
Accepted Manuscript

Large-scale parallel lattice Boltzmann—Cellular automaton model of
two-dimensional dendritic growth

Bohumir Jelinek, Mohsen Eshraghi, Sergio Felicelli, John F. Peters

PII: S0010-4655(13)00314-7
DOI: http://dx.doi.org/10.1016/j.cpc.2013.09.013
Reference: COMPHY 5138

To appear in: Computer Physics Communications

Received date: 10 January 2013
Revised date: 14 August 2013
Accepted date: 17 September 2013

Please cite this article as: B. Jelinek, M. Eshraghi, S. Felicelli, J.F. Peters, Large-scale parallel
lattice Boltzmann—Cellular automaton model of two-dimensional dendritic growth, Computer
Physics Communications (2013), http://dx.doi.org/10.1016/j.cpc.2013.09.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cpc.2013.09.013

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Large-scale parallel lattice Boltzmann - cellular automaton model
of two-dimensional dendritic growth

Bohumir Jelineka, Mohsen Eshraghia,b, Sergio Felicellia,b, John F. Petersc

aCenter for Advanced Vehicular Systems, Mississippi State University, MS 39762, USA
bMechanical Engineering Dept., Mississippi State University, MS 39762, USA

cU.S. Army ERDC, Vicksburg, MS 39180, USA

Abstract

An extremely scalable lattice Boltzmann (LB) - cellular automaton (CA) model for simulations of two-dimensional (2D) dendritic
solidification under forced convection is presented. The model incorporates effects of phase change, solute diffusion, melt convec-
tion, and heat transport. The LB model represents the diffusion, convection, and heat transfer phenomena. The dendrite growth
is driven by a difference between actual and equilibrium liquid composition at the solid-liquid interface. The CA technique is de-
ployed to track the new interface cells. The computer program was parallelized using Message Passing Interface (MPI) technique.
Parallel scaling of the algorithm was studied and major scalability bottlenecks were identified. Efficiency loss attributable to the
high memory bandwidth requirement of the algorithm was observed when using multiple cores per processor. Parallel writing of the
output variables of interest was implemented in the binary Hierarchical Data Format 5 (HDF5) to improve the output performance,
and to simplify visualization. Calculations were carried out in single precision arithmetic without significant loss in accuracy, re-
sulting in 50% reduction of memory and computational time requirements. The presented solidification model shows a very good
scalability up to centimeter size domains, including more than ten million of dendrites.

Keywords:
solidification, dendrite growth, lattice Boltzmann, cellular automaton, parallel computing

PROGRAM SUMMARY
Manuscript Title: Large-scale parallel lattice Boltzmann - cellular au-
tomaton model of two-dimensional dendritic growth
Authors: Bohumir Jelinek, Mohsen Eshraghi, Hebi Yin, Sergio Feli-
celli
Program Title: 2Ddend
Journal Reference:
Catalogue identifier:
Licensing provisions: CPC non-profit use license
Programming language: Fortran 90
Computer: Linux PC and clusters
Operating system: Linux
RAM: memory requirements depend on the grid size
Number of processors used: 1–50,000
Keywords: MPI, HDF5, lattice Boltzmann
Classification: 6.5 Software including Parallel Algorithms, 7.7 Other
Condensed Matter inc. Simulation of Liquids and Solids
External routines/libraries: MPI, HDF5
Nature of problem: Dendritic growth in undercooled Al-3wt%Cu alloy
melt under forced convection.
Solution method: The lattice Boltzmann model solves the diffusion,
convection, and heat transfer phenomena. The cellular automaton tech-
nique is deployed to track the solid/liquid interface.
Restrictions: Heat transfer is calculated uncoupled from the fluid flow.
Thermal diffusivity is constant.
Unusual features: Novel technique, utilizing periodic duplication of a
pre-grown “incubation” domain, is applied for the scale up test.
Running time: Running time varies from minutes to days depending
on the domain size and a number of computational cores.

1. Introduction

The microstructure and accompanying mechanical proper-
ties of the engineering components based on metallic alloys are
established primarily in the process of solidification. In this
process, the crystalline matrix of the solid material is formed
according to morphology and composition of the crystalline
dendrites growing from their nucleation sites in an undercooled
melt. Among other processes, solidification occurs during cast-
ing and welding, which are commonly deployed in modern man-
ufacturing. Therefore, understanding of the phenomena of so-
lidification is vital to improve the strength and durability of the
products that encounter casting or welding in the manufacturing
process.

The phenomenon of dendrite growth during solidification
has been the subject of numerous studies. When a new simu-
lation technique is developed, the first and necessary step is to
validate it by examining the growth of a single dendrite, or a
small set of dendrites in a microscale specimen. If the model
compares well with physical experiments, it can be deployed
for simulating larger domains. Since the new techniques are
initially implemented in serial computer codes, the size of the
simulation domain is often limited by the memory and com-
putational speed of a single computer. Despite the current ad-
vances in the large scale parallel supercomputing, only a hand-
ful of studies of larger, close-to-physical size solidification do-
mains have been performed. Parallel simulations of the 3D den-

Preprint submitted to Computer Physics Communications August 14, 2013

*Manuscript

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

drite growth [1] have been performed utilizing the phase field
model [2]. Improved, multigrid phase field schemes presented
by Guo et al. [3] allow parallel simulations of tens of complex
shape 2D dendrites in a simulation domain of up to 25 µm ×
25 µm size. Shimokawabe et al. [4] deployed a modern hetero-
geneous GPU/CPU architecture to perform the first peta-scale
3D solidification simulations in a domain size of up to 3.1 mm
× 4.8 mm × 7.7 mm. However, none of these models included
convection.

For the solidification models incorporating effects of con-
vection, lattice Boltzmann method (LBM) is an attractive alter-
native to the conventional, finite difference and finite element
based fluid dynamics solvers. Among LBM advantages are
simple formulation and locality, with locality facilitating par-
allel implementation.

In this work, the cellular automaton (CA) technique instead
of a phase field model is deployed to track the solid-liquid inter-
face, as suggested by Sun et al. [5]. Interface kinetic is driven by
the local difference between actual and equilibrium liquid com-
position [6]. A serial version of the present LBM-CA model
with a smaller number of dendrites was validated against the-
oretical and experimental results [7–11]. In the following, we
demonstrate nearly ideal parallel scaling of the model up to mil-
lions of dendrites in centimeter size domains, including ther-
mal, convection, and solute redistribution effects.

2. Continuum formulation for fluid flow, solute transport,
and heat transfer

Melt flow is assumed to be incompressible, without exter-
nal force and pressure gradient, governed by simplified Navier-
Stokes equations (NSE)

ρ

[
∂u
∂t

+ u · ∇u
]

= ∇ · (µ∇u) , (1)

where the µ = νρ is the dynamic viscosity of melt.
Time evolution of the solute concentration in the presence

of fluid flow is given by the convection-diffusion equation

∂Cl

∂t
+ u · ∇Cl = ∇ · (Dl∇Cl) , (2)

where Cl is the solute concentration in the liquid phase and Dl

is the diffusion coefficient of solute in the liquid phase. Solute
diffusion in the solid phase is neglected.

Heat transfer in the presence of fluid flow is also governed
by a convection-diffusion type (2) equation

∂T
∂t

+ u · ∇T = ∇ · (α∇T) , (3)

where T is the temperature, t is time, and α is the thermal dif-
fusivity.

3. Lattice Boltzmann method

The lattice Boltzmann method (LBM) [12–15] is a simu-
lation technique for solving fluid flow and transport equations.

e
2

e
5

e
8

e
7

e
4

e
6

e
1

e
3 e = [0, 0]

0

Figure 1: D2Q9 lattice vectors.

LBM treats the fluid as a set of fictitious particles located on
a d-dimensional lattice. Primary variables of LBM are particle
distribution functions fi. Particle distribution functions repre-
sent portions of a local particle density moving in the directions
of discrete velocities. For a lattice representation DdQz, each
point in the d-dimensional lattice link to neighboring points
with z links that correspond to velocity directions. We chose
D2Q9 lattice, utilizing nine velocity vectors e0–e8 in two di-
mensions, as shown in Fig. 1. Distribution functions f0– f8 cor-
respond to velocity vectors e0–e8. Using the collision model
of Bhatnagar-Gross-Krook (BGK) [16] with a single relaxation
time, the evolution of distribution functions is given by

fi(r + ei∆t, t + ∆t) = fi(r, t) +
1
τu

(
f eq
i (r, t) − fi(r, t)

)
(4)

where r and t are space and time position of the lattice site, ∆t
is the time step, and τu is the relaxation parameter for the fluid
flow. Relaxation parameter τu specifies how fast each particle
distribution function fi approaches its equilibrium f eq

i . Kine-
matic viscosity ν is related to the relaxation parameter τu, lattice
spacing ∆x, and simulation time step ∆t by

ν =
τu − 0.5

3
∆x2

∆t
. (5)

The macroscopic fluid density ρ and velocity u are obtained as
the moments of the distribution function

ρ =

8∑

i=0

fi, ρu =

8∑

i=0

fiei. (6)

Depending on the dimensionality d of the modeling space
and a chosen set of the discrete velocities ei, the correspond-
ing equilibrium particle distribution function can be found [17].
For the D2Q9 lattice, the equilibrium distribution function f eq

i ,
including the effects of convection u(r), is

f eq
i (r) = wiρ(r)

(
1 + 3

ei · u(r)
c2

+
9
2

(ei · u(r))2

c4
− 3

2
u(r) · u(r)

c2

)
,

(7)

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

with the lattice velocity c = ∆x/∆t and the weights

wi =



4/9 i = 0

1/9 i = 1, 2, 3, 4

1/36 i = 5, 6, 7, 8.

(8)

Weakly compressible approximation of NSE (1) can be re-
covered from the LBM equations (4–8) by Chapman-Enskog
expansion [18]. Approximation is valid in the limit of low
Mach number M, with a compressibility error in the order of
∼ M2 [13].

Deng et al. [19] formulated a BGK collision based LBM
model for the convection-diffusion equation (2). In analogy
with equation (5), the diffusivity Dl of solute in the liquid phase
is related to the relaxation parameter τC for the solute transport
in the liquid phase, lattice spacing ∆x, and simulation time step
∆t by

D =
τC − 0.5

3
∆x2

∆t
. (9)

Similarly, thermal diffusivity α is related to the relaxation pa-
rameter for the heat transfer τT as follows

α =
τT − 0.5

3
∆x2

∆t
. (10)

Corresponding LBM equation for the solute transport is

gi(r + ei∆t, t + ∆t) = gi(r, t) +
1
τC

(
geq

i (r, t) − gi(r, t)
)
, (11)

and for the heat transfer

hi(r + ei∆t, t + ∆t) = hi(r, t) +
1
τT

(
heq

i (r, t) − hi(r, t)
)

(12)

Macroscopic properties can be obtained from

Cl =

8∑

i=0

gi, T =

8∑

i=0

hi. (13)

while the equilibrium distribution functions are

geq
i (r) = wiCl(r)

(
1 + 3

ei · u(r)
c2

+
9
2

(ei · u(r))2

c4
− 3

2
u(r) · u(r)

c2

)
(14)

heq
i (r) = wiT (r). (15)

In equation (15), the effect of fluid flow on the temperature is
not considered.

4. Solidification

In the present model, the dendrite growth is controlled by
the difference between local equilibrium solute concentration
and local actual solute concentration in the liquid phase. If
the actual solute concentration Cl in an interface cell is lower
than the local equilibrium concentration Ceq

l , then the fraction
of solid in the interface cell is increased by

∆ fs = (Ceq
l −Cl)/(C

eq
l (1 − k)), (16)

to satisfy the equilibrium condition at the interface [6]. The
partition coefficient k of the solute is obtained from the phase
diagram, and the actual local concentration of the solute in the
liquid phase Cl is computed by LBM. The interface equilibrium
concentration Ceq

l is calculated as [6]

Ceq
l = C0 +

T ∗ − T eq
C0

ml
+ ΓK

1 − δ cos (4 (φ − θ0))
ml

(17)

where T ∗ is the local interface temperature computed by LBM,
T eq

C0
is the equilibrium liquidus temperature at the initial solute

concentration C0, ml is the slope of the liquidus line in the phase
diagram, Γ is the Gibbs-Thomson coefficient, δ is the anisotropy
coefficient, φ is the growth angle, and θ0 is the preferred growth
angle, both measured from the x-axis. K is the interface curva-
ture and can be calculated as [20]

K =


(
∂ fs
∂x

)2 (
∂ fs
∂y

)2
−3/2

×
2
∂ fs
∂x

∂ fs
∂y

∂2 fs
∂x∂y

−
(
∂ fs
∂x

)2
∂2 fs
∂y
−

(
∂ fs
∂y

)2
∂2 fs
∂x

 . (18)

The cellular automaton (CA) algorithm is used to identify new
interface cells. The CA mesh is identical to the LB mesh. Three
types of the cells are considered in the CA model: solid, liquid,
and interface. Every cell is characterized by the temperature,
solute concentration, crystallographic orientation, and fraction
of solid. The state of each cell at each time step is determined
from the state of itself and its neighbors at previous time step.
The interface cells are identified according to Moore neighbor-
hood rule—when a cell is completely solidified, the nearest sur-
rounding liquid cells located in both axial and diagonal direc-
tions are marked as interface cells. The fraction of solid in the
interface cells is increased by ∆ fs at every time step until the
cell solidifies. Then the cell is marked as solid.

During solidification, the solute partition occurs between
solid and liquid and the solute is rejected to the liquid at the
interface. The amount of solute rejected to the interface is de-
termined using the following equation

∆Cl = Cl(1 − k)∆ fs (19)

Rejected solute is distributed evenly into the surrounding inter-
face and liquid cells.

5. Test case

As a demonstration, Fig. 2 shows flow of the Al-3wt%Cu
melt between solidifying dendrites in a changing temperature
field. The simulation domain of 144 µm × 144 µm size is
meshed on a regular 480 × 480 lattice with 0.3 µm spacing. At
the beginning of the simulation, one hundred random dendrite
nucleation sites with arbitrary crystallographic orientations are
placed in a domain of undercooled molten alloy. Initially con-
stant temperature of the melt was T = 921.27 K, equivalent to
4.53 K undercooling. Solidifying region is cooled at the front

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 2: Flow of Al-3wt%Cu alloy melt between solidifying dendrites in variable temperature field. Solidifying region is cooled
at the front and back boundaries, while heat is supplied from the left (inlet) and right (outlet) boundaries. Arrows represent velocity
vectors of melt. Colors represent solute concentration. Both contour lines and height of the sheet represent temperature.

Table 1: Physical properties of Al-3wt%Cu alloy considered in the simulations.

Density Diffusion coeff. Dynamic viscosity Liquidus slope Partition coeff. Gibbs-Thomson coeff. Degree of anisotropy
ρ (kg m−3) D (m2 s−1) µ (N s m−2) ml (K wt%−1) k Γ (mK) δ

2475 3×10−9 0.0024 -2.6 0.17 0.24×10−6 0.6

and back boundaries, while heat is supplied from the left (in-
let) and right (outlet) boundaries at the rate of 100 K/m. Fig. 2
demonstrates that the dendrites grow faster in the regions with
lower temperature and slower in the regions with higher temper-
ature, as expected. The drag and buoyancy effects are ignored—
the dendrites are stationary and do not move with the flow. The
nonslip boundary condition at the solid/liquid interface is ap-
plied using the bounce-back rule for both fluid flow and solute
diffusion calculations. Simplicity of the bounce back boundary
conditions is an attractive feature of the LBM. At the bounce
back boundary, the distribution functions incoming to the solid
are simply reflected back to the fluid. This method allows effi-
cient modeling of the interaction of fluid with complex-shaped
dendrite boundaries. Total simulated time was 2.32 ms, involv-
ing 150,000 collision-update steps. The physical properties for
the Al-Cu alloy considered in the simulations are listed in Ta-
ble 1. The relaxation parameter τu = 1 was chosen for the fluid
flow. With a lattice spacing of ∆x = 0.3 µm, this leads to the
time step of ∆t = 15.47 ns. For the solute transport and tem-
perature, the relaxation parameters were set according to their
respective diffusivities to follow the same time step.

6. Serial optimization

Reducing accuracy of data representation together with cor-
responding reduction of computational cost present a simple
option of saving computational time and storage resources [21].
Along with the default, double precision variables, we imple-
mented an optional single precision data representation. This

resulted in 50% reduction in memory and processing time re-
quirements. Undesirable consequence of reducing accuracy was
that the results in single precision representation differed signif-
icantly from double precision results. We found that the num-
ber of valid digits in single precision was not large enough to
represent small changes in the temperature. To achieve bet-
ter accuracy, we changed the temperature T representation to a
sum of T0 and ∆T = T − T0, where T0 is the initial temper-
ature and ∆T is local undercooling. With this modification, a
visual difference between results in single and double precision
calculations was negligible.

Ordering of the loops over two dimensions of arrays has a
profound impact on the computational time. In Fortran, matri-
ces are stored in memory in a column-wise order, so the first
index of an array is changing fastest. To optimize the cache
use, the data locality needs to be exploited, thus the inner-most
computational loop must be over the fastest changing array in-
dex. This can lead to reduction in computational time in the
order-of-magnitudes. We chose to implement “propagation op-
timized” [22] storage of the distribution functions, where the
first two array indices represent x and y lattice coordinates and
the last index of the array represents the nine components of
the distribution function. Further serial optimization, not con-
sidered in this work, could be achieved by combining collision
and streaming steps, loop blocking [22, 23], or by elaborate im-
provements of propagation step [24].

The performance analysis of the code was done using HPC-
Toolkit [25]. It revealed that some of the comparably compu-
tationally intensive loops introduced more computational cost

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

than others because not all the constants utilized in them were
reduced to single precision. Consolidation of the constants into
a single precision improved serial performance. Also, it was
found that array section assignments in the form a[1:len-1]=
a[2:len] required temporary storage with an additional per-
formance penalty. Significant reduction in computational time
was achieved by replacing these assignments with explicit do
loops.

7. Parallelization

A spatial domain decomposition was applied for paralleliza-
tion. In this well-known, straightforward and efficient approach,
the entire simulation domain is split into equally sized subdo-
mains, with the number of subdomains equal to the number of
execution cores. Each execution core allocates the data and
performs computation in its own subdomain. Given the con-
venient locality of the LBM-CA model, only the values on the
subdomain boundaries need to be exchanged between subdo-
mains. MPI_Sendrecv calls were utilized almost exclusively
for MPI communication. MPI_Sendrecv calls are straightfor-
ward to apply for the required streaming operation. They are
optimized by MPI implementation and are more efficient than
individual MPI_Send and MPI_Receive pairs, as they gener-
ate non-overlapping synchronous communication. Error-prone
non-blocking communication routines are not expected to pro-
vide significant advantage, as most of the computation in the
present algorithm can start only after communication is com-
pleted. As it was uncertain whether the gain from OpenMP par-
allelization within shared-memory nodes would bring a signifi-
cant advantage over MPI parallelization, the hybrid MPI/OpenMP
approach was not implemented.

7.1. Collision and streaming

LBM equations (4, 11, 12) can be split into two steps: colli-
sion and streaming. Collision, the operation on the right-hand-
side, calculates new value of the distribution function. The col-
lision step is completely local—it does not require values from
the surrounding cells. Each execution core has the data it needs
available, and no data exchange with neighboring subdomains
is required.

The second step, assignment operation in equations (4, 11,
12), is referred to as streaming. Streaming step involves propa-
gation of each distribution function to the neighboring cell. Ex-
cept for the stationary f0, each distribution function fi is prop-
agated in the direction of the corresponding lattice velocity ei

(i = 1 . . . 8). For the neighboring cells belonging to the compu-
tational subdomain of another execution core, the distribution
functions are transferred to the neighboring subdomains using
MPI communication routines. During the streaming step, per-
manent storage is allocated only for values from the local sub-
domain. When the streaming step is due, temporary buffers are
allocated to store the data to be sent to (or received from) other
execution cores. As an example, the streaming operations in-
volving the distribution function f8 on the execution core 5 are
shown in Fig. A.6 in the Appendix.

7.2. Ghost sites

When calculation in a particular lattice cell needs values
from the neighboring cells, the neighboring cells may belong to
the computational subdomains of other execution cores. There-
fore, the values needed may not be readily available to the cur-
rent execution. To provide access to the data from other execu-
tions, an extra layer of lattice sites is introduced at the bound-
ary with each neighboring subdomain. Values from these extra
boundary layers, referred to as ghost layers, are populated from
the neighboring subdomains. Population of the ghost sites is
a common operation in parallel stencil codes. Fig. A.7 shows
MPI communication involved when the ghost sites are popu-
lated for the execution core 5.

In the process of solidification, solute is redistributed from
the solidifying cells to the neighboring cells. In this case, the
ghost layers are used to store the amount of solute to be dis-
tributed to the neighboring subdomains. Only difference be-
tween this case and the simple population of ghost layers shown
in Fig. A.7 is that the direction of data propagation is opposite.

7.3. Parallel input/output

As the size of the simulation domain increased, the stor-
age, processing, and visualization of results required more re-
sources. We implemented parallel writing of simulation vari-
ables in a binary HDF5 [26] format. Publicly available HDF5
library eliminated the need to implement low level MPI i/o rou-
tines. Data stored in the standard HDF5 format are straightfor-
ward to visualize using common visualization tools.

In the binary format, the data is stored without a loss in
accuracy. Taking advantage of that, we also implemented capa-
bility of writing and reading restart files in HDF5 format. The
restart files allow exact restart of the simulation from any time
step, and also simplify debugging and data inspection.

8. Parallel performance

8.1. Computing systems

Kraken, located at Oak Ridge National Laboratory, is a Cray
XT5 system managed by National Institute for Computational
Sciences (NICS) at the University of Tennessee. It has 9,408
computer nodes, each with 16 GB of memory and two six-
core AMD Opteron “Istanbul” processors (2.6 GHz), connected
by Cray SeaStar2+ router. We found that the Cray compiler
generated the fastest code on Kraken. Compilation was done
under Cray programming environment version 3.1.72 with a
Fortran compiler version 5.11, utilizing parallel HDF5 [26] li-
brary version 1.8.6, and XT-MPICH2 version 5.3.5. The com-
piler optimization flags “-O vector3 -O scalar3” were applied,
with a MPICH FAST MEMCPY option set to enable optimized
memcpy routine. Vectorization reports are provided with the
code.

Talon, located at Mississippi State University, is a 3072 core
cluster with 256 IBM iDataPlex nodes. Each node has two six-
core Intel X5660 “Westmere” processors (2.8 GHz), 24 GB of
RAM, and Voltaire quad data-rate InfiniBand (40 Gbit/s) in-
terconnect. On Talon, Intel Fortran compiler version 11.1 was

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

BUILDING STRONG®

Incubation domain – magnified portion

Figure 3: Final snapshot of the dendrite incubation domain, with a magnified portion. Image shows a flow of alloy melt between
solidifying dendrites. Arrows represent velocity vectors of melt. Colors of background and dendrites represent solute concentration,
while color and size of arrows represent magnitude of velocity.

utilized with “-O3 -shared-intel -mcmodel=large -heap-arrays”
options.

8.2. Scaling test configuration

Scalability of the code needs to be measured for the typical
computational task. As one dendrite growth step is performed
every 587 basic time steps of simulation, the minimal, 587 time
step run was deployed as a performance test. At the beginning
of simulation, dendrites are small and their growth represents
only a small portion of the computational load. To measure
the performance with characteristic computational load, we first
grow the dendrites into a reasonable size in a so called “incuba-
tion region” (Fig. 3), and then store intermediate results needed
for exact restart of simulation in the HDF5 files. The perfor-
mance is then evaluated in the 587 time step execution starting
from this configuration.

The incubation domain presents a flow of the Al-3wt%Cu
melt between solidifying dendrites in spatially constant temper-
ature field with periodic boundary conditions. The computa-
tional domain of 2.4 mm × 1.8 mm size is meshed on a regular
8000 × 6000 lattice with 3264 dendrite nucleation sites. To-
tal incubation time was 6.19 ms, with 400,000 collision-update
steps. Initial, spatially constant temperature of the melt was
T = 921.27 K, equivalent to 4.53 K undercooling. The temper-
ature is decreasing at the constant cooling rate of 100 K/s.

8.3. Strong scaling

To characterize the gain from parallelization, one can com-
pare the calculation time of the task of size (2D area) A on one
execution core with the calculation time on multiple cores, re-
ferred to as the strong scaling. Ideally, the task taking T (1)
seconds on one core should take T (1)/p seconds on p cores—
that would mean speed up of p, or 100% parallel efficiency.
Intuitively, the speed up is defined as

S (p, A) =
T (1, A)
T (p, A)

(20)

For ideal parallel performance, S (p, A) = p. An efficiency,

η(p, A) =
S (p, A)

p
100% =

T (1, A)
p T (p, A)

100%, (21)

is the ratio between the actual speed up S (p) and the ideal speed
up p. Efficiency value is 100% for the ideal parallel perfor-
mance.

Ideal performance is expected e.g. when the tasks solved by
individual cores are independent. When the tasks to be solved
by individual cores depend on each other, the efficiency usu-
ally decreases with the number of cores—when communica-
tion costs become comparable with computational costs, the ef-
ficiency goes down.

Fig. 4 shows the parallel speed up obtained for the domain
of 8000 × 6000 lattice cells. Due to the high memory bandwidth
requirement of the algorithm, an increase in the utilized number

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1

2

4

8
12

48

192

768

3072

24000

1 2 4 8 12 48 192 768 3072 24000

Sp
ee

d
up

Number of cores

Ideal speed up
Two cores per node

Up to 12 cores per node

Figure 4: Strong scaling (speed up) on Kraken. A grid of
8000 × 6000 lattice points is split equally between increasing
number of cores. This domain was simulated for 587 time steps,
taking 9035 seconds on a single core. The number of cores is
equal to the number of MPI processes.

of cores in one node causes severe parallel performance loss -
efficiency decreases to ∼30%. On the contrary, when two cores
per node are used, the parallel efficiency remains close to 100%
up to 3072 cores.

8.4. Weak scaling

Increased number of the execution cores and associated mem-
ory allows to solve problems in larger domains. If the number
of cores is multiplied by p, and the simulation domain also
increases by the factor of p, the simulation time should not
change. This, so called weak scaling of the algorithm, is char-
acterized by the scale up efficiency, defined as

η′(p, pA) =
T (p, pA)
T (1, A)

(22)

To test weak scaling (scale up) of the present algorithm, the
incubation domain (Fig. 3) was read in from the restart files
utilizing one supercomputer node, and then duplicated propor-
tionally to increasing number of nodes. Starting from the restart
point, 587 time step execution was performed. Fig. 5 shows
fairly constant calculation time, demonstrating nearly perfect
scalability of the LBM/CA model.

The largest simulation was performed on 41,472 cores of
Kraken at ORNL. Kraken has a total of 112,000 cores. The
initial configuration was obtained from the base “incubation”
domain (Fig. 3) replicated 72 times in the x-direction and 48
times in the y-direction, representing a total domain size of
17.28 cm × 8.64 cm. The corresponding grid had (8000×72)
× (6000×48) cells, i.e. over 165 billion nodes. Uniform flow

0

500

1000

1500

2000

2500

12 48 144 576 1728 20736 41472

C
al

cu
la

ti
on

ti
m

e
(s

)

Number of cores

Kraken
Talon

Figure 5: Weak scaling (scale up). A grid of 8000 × 6000 lattice
points is the constant-size calculation domain per node. The
global simulation domain increases proportionally to the num-
ber of cores. The total number of cores is equal to the total
number of MPI processes.

of melt with velocity u0 = 2.3 mm/s, was forced into the left
(inlet) and out of the right (outlet) boundary. Solidifying re-
gion was cooled at the top and bottom boundaries, while heat
was supplied from the left and right boundaries. The simu-
lated domain contained 11.28 million dendrites. Duration of
the largest simulation was 2,250 seconds, including 57 seconds
spent on reading the incubation domain and replicating it to all
execution cores. Importantly, it was found that consideration of
convection effects on solidification in the LBM-CA model does
not significantly affect the calculation time as observed in other
models [8].

The exclusive calculation time, involving 587 LBM steps
and one dendrite growth step, was 2,193 seconds. 133.22 giga
lattice site updates per second were performed. The full 400,000
steps calculation of the 17.28 cm × 8.64 cm domain size would
take about 17 days using 41,472 cores of Kraken, or about 6
days using all 112,000 cores.

9. Conclusions

The presented model of dendritic growth during alloy so-
lidification, incorporating effects of melt convection, solute dif-
fusion, and heat transfer, shows a very good parallel perfor-
mance and scalability. It allows simulations of unprecedented,
centimeter size domains, including ten millions of dendrites.
The presented large scale solidification simulations were feasi-
ble due to 1) CA technique being local, highly parallelizable,
and two orders of magnitude faster than alternative, phase-field
methods [27], 2) local and highly parallelizable LBM method,
convenient for simulations of flow within complex boundaries
changing with time, and 3) availability of the extensive com-
putational resources. The domain size and number of dendrites
presented in the solidification simulation of this work are the
largest known to the authors to date, particularly including con-
vection effects. Although such large 2D domains may not be

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

necessary to capture a representative portion of a continuum
structure, we expect that the outstanding scalability and paral-
lel performance shown by the model will allow simulations of
3D microstructures with several thousands of dendrites, effec-
tively enabling continuum-size simulations. A similar scalabil-
ity study with a 3D version of the model [11] is currently under
way and will be published shortly.

Acknowledgment

This work was funded by the US Army Corps of Engineers
through contract number W912HZ-09-C-0024 and by the Na-
tional Science Foundation under Grant No. CBET-0931801.
Computational resources at the MSU HPC2 center (Talon) and
XSEDE (Kraken at NICS, Gordon at SDSC, Lonestar at TACC)
were used. Computational packages HPCToolkit [25], Perf-
Expert [28], and Cray PAT [29] were used to assess the code
performance and scalability bottlenecks. Images were made us-
ing OpenDX with dxhf5 module [30] and Paraview tool http:
//www.paraview.org/. This study was performed with the
XSEDE extended collaborative support guide of Reuben Budi-
ardja at NICS. An excellent guide and consultation on HPC-
Toolkit was provided by John Mellor-Crummey, Department
of Computer Science, Rice University. The authors also ac-
knowledge the Texas Advanced Computing Center (TACC) at
The University of Texas at Austin for providing HPC resources,
training, and consultation (James Brown, Ashay Rane) that have
contributed to the research results reported within this paper.
URL: http://www.tacc.utexas.edu

Access to Kraken supercomputer was provided through NSF
XSEDE allocations TG-ECS120004 and TG-ECS120006.

References

[1] W. L. George, J. A. Warren, A Parallel 3D Dendritic Growth Simulator
Using the Phase-Field Method, Journal of Computational Physics 177
(2002) 264–283.

[2] W. Boettinger, J. Warren, C. Beckermann, A. Karma, Phase-field simu-
lation of solidification 1, Annual review of materials research 32 (2002)
163–194.

[3] Z. Guo, J. Mi, P. S. Grant, An implicit parallel multigrid computing
scheme to solve coupled thermal-solute phase-field equations for dendrite
evolution, Journal of Computational Physics 231 (2012) 1781–1796.

[4] T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka,
N. Maruyama, A. Nukada, S. Matsuoka, Peta-scale phase-field simu-
lation for dendritic solidification on the TSUBAME 2.0 supercomputer,
in: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, ACM, New York,
NY, USA, 2011, pp. 3:1–3:11.

[5] D. Sun, M. Zhu, S. Pan, D. Raabe, Lattice Boltzmann modeling of den-
dritic growth in a forced melt convection, Acta Materialia 57 (2009)
1755–1767.

[6] M. F. Zhu, D. M. Stefanescu, Virtual front tracking model for the quanti-
tative modeling of dendritic growth in solidification of alloys, Acta Ma-
terialia 55 (2007) 1741–1755.

[7] H. Yin, S. D. Felicelli, Dendrite growth simulation during solidification
in the LENS process, Acta Materialia 58 (2010) 1455–1465.

[8] H. Yin, S. D. Felicelli, L. Wang, Simulation of a dendritic microstruc-
ture with the lattice Boltzmann and cellular automaton methods, Acta
Materialia 59 (2011) 3124–3136.

[9] D. K. Sun, M. F. Zhu, S. Y. Pan, C. R. Yang, D. Raabe, Lattice Boltzmann
modeling of dendritic growth in forced and natural convection, Comput-
ers & Mathematics with Applications 61 (2011) 3585–3592.

[10] M. Eshraghi, S. D. Felicelli, An implicit lattice Boltzmann model for
heat conduction with phase change, International Journal of Heat and
Mass Transfer 55 (2012) 2420–2428.

[11] M. Eshraghi, S. D. Felicelli, B. Jelinek, Three dimensional simulation of
solutal dendrite growth using lattice Boltzmann and cellular automaton
methods, Journal of Crystal Growth 354 (2012) 129–134.

[12] D. H. Rothman, S. Zaleski, Lattice-Gas Cellular Automata: Simple
Models of Complex Hydrodynamics, Aléa-Saclay, Cambridge University
Press, 2004.

[13] S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond,
Oxford University Press, New York, 2001.

[14] M. C. Sukop, D. T. Thorne, Lattice Boltzmann Modeling - An Introduc-
tion for Geoscientists and Engineers, Springer, Berlin, 2006.

[15] D. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann
Models: An Introduction, Lecture Notes in Mathematics, Springer, 2000.

[16] P. L. Bhatnagar, E. P. Gross, M. Krook, A Model for Collision Pro-
cesses in Gases. I. Small Amplitude Processes in Charged and Neutral
One-Component Systems, Physical Review 94 (1954) 511–525.

[17] Y. H. Qian, D. D’Humiéres, P. Lallemand, Lattice BGK Models for
Navier-Stokes Equation, EPL (Europhysics Letters) 17 (1992) 479.

[18] S. Chapman, T. G. Cowling, The Mathematical Theory of Non-uniform
Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduc-
tion and Diffusion in Gases, Cambridge University Press, 1970.

[19] B. Deng, B.-C. Shi, G.-C. Wang, A New Lattice Bhatnagar-Gross-Krook
Model for the Convection-Diffusion Equation with a Source Term, Chi-
nese Physics Letters 22 (2005) 267.

[20] L. Beltran-Sanchez, D. M. Stefanescu, A quantitative dendrite growth
model and analysis of stability concepts, Metallurgical and Materials
Transactions A 35 (2004) 2471–2485.

[21] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, S. Tomov, Accelerating scientific computations with mixed
precision algorithms, Computer Physics Communications 180 (2009)
2526–2533.

[22] G. Wellein, T. Zeiser, G. Hager, S. Donath, On the single processor per-
formance of simple lattice Boltzmann kernels, Computers & Fluids 35
(2006) 910–919.

[23] C. Körner, T. Pohl, U. Rüde, N. Thürey, T. Zeiser, Parallel Lattice Boltz-
mann Methods for CFD Applications, in: A. M. Bruaset, A. Tveito, T. J.
Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, T. Schlick
(Eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, Springer Berlin Heidelberg, 2006, pp. 439–466.

[24] M. Wittmann, T. Zeiser, G. Hager, G. Wellein, Comparison of different
propagation steps for lattice Boltzmann methods, Comput. Math. Appl.
65 (2013) 924–935.

[25] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, N. R. Tallent, HPCTOOLKIT: tools for performance analysis
of optimized parallel programs, Concurrency and Computation: Practice
and Experience 22 (2010) 685–701.

[26] The HDF Group., Hierarchical data format version 5, 2000-2010, http:
//www.hdfgroup.org/HDF5, 2012.

[27] A. Choudhury, K. Reuther, E. Wesner, A. August, B. Nestler, M. Ret-
tenmayr, Comparison of phase-field and cellular automaton models for
dendritic solidification in Al–Cu alloy, Computational Materials Science
55 (2012) 263–268.

[28] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke,
J. Browne, PerfExpert: An Easy-to-Use Performance Diagnosis Tool for
HPC Applications, in: 2010 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pp. 1–11.

[29] CRAY, Using Cray Performance Analysis Tools, http://docs.cray.
com/books/S-2376-52/S-2376-52.pdf, 2011.

[30] I. Szcześniak, J. R. Cary, dxhdf5: A software package for importing
HDF5 physics data into OpenDX, Computer Physics Communications
164 (2004) 365–369.

Appendix A. MPI operations

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) Local streaming (propagation) of the matrix data.

BUILDING STRONG®

LBM parallelization – streaming

Direction
• horizontal (W, E)
• vertical (N,
 S)
• diagonal (NW, NE,
 SW, SE)

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

do i, j

recv[i, j] = send[i-i, j-1]

end do

(b) Streaming of the corner values diagonally.

BUILDING STRONG®

LBM parallelization – streaming

Direction
• horizontal (W, E)
• vertical (N,
 S)
• diagonal (NW, NE,
 SW, SE)

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

buffer=send
MPI_Sendrcv_replace(
 buffer, dst=3, src=7)
recv=buffer

buffer = send

MPI_Sendrcv_replace(buffer, dst = 3, src = 7)

recv = buffer

(c) Streaming of the vertical boundary lines.

BUILDING STRONG®

LBM parallelization – streaming

Direction
• horizontal (W, E)
• vertical (N,
 S)
• diagonal (NW, NE,
 SW, SE)

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

buffer=send
MPI_Sendrcv_replace(
 buffer, dst=2, src=8)
recv=buffer

buffer = send

MPI_Sendrcv_replace(buffer, dst = 2, src = 8)

recv = buffer

(d) Streaming of the horizontal boundary lines.

BUILDING STRONG®

LBM parallelization – streaming

Direction
• horizontal (W, E)
• vertical (N,
 S)
• diagonal (NW, NE,
 SW, SE)

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

buffer=send
MPI_Sendrcv_replace(
 buffer, dst=6, src=4)
recv=buffer

buffer = send

MPI_Sendrcv_replace(buffer, dst = 6, src = 4)

recv = buffer

Figure A.6: Streaming of the distribution function f8 (diagonal, south-west direction). All operations performed by the execution
core 5 are shown. Red colored regions are to be propagated, green colored are the destination regions. The buffer is allocated
temporarily to store the data to be sent and received. Streaming in the horizontal (vertical) direction involves one local propagation,
and, unlike in the diagonal direction, only one MPI send-receive operation that propagates horizontal (vertical) boundary lines.
Each core determines the rank of source and destination execution individually using MPI Cartesian communicator.

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) Data to populate

BUILDING STRONG®

Populate ghost nodes
after each local update

LBM parallelization – ghost nodes

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

Data to be received by core 5.

(b) From west

BUILDING STRONG®

LBM parallelization – ghost nodes

Populate ghost nodes
after each local update
east

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

MPI_Sendrcv(
 send, recv,
 dst=6, src=4)

MPI_Sendrcv(send,recv,d=6,s=4)

(c) From east

BUILDING STRONG®

LBM parallelization – ghost nodes

Populate ghost nodes
after each local update
west

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

MPI_Sendrcv(
 send, recv,
 dst=4, src=6)

MPI_Sendrcv(send,recv,d=4,s=6)

(d) From south

BUILDING STRONG®

LBM parallelization – ghost nodes

Populate ghost nodes
after each local update
north

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

MPI_Sendrcv(
 send, recv,
 dst=8, src=2)

MPI_Sendrcv(send,recv,d=8,s=2)

(e) From north

BUILDING STRONG®

LBM parallelization – ghost nodes

Populate ghost nodes
after each local update
south

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

MPI_Sendrcv(
 send, recv,
 dst=2, src=8)

MPI_Sendrcv(send,recv,d=2,s=8)

(f) From north-west

BUILDING STRONG®

LBM parallelization – ghost nodes

Populate ghost nodes
after each local update
south-east

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

MPI_Sendrcv(
 send, recv,
 dst=3, src=7)

MPI_Sendrcv(send,recv,d=3,s=7)

(g) From south-east

BUILDING STRONG®

LBM parallelization – ghost nodes

Populate ghost nodes
after each local update
north-west

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

MPI_Sendrcv(
 send, recv,
 dst=7, src=3)

MPI_Sendrcv(send,recv,d=7,s=3)

(h) From north-east

BUILDING STRONG®

LBM parallelization – ghost nodes

Populate ghost nodes
after each local update
south-west

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

MPI_Sendrcv(
 send, recv,
 dst=1, src=9)

MPI_Sendrcv(send,recv,d=1,s=9)

(i) From south-west

BUILDING STRONG®

LBM parallelization – ghost nodes

Populate ghost nodes
after each local update
north-east

core 7 core 8

core 5

core 9

core 6

core 3 core 2 core 1

core 4

MPI_Sendrcv(
 send, recv,
 dst=9, src=1)

MPI_Sendrcv(send,recv,d=9,s=1)

Figure A.7: Populating the ghost values (green area of subfigure (a)) on the execution core 5. Each subdomain permanently stores
an extra “ghost” layer of values to be received from (or to be sent to) the neighboring subdomains. Synchronously with receiving
the data (recv), the execution core 5 sends the data (send) in the direction opposite to where the data is received from.

10

Program title: 2Ddend

Catalogue identifier: AEQZ_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEQZ_v1_0.html

Program obtainable from: CPC Program Library, Queen's University, Belfast,
N. Ireland

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence
/licence.html

No. of lines in distributed program, including test data, etc.: 29767

No. of bytes in distributed program, including test data, etc.: 3131367

Distribution format: tar.gz

Programming language: Fortran 90.

Computer: Linux PC and clusters.

Operating system: Linux.

Has the code been vectorised or parallelized?: Yes. Program is parallelized
using MPI. Number of processors used: 1-50000

RAM: Memory requirements depend on the grid size

Classification: 6.5, 7.7.

External routines: MPI (http://www.mcs.anl.gov/research/projects/mpi/), HDF5
(http://www.hdfgroup.org/HDF5/)

Nature of problem:
Dendritic growth in undercooled Al-3wt%Cu alloy melt under forced
convection.

Solution method:
The lattice Boltzmann model solves the diffusion, convection, and heat
transfer phenomena. The cellular automaton technique is deployed to track
the solid/liquid interface.

Restrictions:
Heat transfer is calculated uncoupled from the fluid flow. Thermal diffusivity is
constant.

Unusual features:
Novel technique, utilizing periodic duplication of a pre-grown "incubation"
domain, is applied for the scale up test.

Running time:
Running time varies from minutes to days depending on the domain size and
a number of computational cores.

file:///opt/print/Update%20to%20Program%20Sum...

1 of 1 Saturday 05 October 2013 03:59 PM

