Phase transformations in low-alloy steel laser deposits

Haitham El Kadiri a,*, Liang Wang a, Mark F. Horstemeyer a, Reza S. Yassar b, John T. Berry c, Sergio Felicelli c, Paul T. Wang a

a Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762, United States
b Mechanical Eng-Eng Mechanics Department, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, United States
c Mechanical Engineering Department, Mississippi State University, Mississippi State, MS 39762, United States

Received 28 May 2007; received in revised form 3 December 2007; accepted 5 December 2007

Abstract

We examined the microstructure evolution in medium-carbon low-alloy steel upon laser engineering net shape (LENS) (LENS is a trademark of Sandia National Laboratories and the US Department of Energy, Albuquerque, NM). Involved was the deposition of 14 superimposed fine layers. Several characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), nanoindentation and electron back scattered diffraction (EBSD) were used in conjunction with three-dimensional finite element thermal modeling to rationalize the transformation mechanisms. Delta ferrite was the primary phase to solidify from the melt. Solid-state austenitisation led to allotriomorphic hexagonal prisms that grew following a unique direction depending upon the parent delta-grain crystallographic orientation. A supersaturated lower bainitic plate was the main phase to have transformed from austenite, except for the first two deposited layers where martensite predominated. The supersaturated plate underwent a sudden-tempering reaction at the 10th layer but was confined at the plate boundaries. This tempering reaction became more transgranular and increasingly affected retained austenite and microphases for the underlying layers. Coalescence of carbon-depleted ferrite plates gave rise to the steady-stage microstructure at the fourth layer. This complicated microstructural evolution corroborated the microhardness fluctuations through all deposited layers.

Keywords: Laser deposition; Low-alloy steel; Bainite; Martensite; SEM; TEM

1. Introduction

A large class of metal alloys has been used to fabricate parts with the laser engineered net shaping (LENS) process [1]. These materials include low-alloy steels [2], stainless steels [3,4], nickel-based alloys [5,6], and titanium alloys [7,8]. Recent advances in system capabilities, thermal modeling, measurement, and processing parameters have succeeded to a certain extent in overcoming the inherent constraints related to net shaping with LENS [9–11]. However, most structural components are multi-phase-based alloys. This makes them highly sensitive to cooling rates. Because of the very high cooling rates associated with laser deposition, the processing window for multi-phase generation is substantially constricted. For steels, the finely generated austenite grain size leads to a high density of allotriomorphic ferrite strings, and the mostly diffusionless transformations generate phases containing high solid solution concentrations. The high fractions of allotriomorphic ferrite strings and solid solution elements lead to very brittle microstructures. To recover some acceptable properties, modern designers resorted to post-mortem heat-treatment processes. These post-tempering processes induced tempering embrittlement problems, increased the cost and labor in the overall manufacturing cost, and eliminated the possibility of obtaining gradients of microstructures.

Because of the complicated relationship between the process parameters and the resulting microstructure, phase and composition modulations in LENS-processed steels were largely neglected. This lack of understanding is a substantial barrier against the development of novel methodologies to better control the microstructure and design of multifunctional alloys.

In this paper, we attempt to thoroughly explain the microstructural and property gradients observed along a single-walled deposit (SWD) from a pre-alloyed AISI 4140 graded steel.
powder. These microstructural gradients were characterized in conjunction with finite element based thermal simulations using SysWeld.

2. Experimental

The SWD or “rib-on-web” builds [12] were manufactured at the Center for Advanced Vehicular Systems (CAVS) using an Optomec machine, but also at Optomec Inc. (Albuquerque, NM). The 14 superimposed fine layers of the SWD were made one layer at a time by injecting powdered metal into the molten puddle created by a laser beam. A high-power YAG laser beam was focused to a fine point on the surface of an AISI 4140 steel substrate creating a molten puddle. The line thickness and width were 0.8 mm and 1 mm, respectively. The laser speed and power were chosen to be 0.89 m/min and 900 W, respectively, so as to melt approximately the half volume of the underlying line. The microstructure was examined by means of Zeiss optical microscope and field emission gun-scanning electron microscopy (FEG-SEM) on polished samples etched with a 2% diluted solution of “Nital”. For transmission electron microscopy (TEM) analyses, 3-mm diameter disks were first extracted by punching a SWD that was previously polished on both sides down to 100 μm. After individual polishing of these disks down to approximately 50 μm, the obtained thin foils were single-jet electro-polished and ion-milled using a Fishionne system. The electropolishing solution was a 2% diluted Nital. FEG-TEM observations were carried out on a 200 keV JEOL instrument. Depth-sensing microhardness tests were performed using a Hysitron multi-range probe nanoindentation system. A maximum load of 1000 mN was applied and relaxed at a rate of 30 mN/s without dwelling time.

3. Overall microstructural variation through the deposits

Fig. 1 shows optical micrographs of typical Nital-etched microstructures for each of the 14 layers.

Fig. 1. Optical micrographs of Nital-etched microstructures viewed from sections perpendicular to the laser track corresponding to layers from 1 to 14; note the sudden onset of darkening at the 10th layer, which increases toward the bottom layers, a change in the etching aspect, and a preferential pore formation at layers 1 and 2.
Fig. 2. Hardness along a single profile crossing the entire single-walled deposit obtained from depth-sensing microindentation tests using a maximum load of 1000 mN and relaxation rate of 30 mN/s, without dwelling time. The dashed lines mark the interfaces between layers labeled in sequence from 1 to 14 at the top of the graph, and encircle points correspond to indentations at these interfaces, which showed locally the lowest microhardness bounds.

The most manifest feature from Fig. 1 is the blackening aspect in surface needle-lime morphology that suddenly started at the 10th layer and progressively increased toward the underlying layers. At the eighth layer, this blackening invaded the whole structure.

4. Microhardness

Depth-sensing microindentation tests were performed to reveal the effect of microstructure variation on the mechanical properties. Fig. 2 shows the results of microhardness measurements along a profile running over all 14 layers. The four top layers exhibited the highest microhardness; approximately 930 HV. The microhardness progressively fell beginning at the 10th layer, which corresponded to the first observable outset of the dark-etched structure. The lowest value 500 HV of all microhardness measurements was reached at the sixth layer, which correlated with the first significant appearance of the dark-etched structure. However, the microhardness started slightly increasing through the following underlying layers up to 700 HV reached at the bottom of the first deposited layer. For each layer, the lowest microhardness value was obtained at the fusion interface, where the dark needles were preferentially formed.

5. Thermal analyses

To understand the microstructure evolution through the deposition process, the thermal history of each layer was quantified. A three-dimensional finite element model was developed to simulate the LENS deposition of a SWD using the process parameters given in Section 2. The model and the simulation routines were fully described in [13]. The finite element calculations take into account temperature-dependent material properties and phase transformations. The model generated results which were in good agreement with the experimental data generated by Hofmeister et al. [15]. Fig. 3a depicts the thermal cycles at the mid-point of each deposited layers by finite element simulations using a three-dimensional model that was developed as a subroutine in the SYSWELD software tool [13], and (b) the minimum temperature of \(C_t \) cycle immediately following the last melting cycle for each layer in comparison with the martensitic starting temperature (350 °C).

Fig. 3. (a) The thermal history of the single-walled deposit calculated at the mid-point of each deposited layers by finite element simulations using a three-dimensional model that was developed as a subroutine in the SYSWELD software tool [13], and (b) the minimum temperature of \(C_t \) cycle immediately following the last melting cycle for each layer in comparison with the martensitic starting temperature (350 °C).

The solidification consisted of the epitaxial nucleation [17] of large columnar delta-ferrite grains (Fig. 1). Fig. 4a evidences direct nucleation of \(\gamma \)-allotriomorphs at the former \(\delta \)-ferrite grain boundaries. The daughter \(\gamma \) was distinguished from the mother
δ-ferrite crystals by a discontinuous intergranular precipitation of allotriomorphic ferrite (αₐ) decorated by cementite particles. Intergranular cementite and iron-chromium rich particles were identified via energy-dispersive X-ray spectrometry (EDS) and electron back-scatter diffraction (EBSD) coupled mapping in Fig. 5. The allotriomorphic ferrite was substantiated by the isotropic thickening on both sides of the γ-boundaries [16]. As illustrated in Fig. 4a, the γ-cells exhibited a morphology that can appear equiaxed or elongated by regions. Bhadeshia and co-workers demonstrated in [18,19] that because of the cellular nature of the solidification front, the γ-allotriomorphs can be represented by space filling hexagonal prisms of length “c” and cross-sectional side length “L/2”, where c ≫ L. As such, the apparent equiaxed microstructure should correspond to more or less an axial view of these elongated hexagonal prisms. However, the authors observed that the γ-prisms were exclusively extended along the transverse direction. Therefore, they attributed this morphology to an anisotropic growth due to a thermal gradient effect. Nonetheless, the differential interference contrast (DIC) type optical images in Fig. 4a clearly evidence that the orientation distribution of γ-allotriomorph prisms varied by zones that corresponded to the former δ-ferrite grains. The growth orientation of the elongated γ-prisms depended in fact on the crystallographic orientation of the parent δ-ferrite grain.

6.2. Primary lower bainite

Fig. 6a demonstrates nucleation of thick and long phases in plate-like morphology directly on a former δ-grain boundary, which was completely free of αₐ. These side-plates radiated from the former δ-grain boundaries sporadically and exclusively grew confined in only one side of the apparent δ-grain. This growth confinement indicated a displacive controlling mechanism and not a reconstructive transformation [20]. A closer view of these side-plates in TEM and SEM evidenced a cluster of ferrite sub-units separated by an extremely fine layer of retained austenite (Fig. 7a). A TEM dark-field image of a typical cementite spot in a selected-area diffraction (SAD) pattern reveals a small extent of nano-sized carbide precipitation (Fig. 7b). The inverse pole figure grain orientation maps (Fig. 5a) show a noticeable continuous orientation change in each single alpha grain. This typically indicates a highly dislocated structure. The cluster of parallel and highly dislocated subunits enclosing nano-carbides is a structure reminiscent of lower bainite.

We adopted the terminology primary lower bainite (denoted here αₜ) on the grounds that this phase nucleated at a former δ-grain boundary. To our knowledge, a similar phase with this distinguishing nucleation feature has never been reported in the literature. Another distinguishing feature of αₜ was the large sheave width that can be reached along the prior δ-grain boundary, typically 20–30 μm. As evidenced by Fig. 6a, αₜ can extend across several γ-prisms or remain confined within a single one. When crossing several γ-prisms, the width of αₜ seemed to shrink down each time a γ-prism boundary was encountered. The growth of αₜ occurred along two orientations almost perpendicular to each other, but one was more preponderant than the other. When both orientations nucleated tail-to-tail at the same δ-boundary segment, the sheaves gave the appearance of a butterfly-like morphology (Fig. 8a) previously reported in the literature [21]. Close to the fusion boundary, αₜ tended to increasingly adopt the form of the classical bainite variant (Fig. 8b). The classical lower bainite was distinguished by carbide precipitation in and in-between the bainitic ferrite platelets.

6.3. Secondary lower bainite and retained austenite

Between two adjacent γ boundaries, secondary displacive nodules (αₛ), reacting exactly similarly to the etching agent as αₜ, grew as parallel sheaves with a width scarcely exceeding 2 μm (Fig. 9a and b). They are attributed to secondary lower bainite (αₛ). These secondary lower bainite sheaves formed at the γ-prism boundary segments that were not subjected to a noticeable αₐ precipitation. The interspacing between the sheaves was slightly smaller than a typical width of an individual sheave. In this interspace (Fig. 11b), less-marked etching-induced darkening was systematic, and suggested a mixture of retained austenite and microphases undergoing less extent of carbide precipitation.
Fig. 5. Electron back-scatter diffraction analyses of portion of layer 13 illustrating (a) a highly dislocated structure in the inverse pole figure grain orientation map, and (b) the nature of carbides in the phase map.

Fig. 6. SEM micrographs of Nital-etched samples revealing (a) primary bainite plates in layer 13 extending through several γ-prisms after direct nucleation on a single side of a former δ-grain boundary, and (b) high magnification images of a typical primary bainite in layer 13 revealing extremely fine supersaturated ferrite platelets.

Fig. 7. TEM analyses showing (a) a bright-field image of primary lower bainite revealing extremely thin ferrite plates, with a thickness in the order of 5–10 nm, separated by extremely small film of retained austenite, and (b) a dark-field image corresponding to a typical spot of cementite in the bright-field of image (c), revealing small extent of carbide precipitation.
as suggested in [22]. Figs. 6a and 7a show that the α''_b growth orientations depended upon the former delta grain orientations in which the parent γ-prisms grew. For all γ-prisms confined in a single former delta grain, the α''_b adopted the same growth orientations. This phenomenon indicates that the crystallographic texture of this parallel γ-prism packet depended on the crystallographic orientation of the parent δ-grain. This is an important finding that to our knowledge is not reported in the literature.

7. Microstructure evolution in the LENS deposit

Layers 11–13 exhibited nearly the same kind of microstructure, indicating that the consecutive deposition did not induce any changes on the three underlying layers. There is, however, a difference between layer 14 and the three underlying layers that will be discussed further. As mentioned above, the first change in the microstructure was observed at the 10th layer (Fig. 1). In this layer, the dark etching in surface needle-like shape corresponded to the formation of carbides at the exterior boundaries of α'_b and α''_b (Fig. 9b and c). These carbides were identified as cementite through TEM analyses. Some plates showed also a fine precipitation along a spinal line of the phase (Fig. 10a and b). The tempering reaction at the 10th layer affected preferentially α'_b and was sporadic for α''_b. The extent of coarsening progressively increased to invade basically all bainite sheaves and retained austenite blocks at the fourth deposited layer (Fig. 12a and b).

Within an individual sheave, the coarsening became increasingly transgranular from as sooner as layer 8. The carbides tended to coarsen as surface needle-shaped morphology aligned along the former plate boundaries. However, within the plate, increasing number of carbide particles were observed to be inclined about 60° with respect to the plate boundary (Fig. 10a). When the sheave showed a pair of spinal boundaries, the tempering led to spherical carbides (Fig. 10b). A later stage of microstructure evolution is illustrated in Fig. 11a. This stage corresponded to the coalescence of several tempered α'_b and α''_b sheaves and coarsening of α_b. At layer 7 and below, the carbide-free bainitic ferrite started coalescing with α'_b (Fig. 11b). The coalescence occurred along the direction of the carbide-free bainitic subunits. At layer 4, this phenomenon gave rise to the steady-state microstructure, which consisted of an apparent equiaxed microstructure of γ-grains even at cross-sections cut parallel to the γ-prism main axis (Fig. 12a). A thick layer of ferrite formed a honeycomb-like structure within the former δ-grain. Within each cell of this honeycomb structure, parallel surface needles of carbides aligned in a carbon-depleted ferrite matrix.

For the first and second deposited layers, Fig. 12b shows the presence of carbide-free rectangular-like zones decorated by a
network of twinning-like structures. These precipitates may correspond to martensite side-plates confined within impingement zones of different bainite sheaves [23,24]. These martensite nodules can even form between single sub-units belonging to two distinct sheaves.

8. Discussion

It was revealed on etched microstructures that the δ-grains were columnar in nature and extended along that direction to approximately 450 μm away. A typical width of the δ-ferrite grains was 100 μm, which increased to approximately 250 μm for the three first deposited layers. Bhadeshia et al. [18] carried out stereological measurements on two chemically different low-alloy steel weld deposits using three oriented sections. These three sections were transverse, longitudinal, and 45° inclined with respect to the weld center line. The authors concluded that the γ-grain structure can be represented as a honeycomb of elongated hexagonal prisms. The authors stated that the γ-grains appeared elongated in the transverse direction normal to the temperature isotherms, and equiaxed in the longitudinal section. They further stated that this morphology was consistent with a cellular solidification, in which the solid–liquid interface consisted of a honeycomb structure. However, these authors used a low-alloy steel that solidified with δ-ferrite as the primary phase, as they stated further in their paper. As such, the austenitisation rather occurred in solid state. In this study, we clearly demonstrated that the elongation of γ-prisms was not necessarily normal to the temperature isotherms as stated by Bhadeshia et al. [18]. The gamma grains were all elongated, but their geometric orientation depended on the crystallographic orientation of the parent δ-grain. All γ-prisms boundaries confined within a single δ-grain exhibited a unique orientation.

The formation of αα has substantial influence on subsequent transformations within the γ-prisms. The extent of this phase at the γ-prism boundaries is such that it can either bias or promote certain displacive phases over others [17–26]. It has been long believed that αα forms a continuous layer along the allotriomorphic ferrite boundaries. In some heavily alloy welds, however, discontinuous layer of αα was observed [27]. This motivated Bhadeshia et al. to consider growth phenomena prior to site saturation [28]. Due to the very high cooling rates associated with the laser melting, the low-alloy steel deposits showed fine αα-allotriomorphs that sporadically covered the γ-prism boundaries.

The allotriomorphic ferrite was nonetheless completely absent from the former δ-grain boundaries. This is an intriguing behavior that has not been reported in the literature. αα is rather expected since the former δ-grain boundary became basically
First, the possibility of widmanstätten ferrite (α_w) is to be excluded here. α_w is known to nucleate at the γ/α_w interface. As mentioned above, α_g interfaces did not form at the former δ-grain boundaries, where, however, brown sheaves were formed. Moreover, α_w does not etch as observed in our micrographs.

(1) First, the possibility of widmanstätten ferrite (α_w) is to be excluded here. α_w is known to nucleate at the γ/α_w interface. As mentioned above, α_g interfaces did not form at the former δ-grain boundaries, where, however, brown sheaves were formed. Moreover, α_w does not etch as observed in our micrographs.

(2) At first place, and for each layer beside layer 14, the cooling rates from approximately the Ae3 temperature during the first cycle immediately following the last melting cycle, denoted here as C_1 cycle, was in the range of 500 K/s. This cycle is of significant importance, since it corresponded to the first episode of possible irreversible solid transformations. According to the CCT diagram of AISI 4140 with 1% of Mn [30,31], this fast cooling rate positions the corresponding cooling curve outside all phase transformation domains till the martensitic domain boundary. This suggests that α' will be the predominant phase to form if any phase transformation had to occur. However, the possibility of ascribing the brown displacive plate to martensite could be undermined by a scrupulous analysis of the calculated thermal history of the SWD. First, martensitic transformation is only thermodynamically possible to occur when the temperature drops below the M_S [30]. However, as illustrated in Fig. 3, only the first and most probably the second layer saw their lower bound temperature of the C_1 cycle (T_s), dropped below M_S. If any phase transformation had to occur at that level, the resulting microstructure might unlikely have re-austenitized. In fact, the life time of each thermal spike exceeding the Ae3 temperature hardly surpassed 1 s. For all the 12 top layers, the only time the temperature dropped below the M_S all along the deposition process was when the layer monotonically cooled down to the ambient. We observed, however, at the 10th layer, a sudden onset of cementite precipitation within the brown sheaves. Layer 11 was in point of fact completely free of any tempering reaction evidence. Fig. 3 evidenced that the temperature exposure difference below M_S between layers 10 and 11 was less than 1 s. This extremely short period of exposure time cannot explain the substantial tempering difference between the two layers. As such, the brown sheaves could not be the result of a martensitic transformation.

(3) SEM images at high magnification revealed that the plate exhibited a cluster of parallel and extremely thin plates. This structure corresponded in fact to a highly dislocated α_b-sheave, where a small amount of nano-sized carbides formed within the α_b-ferrite plates. Stark et al. developed in medium carbon steel a structure consisting of a mixture of a supersaturated bainitic ferrite and retained austenite [32]. This structure closely resembles our variant of brown α_b-sheave. On one hand, bright-field TEM images of a typical plate confirmed a cluster of extremely fine and highly dislocated sub-units separated by fine films of retained austenite (Fig. 7). The relatively large dislocation density is in accordance with the classical description of bainite put forward by Bhadeshia [33]. On the other hand, dark-field images of a typical spot of cementite corroborated the precipitation of a small amount of nano-sized cementite particles as observed in the SEM images. HREM images of Fig. 13a and b demonstrate that a typical cementite particle was few nanometers thick and contains a faulted structure. Ohmori [34], Nagakura et al. [35] and Nakamura et al. [36] attributed these faults in bainitic cementite to an intergrowth of χ carbides and cementite. This intergrowth, which was then
described as microsyntactic intergrowth led to a nonstoichiometric overall composition expressed by $\text{Fe}_{2n+1}C_n$, where $n \geq 3$. The intergrowth of χ carbides and cementite supported the great similarities between tempered α' and α_b as discussed by Bhadeshia in [37]. The limited extent of cementite precipitation in α_b can be rationalized through the tempering theory put forward by Kalish and Cohen [38]. These authors showed that carbon atoms are energetically promoted to remain segregated at dislocations when compared with their presence in a metastable carbide lattice such as in ε-carbide. If the dislocation density is sufficiently high, the carbon will not be available for carbide precipitation. Bhadeshia showed that this carbide precipitation retardation was exacerbated in high-silicon medium carbon steel [39,40]. This effect is to be highly expected in our SWD which was based on high-silicon medium carbon steel having in fact a higher concentration of silicon. Similarly, Kang et al. [41] observed via in situ hot-stage TEM that lower bainitic ferrite remained supersaturated with carbon some noticeable time after the completion of the ferrite growth. This could be augmented by the high cooling rates associated with the laser deposition. The most intriguing phenomenon about the formation of α_b is the direct ramification of the aforementioned argument number 2. The α_b observed in layers 3–13 must have formed in fact during the C_1 cycle. This cycle atypically remained above M_S and showed a cooling rate in the range of 500 K/s (Fig. 3b). As such, when plotted in the CCT diagram, no phase transformation is predicted to occur. As such, our previous argument implies a deficiency of current CCT diagrams. To our knowledge, no available data on phase transformation were reported for a thermal cycle similar to the C_1 cycle.

The only noticeable difference in terms of thermal history between layers 10 and 11 is an additional cycle experienced by layer 10. This cycle has a peak temperature of approximately 1050 °C and time amplitude of 0.75 s. In an effort to appreciate the difference in terms of time–temperature exposures between layers 10 and 11, we reported in Fig. 14 the average temperature experienced by each of these layers for a period of time of approximately 6 s after solidification. The 6 s corresponded factually to the life time of the cycling period for layer 10 starting from the C_1 cycle and ending up at the beginning of the monotonic cooling to the ambient. The average temperature for this period of time was approximately 1082 °C for layer 10 and 930 °C for layer 11. Knowing the thermally activated nature of tempering reactions, a temperature difference of 150 K could more rationally make the difference in the observed mismatch amplitude of carbide precipitation observed between these two layers. This finding substantiates the formation of bainite during the C_1 cycle and not during cooling down to the ambient.

It is noteworthy that the drop of hardness also at the first layer corroborates the above argument for α_b identification. The first layer cooled down directly monotonically to room temperature. As such, the degree of supersaturation would be lower than in the underlying layers. The solid solution induced hardening will be then less noticeable.

The carbide precipitation at the plate boundaries occurring at the initial stages of tempering corroborates bainite and not
martensite as suggested in Ref. [42]. However, the spinal precipitation suggests the presence of a martensite mid-rib, given the fact that carbides coarsen much faster in a martensitic mid-rib. The mid-rib formation was observed to occur isothermally at temperatures slightly above M_S [29]. However, the minimal temperature during the C_t cycle remained noticeably above M_S. This phenomenon suggests that the upper bound temperature of the swing back regime, T_r, reported in the literature [43] may depend upon the cooling rates. Okamoto and Oka [44] reported that the difference between T_r and M_S diminishes as carbon content of the steel decreases. This effect is consistent with the high cooling rates associated with the LENS process. Under layer 10, carbide precipitation became progressively transgranular and then affected the neighboring regions. This progressive tempering was concurrently reflected in the microhardness. First a sudden drop of hardness occurred at the 10th layer corroborating the sudden onset of substantial intergranular tempering. The hardness kept falling at the same rates in the underlying layers till a plateau was reached at the top of layer 6. This monotonic drop reflects the monotonic increase in tempering observed for bainite, retained austenite and microphases.

A closer SEM view of a tempered bainitic plate shows that carbide particles had a surface needle-like shape with their longest axes inclined at about 60° to the plate boundary. This single crystallographic variant adopted by carbides in a transformed sheave is characteristic of a bainitic matrix and not a martensitic one [45,46]. In martensite, carbides rather exhibit a single crystallographic variant adopted by carbides in a transgranular carbides in the observed variations of microhardness through all deposited layers.

In the four top layers, the austenite allotriomorphs intergranularly transformed to discontinuous and shallow allotriomorphic ferrite. Partial transformation occurred in the austenite prisms into several forms of lower bainite plates, namely a supersaturated bainitic ferrite plate. Retained austenite and micro-phases appeared as intervening colonies between the bainite plates. A lower bainite sheave with a midrib was also observed, and classical lower bainite sheaves were predominant at the fusion line regions. Larger primary lower bainite sheaves were observed to directly nucleate at prior delta-ferrite grain boundaries. At the 10th deposited layer, a noticeable carbide precipitation including metastable forms of cementite took place at the bainite sheave boundaries and midrib regions, and became increasingly more transgranular toward the underlying layers. The tempering reactions increasingly affected the retained austenite and microphases regions. The carbon depletion and carbide precipitation processes increasingly depleted the bainite ferrite plates. The resulting carbon-free bainitic ferrite coalesced with the allotriomorphic ferrite. An austenite prism was as such subdivided into many apparent equiaxed grains in which carbide surface needles aligned with the former sub-unit boundaries. For the first two deposited layers, martensitic side-plates were more predominant within the austenite allotriomorphs, since the minimum temperature after the last melting cycle dropped below the swing back and martensitic starting temperatures. This complicated microstructural variation during deposition rationalized the observed variations of microhardness through all deposited layers.

Acknowledgments

The authors would like to thank the interesting conversations and advice from Prof. John T. Berry on Steel microstructures. The authors are also grateful to Mr. Benton Gady, the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University and the Optomec group for the work performed in this study.

References

1. LENS is a trademark of Sandia National Laboratories and the United State Department of Energy, Albuquerque, NM.