in the nanocomposite data without the need
to conduct additional expensive and time-consuming experiments.
This highlights the feasibility of data mining and knowledge dis-
covery techniques in materials science and engineering and the ris-
ing field of Materials Informatics.
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