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ABSTRACT

In this study, we use a physically-motivated internal state
variable model containing a mathematical length scale ree
sent the material behavior in finite element (FE) simulatior
hazmat tank car shell impacts. Two goals motivated the atirre
study: (1) to reproduce with high fidelity finite deformatiamd
temperature histories, damage, and high rate phenomenewhi
arise during the impact, as well as (2) to investigate nugari
aspects associated with post-bifurcation mesh-deperydsribe
finite element solution. We add the mathematical lengthescal
to the model by adopting a nonlocal evolution equation fa th
damage, as suggested by Pijaudier-Cabot and Bazant (1887) i
a slightly different context. The FE simulations consist afov-
ing striker colliding against a stationary hazmat tank caicare
carried out with the aid of ABAQUS/Explicit. The resultstudse
simulations show that accounting for temperature histoaad
nonlocal damage effects in the material model satisfalgtpne-
dicts, independently of the mesh size, the failure proceiseo
tank car impact accident.
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1 INTRODUCTION

The design of accident-resistant hazmat tank cars requires
material models which describe the physical mechanisnts tha
occur during an accident. In the case of high-velocity intpac
accidents, finite deformation and temperature historiamate
and high rate phenomena are generated in the vicinity oftthe i
pact damage zone. Unfortunately, the majority of materiadim
els used in the finite element simulation of hazmat tank car im
pact scenarios do not account for such physical features. Fu
thermore, in the few models that do, a mathematical lengitesc
aimed at solving the post-bifurcation problem is absent. aAs
consequence, when one material point fails, the bounddmngva
problem for such material models changes, from a hyperbolic
to an elliptical system of differential equations in dynamiob-
lems, and the reverse in statics. In both cases, the bounalaey
problem becomes ill-posed ( Muhlhaus (1986), Tvergaard and
Needleman (1997), de Borst (1993), Ramaswamy and Aravas
(1998)), as the boundary and initial conditions for one eyst
of differential equations are not suitable for the other. 2Ae-
sult, bifurcations with an infinite number of bifurcated bches
appear, which raises the problem of selecting the relevaat o
especially in numerical computations where this drawbaak-m
ifests itself as a pathological sensitivity of the resut#he finite
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element discretization.

Alternatively to the shortcomings encountered in hazmat
tank car impacts’ numerical simulations, we propose to use a
nonlocal version of the BCJ model ( Bammann and Aifantis
(1987) and Bammann et al. (1993)), a physically-motivated i
ternal state variable plasticity and damage model comtgiai
mathematical length scale. The use of internal state asgab
will enable the prediction of strain rate and temperatustdhnies
effects. These effects can be quite substantial and threrdiifi-
cult to incorporate into material models, which assumesttiea
stress is (1) a unique function of the current strain, straie and
temperature and (2) is independent of the loading path. The e
fects of damage are included in the BCJ model, however, girou
a scalar internal state variable which tends to degradeliséic
moduli of the material as well as to concentrate the strebg T
mathematical length scale is introduced in the model viatre
local damage approach of Pijaudier-Cabot and Bazant (1987)
the context of concrete damage, these authors suggested a fo
mulation in which only the damage variable is nonlocal, hil
the strain, the stress and other variables retain theil el
inition. Their formulation has been applied to creep protde
by Saanouni et al. (1989) and extended to plasticity by, @amon
others, Leblond et al.
(1995). Following Pijaudier-Cabot and Bazant (1987)'sgrs3
tion, a nonlocal evolution equation for the damage withiro#mn
erwise unmodified BCJ model is adopted in the current study.

process of a hazmat tank car impact accident.

Section 2 provides a summary of the equations of the BCJ
model and its nonlocal extension.

Section 3 discusses several methods to numerically im-
plement the integral-type nonlocal damage into existing
ABAQUS finite element BCJ model subroutines. The main
difficulty encountered in this implementation relates te th
double loop over the integration points required by the cal-
culation of several convolution integrals, which mighteath
wise dismantle the architecture of the entire code.

Finally Section 4 is devoted to numerical applications ef th
local and nonlocal BCJ model on hazmat tank car shell im-
pact accident simulations.

2 PHYSICS OF THE DAMAGE FROM HAZMAT TANK

CAR IMPACT

The physical mechanisms responsible for the damage to haz-
mat tank cars during high-velocity impact initiates at tineet of
the contact, wherein strong pressure waves arise and p@tgag
along both the striker and the hazmat tank car. During tlupar
gation, hydrostatic compression and tension shock wawagev

(1994) and Tvergaard and Needleman and can lead to so-called spalling fracture. Spalling tnacbc-

curs when the shock waves produced by the impact bounce off
the back surface of the tank car, reverse direction, andrreisi
reflected tensile waves (see Zukas (1990)). When thesdeensi

The time-derivative of the damage is expressed as the bpatia waves exceed the local spall strength, nucleation, groari,

convolution of a “local damage rate” and bell-shaped wéight
function. The width of this function introduces a mathemaili
length scale.

In this study, a dynamic nonlinear finite element analysis,
carried out with ABAQUS/Explicit finite element code, is dse
to simulate a moving striker colliding against a statiorfaalgmat
tank car. The structure part of this finite element model 5 re
resented by Lagrangian elements obeying the nonlocalorersi
of the BCJ model, while the fluid part is represented by Eule-
rian elements. The objective of this study is two-fold: ($gw&a
high fidelity material model to idealize the physics ocaugriur-
ing the impact accident and (2) rectify the computationaindr
back (post-bifurcation mesh dependence issues) for thidemo
on a large-scale boundary value problem. The resulting nume
ical simulations of hazmat tank car impact scenarios, which
count for nonlocal damage and temperature history effeets p
dict satisfactorily the tank car failure process indepentigeof
the element size. The originality of this work lies in thaipp to
this study?, never have the post-bifurcation mesh dependence is-
sues been investigated on large-scale computations pnelite
steels. The paper is organized as follows:

Section 1 describes the physics associated with the failure

1BCJ: Bammann-Chiesa-Johnson
2To the best of the authors’ knowledge.

coalescence of voids and/or cracks may occur. These defects
then lead to the tank car’s failure: usually, a chunk of miater
breaks away from the surface opposite to impacted surface.

The propagation of the shock waves is also accompanied by
a quick local heating due to the intense plastic shear deform
tions and the passage of shock waves. Heat is generatetyrapid
such that little conduction occurs and hence the procegtias a
batic. As a result, material softening occurs in the impagtan,
while the surrounding material continues to harden; alsade-
formation in the local damaged zone is nonuniformly distréu
in narrow adiabatic shear bands ( Glema et al. (2000)). While
these bands do not deteriorate the hazmat tank car strlictura
tegrity as cracks do, they are typically precursors to tnactThe
BCJ model is capable of representing with high fidelity thiaist
rate, temperature history, load path, and damage effedtshwh
arise during the impact accident. This model is presentdlan
next section.

3 THE BCJ MODEL CONTAINING A MATHEMATICAL
LENGTH SCALE
3.1 THE BCJ MODEL
The BCJ model is a physically-based plasticity model cou-
pled with the Cocks and Ashby (1980)'s void growth failure
model. The BCJ model incorporates load path, strain rai, an
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temperature history effects, as well as damage throughgbe u
of scalar and tensor internal state variables for which tlodue
tion equations are motivated by dislocation mechanics astl ¢
in a hardening minus-recovery format. The BCJ model also ac-
counts for deviatoric deformation resulting from the preseof
dislocations and dilatational deformation.

The deformation gradient is multiplicatively decomposed
into terms that account for the elastic, deviatoric inétasti-
latational inelastic, and thermal inelastic parts of theioro For
linearized elasticity, the multiplicative decompositiofithe de-
formation gradient results in an additive decompositiorthaf
Eulerian strain rate into elastic, deviatoric inelastitatdtional
inelastic, and thermal inelastic parts. The constitutiyeagions
of the model are written with respect to the intermediatee st
free) configuration defined by the inelastic deformatiorhghat
the current configuration variables are co-rotated witheflastic
spin. The pertinent equations of the BCJ model are expressed
the rate of change of the observable and internal stateblasia
and consist of the following elements.

¢ A hypoelasticity law connecting the elastic strain raterto a
objective time-derivative Cauchy stress tensor is given by

& = A(1— @)tr(D%)1 + 2u(1 — @)D° — %po, @)

3 where is the Lane constanty is the shear modulus, and
¢ denotes the damage variable. The Cauchy steéson-
vected with the elastic spW€ as

0=0—-W¢®+oW*® (2)

where, in general, for any arbitrary tensor variakle X
represents the convective derivative. Note that the rigid
body rotation is included in the elastic spin; therefore,
the constitutive model is expressed with respect to a set
of directors whose direction are defined by the plastic
deformation.

e The decomposition of both the skew symmetric and sym-
metric parts of the velocity gradient into elastic and iséta
parts for the elastic stretching ra¥ and the elastic spin
W¢€in the absence of elastic-plastic couplings yields

D¢ =D-DP-DY-D"
We =W —WP. ®)

SStrictly speaking, additional terms containing the terapee 6 and its
derivatives should be added to Eqn.1. The influence of thitiawal terms, how-
ever, is significative only for problems involving very higgmperatures, such as
welding problems; therefore we can safely ignore them here.

Note that for problems in the shock regime, only the devi-
atoric elastic strain part is linearized enabling predittf
large elastic volume changes.

o Next, the equation for the plastic spit is introduced, in
addition to the flow rules fobP andDY, and the stretching
rate due to the unconstrained thermal expanBithn From
the kinematics, the dilatational inelasbé flow rule is given
as:

)
D _—1_(p|. (4)

Assuming isotropic thermal expansion, the unconstrained
thermal stretching rat®™ can be expressed by

D" = A6, (5)

whereA is a linearized expansion coefficient.
For the plastic flow rule, a deviatoric flow rule ( Bammann
(1988)) is assumed and defined by

o —a
|0’ —al|’

o' —af| - [K-Y(®)](1—¢)
vV(e)(1-9
wheref is the temperature the scalar hardening variable,

a the objective rate of change of, the tensor hardening
variable, andy’ the deviatoric Cauchy stress.

DP = f(@)sinh

There are several choices for the form\WP. The as-
sumptionWP = 0 allows recovery of the Jaumann stress
rate. Alternatively, this function can be described by the
Green-Naghdy rate of Cauchy stress. We used the Jaumann
rate for the numerical applications in this paper.

e The evolution equations for the kinematic and isotropic
hardening internal state variables are given in a hardening
minus recovery format by

G =)D - |/3ra(0)] 107 + () o

)
= D7) - [/ 3Ra(0)10%]-+ Re@) .

where h and H are the hardening modwand R are scalar
functions of@ describing the diffusion-controlled “static”
or “thermal” recovery, andgrand Ry are the functions o
describing dynamic recovery.
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e To describe the inelastic response, the BCJ model in- wherep and G, represent the material density and a specific
troduces nine functions which can be separated into three heat, respectively.
groups. The first three are the initial yield, the hardening,

Th irical tion in Eqn.(12) h itted -
and the recovery functions, defined as e empirical assumption in Eqn.(12) has permitted non

isothermal solution by finite element that is not fully coegbl
with the energy balance equation (see Bammann et al. (1993))

V(6) = Crexp(—C2/6) Note that the temperature rise will induce a profound eftect
Y (8) = Caexp(—Ca/8) (8) the constitutive behavior of the material. Specificallyg tem-
f(6) = Csexp(—Cs/0). perature increase will lead to thermal softening (adiabsttiear

_ _ _ _ bands), and as a result shear instabilities may arise. Thieimo
The second group is related to the kinematic hardening pro- is also suitable to predict mechanical softening throughaal-g

cess and consists of the following functions: ual increase of the damage. It is well known that practicétifin
element applications of constitutive models involvingtening,
rq(8) = Crexp(—Cg/0) like the BCJ model, are strongly mesh-dependent. According
h(8) = Coexp(—C10/9) 9) to Rousselier (1981), this problem can be obviated by pgitiin
rs(6) = Cr1exp(—C12/0). lower limit on the element size. However, this practice i$ no

optimal theoretically. Another, more elaborated, soluteamn-
The last group is related to the isotropic hardening process sists of including a mathematical length scale in thesetitans
and is composed of tive models. The following section presents a techniquertbex

the BCJ model with just such a mathematical length scale.

H(B) = Cisexp(—Ci6/0) (10) 3.2 EMBEDDING A LENGTH SCALE IN THE BCJ
Rs(8) = Cy7exp(—Cis/0). MODEL
Following Pijaudier-Cabot and Bazant (1987)’s suggestion
In Eqns. (8, 9, 10)C; is some parameter of the model which  in the context of concrete damage, we propose to delocdiize t
need to be determined. variable(s) responsible for softening. In the BCJ modett-so
ening may arise from two mechanisms: a gradual increase of
¢ The evolution equation for damage, credited to Cocks and the damage (under isothermal conditions) or a temperaisge r
Ashby (1980), is given by (in adiabatic conditions) followed by an increase of the dgm
While temperature and damage parameters seem to govern soft
. 1 . ening in adiabatic conditions, review of the model’s cansitie
= [ (1~ (p)} smh[ equations provided in the previous section reveals thaethg&o
variables are related. We choose to introduce the lengtle sca
Note that this void growth model displays a “sinh’- ©On the damage evolution equation. This choice appears quite

dependence on the triaxiality factar/c, as well as an  appealing from the physical point of view. Indeed, in theecas
additional parameter n along with the initial value of the Of heterogeneous materials, for example, the damage can onl

{ Rd(e) = Clgexp(—Cl4/6)

(1-n)
(1+n)

P
_ p
SN REEY

damagey, required to calculate damage growth. be defined by considering “elementary” volumes of size great
than the voids spacirjand is therefore a nonlocal quantity.
e The last equation to complete the description of the model The evolution equation of this variable is given by a convo-

is one that Computes the temperature Change during h|gh lution integral inCIUding a be”'We|ght|ng function the dth of
strain rate deformations, such as those encountered in highWhich introduces a mathematical length scale:

rate impact loadings. For these problems, a non-conducting

(adiabatic) temperature change following the assumption @x) = i/ @ (y)A (X — y)dQy. (13)
that 90% of the plastic work is dissipated as heat is as- B(x) /o

sumed. Taylor and Quinney (1934) were the first to measure

the energy dissipation from mechanical work as being be- In this equationQ denotes the volume studied, and A the Bell
tween 5- 50% of the total work for various materials and ~ Weight function defined as

strain levels. Therefore, the rate of the change of the tem-

perature is assumed to follow A(x) = exp(— || x || /1?), (14)

( _E p
0= pcv(ch ), (12)

4The Cocks and Ashby (1980) void growth model is based on adigticon-
taining a spherical void.
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where | is the mathematical length scale. The factor)Bind the stores all the variables necessary for the convolutionaijuer,
“local damage ratg/°®” are given by performs this operation, and stores the nonlocal damage-inc
ment for all the integration points involved in the finite rlent
model. The nonlocal damage increment is used to calculate th
B(x) = /QA(X —y)dQy (15) damage at timé+ At for the next time-step following the for-
mula:
and Eqgn.(11), respectively. The function A is indefinitelf d
ferentiable and does not introduce any Dira'distribution at ~ .
the point 0. This means that the functigris not partially lo- O+ A1) ~ o) + GAL (16)
cal but entirely nonlocal. The function A is also isotropitda
normalized. The point here is th@amust be equal tg°° if the This updated value is an explicit estimation of the damage at
latter variable is spatially uniform. This would not be these t4 At and is not used to repeat the whole process of solution
near the boundary d@ in the absence of the normalization fac- between times t andit At. Thus, the algorithm is not fully im-
tor 1/B. The presence of this term allows for the coincidence plicit, but mixed implicit/explicit. Enakoutsa et al. (20Pused
everywhere. the same technique to implement a nonlocal version of Gurson
The new evolution equation for the damage, Eqn.(13), along (1977)’s model following a slightly modified Aravas (1985 l-
with the equation for the temperature rise, Eqn.(12), shoul gorithm, the so-called “projection into the yield surfacdyo-

predict satisfactorily the failure process of the tank aar i rithm. The explicit nature of Enakoutsa et al. (2007)'s algo
pact independently of the mesh size. Indeed, the local damag rithm with respect to the damage allowed these authors teepro
rate Eqn.(13) implicitly depends on the temperature thiaihe that theprojection problemassociated with Gurson’s nonlocal

strain rate sensitivity parameter (see Eqn.(6) and Yantsdgic model has a unique solution. The Igtte_r property is a direot ¢
al. (1992)). When the temperature gradually rises, whithés sequence of the fact that the constitutive equg‘uons of @1B's
case in high-velocity impact loadings, the damage rate im th nonlocal model belong to the class of Generalized Standard M

zone quickly climbs to a high value; as a result, the damage terials of Halphen and Nguyen (1975). Applications of the nu

growths rapidly to reach the critical failure damage. Thevoe merical treatment of nonlocal damage rate on a double-rdtch
lution integral in Eqn.(13) enhances the rapid damage ase  €dge specimen in tension problem (see Fig.1) illustratevéhe
since it involves the sum of several positive terms each oglwh  lidity of the method to avoid ill-posed issues in this lattorg-
contains a local damage velocity. The mathematical lenggites oriented boundary value problem. Indeed, while the local BC
in the convolution integral eliminates the mesh sensitigftects. model concentrates the damage within a layer of meshes éetwe
Nonetheless, the numerical implementation of the new evo- the specimen notches, the nonlocal BCJ model spreads the dam
lution equation for the damage rate into an existing finiezrent age region to a zone beyond this layer.
code is not an easy task because of the double loop over inte-  To assess the validity of the method to regularize hazmat
gration points required by the calculation of several cdumion tank car impact boundary value problems requires impleaent
integrals, which may potentially compromise the entireniec- tion of the nonlocal damage rate in the explicit version efBCJ
ture of the existing code. The following section is devoted t model VUMAT subroutine. One option of doing so consists of
explaining this implementation. branching outside the “NBLOCK loop” in the VUMAT, which

allows the computation of the nonlocal damage rate at edeh in
gration point using the coordinates, the local damage iteds¢c
4 NUMERICAL TREATMENT OF THE NONLOCAL and the weights of “NBLOCK” integration points. This method
DAMAGE RATE also successfully avoids the localization problems agigmthe
The numerical implementation of the original BCJ model numerical simulations of double-notched edge specimesiléen
into a finite element code such as ABAQUS has been extensively tests and therefore is excepted to reduce, if not complegely
addressed in Bammann et al. (1993); consequently, it will no move, the mesh-sensitivity issues arising in the hazm&t¢an
be repeated here. Recall, however, that this implementéio impacts numerical simulations.
based on Krieg and Krieg (1977)’s radial return method teesol
numerically the equations presented in Section 3.1 for the d
viatoric stresses, equivalent plastic strain, pressareperature, 5 HAZMAT TANK CAR SHELL IMPACT FE SIMULA-
and damage at each new time-step. The algorithm is available TIONS
both the implicit and explicit versions of ABAQUS. The goal of the hazmat tank car shell impact FE simulations
To implement the nonlocal damage rate in the implicit ver- is to virtually predict the tank car structural’s failureogess in-
sion of the code, we have computed the nonlocal damage incre-dependently of the element size. To that end, we describe the
ment at convergence by means of the subroutine URDFIL, which impact accident physical problem, the associated FE madel i
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Figure 1. Comparison of the damage distribution of a double-notched
edge specimen tensile tests for local and nonlocal BCJ models. Note the
localization of the damage in a row of meshes between the two notches for
the local BCJ model (top) and the similarity between the damage pattern
of two different meshes for the nonlocal BCJ model (middle and bottom).

ABAQUS, and we present different numerical predictionshef t
damage created by the impact.

5.1 PROBLEM DEFINITION

The previous work of Tang et al. (2008a) and Tang et al.
(2008b) inform the current problem. In our study, a ram car
weighing 286,000 pounds and with a protruding beam to which
an impactor was attached, is moving horizontally at 10 nt in
an immobile hazmat tank car. Fifty percent of the tank car is
filled with water mixed with clay slurry, which together hdeet
approximate density of liquid chlorine. Air occupied thevan-
ing volume in the tank car and is pressurized 100 psi. The im-

Figure 2. Geometry of the conical impactor used in the simulations. The
sharp nose is used to generate a ductile failure mode of the tank car
during the impact.

thermal protection between the tank car and the jacket. Tihe e
tire assembly (Tank/Layer/Jacket) is supported by twalrggs
and this assembly is placed with one side against a rigidamall
the other side exposed to impact from the impactor.

5.2 FE MODEL OF THE PROBLEM IN ABAQUS

The FE model of the problem consists of an Eulerian mesh
representing the fluid in the tank car and a Lagrangian mesh id
alizing the tank, the jacket, and the impactor. The impactor
sists of R3D4 rigid elements, while the tank and the jacket ar
meshed using solid C3D8R elements. For the sake of simplicit
the space between the tank and the jacket is assumed to bg empt
The two legs are rigid and are idealized with squared arcallyti
surfaces on which reference points located below the jeateet
assigned. Each reference point is kinematically coupled @i
definite set of nodes on the jacket and the tank car. The con-
tact algorithm available in the 6.10 version of ABAQUS/Exitl
finite element code is used to account for all possible costac
between different parts in the model.

The Eulerian mesh is based on the volume-of-fluid (VOF)
method. The VOF method (widely used in Computational Fluid
Dynamics) tracks and locates the fluid free surface; it lgddo
the class of Eulerian methods that are characterized bgredth
stationary or moving mesh. The VOF method suitably captures
the change of the fluid interface topology. In this method, th
material in each element is tracked as it flows through thehmes
using the Eulerian volume fraction (EVF), a unique paramete
for each element and each material.

The material parameters are determined from tension, com-

pactor used in the problem is conical sharp-nose shaped (Seéyression and torsion tests under different constant stetie
Fig.2); it is introduced in the FE model to generate a ductile anq temperatures. We used the material parameters provided

failure mode during the impact. The stationary part of thabpr

lem consists of a tank car surrounded by a jacket. The tank is a

0.777-inch-thick cylinder, and closed at its two ends witlpe
tical caps of aspect ratio 2. The tank body material consifts
304L stainless steel; the jacket is a 0.119-inch-thick nadee
same steel. A 4-inches-thick layer separates the jacket fhe
tank car. This layer is introduced to account for insulatom

in Horstemeyer et al. (2000).

5.3 SIMULATIONS RESULTS

This section presents evidence of the integral-nonlocalda
age method’s to eliminate mesh-dependence issues whid ari
in the FE solution of hazmat tank car impact accident problem
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Figure 3. Meshes of the tank car. Top: coarse mesh, bottom-left:
medium mesh, bottom-right: fine mesh. The meshes are made of solid
C3D8R elements.

Figure 4. An illustration of the mesh size effects in the FE simulations
of hazmat tank car using the local BCJ model. The figure shows the
damage pattern on the inner surface of the tank located behind the impact

) ) region for a coarse (top), medium (middle), and fine (bottom) mesh at the
To that end, the calculations were performed on three eiffer same time. Note the reduction of the damage pattern size with decreasing

meshes, a coarse, medium, and fine mesh (see Fig.3), for thegiement size.

local and nonlocal versions of the BCJ model in adiabatic con

ditions. In isothermal conditions, the BCJ model difficulpire-

dicts failure (see Bammann et al. (1993)); therefore, isattal Figure.5 is the analogous of Fig.4. Here, the pattern of the

conditions are not considered here. damage for the three meshes is relatively similar; this agien
Figure 4 illustrates the repartition of damage on the inner holds foralatter time, as displayed in Fig.6. The simijanibuld

surface of the tank for all three meshes at the same timegin th be more significant if a very refined mesh were used because, as

case of the local BCJ model. The choice to show only the repar- in the case of local BCJ model, the element size determirees th

tition of the damage on the inner surface of the tank but not on damage pattern. Thus, the nonlocal damage rateadodiori

the outer surface is noteworthy. The damage mechanismglurin the damage itself, has a significant influence on the respafnse

the impact accident suggested in Section 2 supposes thsitithe ~ the hazmat tank car to the impact loading.

opposite from the impact surface may fail first. This obstova Also remarkable from Figs.(5, 6) are the bands, which do
agrees well with Bammann et al. (1993)’s simulations of a thi  appear in the local simulations, seem to have almost cogiplet
circular plate impact in which damage initiation and praogtimn disappeared. In fact, the nonlocal damage has delayeddpeir
indeed occurs on the opposite side of the impact surfaces, Thu  pavition to latter times where these bands are extendedsever

is expected that the effect of nonlocal damage will be sigaift eral elements. This postponement arises because the damage
at that place. the bands is much larger at latter stages of the impact lgadin

The results of the simulations using the local BCJ model due to the progressive development of considerable stighssi
are mesh-dependent: the pattern of the damage is deterimned ZONe.
the size of the elements. Therefore, decreasing of FE site wi
modify the global response of the structure (which depends e
plicitly on the number of elements). Furthermore, the eperg 6 SUMMARY AND RECOMMENDATION
generated during the impact tends to zero when the size of the With the aid of ABAQUS/Explicit FE code, we have pre-
FE approaches zero. This leads to the meaningless contlusio sented a dynamic nonlinear FE simulations of a hazmat tank ca

that the tank car fails during the accident with zero eneigyid shell impact. In these simulations, the tank car body malteri
pated. In fact, the FE solutions depend not only on the sitlesof was idealized with a physically-motivated internal staaeiable
elements, but on their nature, orientation, degree ofatation model containing a mathematical length scale, the nonB€dl
function-in short, on the finite elements approximationcepas model. This model consists of all the constitutive equattioh
presented in Darve et al. (1995). the original BCJ model, except the evolution equation f& th
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Figure 5. An illustration of the introduction of the mathematical length
scale in the BCJ model to reduce the mesh size effects in the FE simu-
lations of hazmat tank car. The contour plots of the damage on the inner
face of the tank are shown for three different meshes at the same time
as in Fig.4: coarse (top), medium (middle), and fine (bottom). Note the
similarity of the damage pattern size for the three meshes.

damage, which is modified into a nonlocal one. Numerical meth
ods to implement this equation in existing BCJ model subrou-
tines were also presented.

The results of the simulations show the ability of the
mathematical length scale to eliminate the pathologicathme
dependency issues while predicting satisfactory hazmétdar
impact failure, provided that nonlocal damage effects ang c
pled with temperature history effects (adiabatic effeciBhus,
the nonlocal BCJ model is a powerful tool that we recommend
hazmat tank car fabrication industries incorporate inrthieiual
design tools.
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