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Introduction

What is Parallel Processing?

What is Parallel Processing?

Definition (Parallelization)

Analyzing large (or heavy) sequential programs for parallelism and
restructuring them to run efficiently on parallel and/or distributed
systems.

The need for parallel processing arises in various scientific fields:
I computational fluid dynamics – all sorts of fluids
I molecular dynamics and astrodynamics – e.g. nuclear fusion

simulations
I environmental modeling – atmosphere, land use, acid rain
I integrated complex simulations – e.g. weather forecasting, climate

changes
I health and biological modeling – empirical models, DNA and

protein analysis
I structural dynamics – civil and automotive
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Introduction

What is Parallel Processing?

The Process of Parallelization

Consists of three steps:
Step 1 Task decomposition: decomposing the applications into tasks.
Step 2 Dependence analysis: analyzing the dependencies between

the decomposed tasks
Step 3 Task scheduling: scheduling these tasks onto the target parallel

or distributed system.

Definition (Task)

Generally, a task can range from a simple statement to basic blocks,
loops or sequences of these. In this thesis, a task refers to one
iteration of a nested DO (or FOR) loop.
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Introduction

What is Parallel Processing?

The Process of Parallelization

Step 1: Task decomposition is influenced by the following factors:
Concurrency - applications can be embarrassingly parallel (all tasks

can be executed concurrently) or embarrassingly serial
(no two tasks can be executed concurrently).

Granularity - expresses the computational size of tasks after the
decomposition. There are three types of granularity:
fine, medium and coarse.

Application type - consisting of distinct steps or one iterative block of
(regular or not) computations

Target system - shared-memory architectures usually support a fine
grain decomposition (cheap communication);
distributed-memory architecture usually require a
coarse gain decomposition (expensive communication).
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Introduction

What is Parallel Processing?

The Process of Parallelization

Step 2: Dependence analysis - there are two types of dependencies:
Data dependencies created by data transfer between tasks

<herein> flow (true) dependencies - one tasks writes and another reads a
variable (create a precedence order for the execution of tasks)

I anti-dependencies - one task reads and another writes a variable
I output dependencies - both tasks write on that variable

Control dependencies describe the control structure of a program.
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Introduction

What is Parallel Processing?

The Process of Parallelization

Step 3: Task Scheduling consists of:
Temporal assignment - or time schedule, refers to assigning a start

time to each task
Spatial assignment - or mapping, refers to allocating the tasks to

processors, which will execute them according to the
time schedule.
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Introduction

Motivation

Motivation

Why parallelize nested loops?
Because they constitute the most computational intensive part of
a heavy application ⇒ the most performance gain.

How does task scheduling relates to loop scheduling?
Loop scheduling is a particular case of task scheduling, in which
each loop iteration is considered to be a task. Hence,
DOACROSS loop scheduling refers to the problem of scheduling
dependent tasks.

How easy/difficult is it to schedule tasks?
Task scheduling is an NP-complete problem. Many heuristics
have been proposed. Good scheduling heuristic (static and/or
dynamic) should be based on realistic assumptions
(communication cost, number of processors, heterogeneity).
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Introduction

Problem Definition and Solutions

Problem Definition

Definition (Task Scheduling)

Given a set of tasks of a parallel computation, determine how the
tasks can be assigned (both in space and time) to processing
resources (scheduled on them) to satisfy certain optimality criteria.

Challenges
I minimizing execution time
I minimizing inter-processor communication
I load balancing tasks
I handling and/or recovering from failures
I meeting deadlines
I a combination of these
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Introduction

Problem Definition and Solutions

Addressing the Problem of Task Scheduling

Facts:
1. Task scheduling onto a set of homogeneous resources,

considering interprocessor communication, and aiming to
minimize the total execution time is NP-complete.

2. Things are worse / for heterogeneous systems.
Problems to address:

Heterogeneity of processors, of communication links, irregularity
of interconnection networks, non-dedicated platforms

Solutions:
I Optimal - there are no polynomial time optimal solutions /
I Heuristic methods - numerous (static/dynamic) scheduling

heuristics have been proposed
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Introduction

What Has Been Done So Far?

Selected Bibliography – Static DOACROSS Loops
Fine grained heuristics aiming for optimal time scheduling

A. Consider unit execution time for each iteration and zero
communication at each step (UET model):

1. Hyperplane method [Lamport, 1974]
2. [Moldovan and Fortes, 1986] applied the hyperplane method to

find a linear optimal execution schedule using diophantine
equations and [Shang and Fortes, 1991] using linear
programming in subspaces

3. [Darte et al, 1991] proved that the hyperplane method is nearly
optimal

4. [Koziris et al, 1996] yields the optimal time using the minimum
number of processors
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Introduction

What Has Been Done So Far?

Selected Bibliography – Static DOACROSS Loops
Fine grained heuristics aiming for optimal time scheduling

B. Consider unit execution time and unit communication time at each
step (UET-UCT model):

1. Polynomial time algorithm for scheduling in- and out-forrests
[Varvarigou et al, 1996]

2. Polynomial time solutions for special cases of UET-UCT DAGs
were proposed by [Jung et al, 1989], [Chretienne, 1992] and
[Andronikos et al, 1997]

3. Find the optimal hypersurface for UET/UET-UCT loops
[Papakonstantinou et al, 2001]
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Introduction

What Has Been Done So Far?

Selected Bibliography – Static DOACROSS Loops
Fine grained heuristics aiming for to minimize the communication costs

C. Consider arbitrary execution and communication costs

1. Minimize the communication cost by grouping neighboring
iterations into chains [King et al, 1991], [Sheu and Chen, 1995],
[Tsanakas et al, 2000], [Drositis et al, 2000]

2. [Papadimitriou and Yannakakis, 1988] proposed a heuristic that
guaranteed the worst performance twice the optimum makespan,
for a DAG with arbitrary computation and communication times
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Introduction

What Has Been Done So Far?

Selected Bibliography – Static DOACROSS Loops
Coarse grained heuristics with arbitrary computation and communication times

1. Most common loop transformation is tiling (or loop blocking)
proposed by [Irigoin and Triolet, 1988]

2. [Wolf and Lam, 1991] minimize the communication between tiles
3. [Ramanujam and Sadayappan, 1992], [Boulet et al, 1994] and

[Xue, 1997] study the problem of finding the optimal tile
shape/size

4. [Goumas et al, 2006] study the problem of efficient code
generation for non-rectangular tiling
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Introduction

What is Missing?

What is Missing?

Methods to address:
I Maximization of resource utilization
I Minimization of the inter-processor communication cost
I Dynamic scheduling and load balancing
I Fault tolerance and reliability
I Scalability

for DOACROSS loops
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Introduction

Contributions of This Dissertation

How does this dissertation contribute to the field?
I Presents novel static methods for fine and coarse grained

parallelization
I A dynamic scheduling algorithm for a special class of

DOACROSS loops on shared and distributed memory systems
[Ciorba et al, 2003], [Andronikos et al, 2004].

hereafter A dynamic multi-phase scheduling that extends several dynamic
scheduling algorithms initially devised for DOALL loops and
applied them to DOACROSS loops in heterogeneous systems
[Ciorba et al, 2006], [Papakonstantinou et al, 2006].

hereafter Two general mechanisms for enhancing the performance of
self-scheduling algorithms for DOACROSS loops on
heterogeneous systems through synchronization and weighting
[Ciorba et al, 2008].

I A theoretical model that determines the optimal synchronization
frequency for the pipelined execution of DOACROSS loops on
heterogeneous systems [Ciorba et al, 2007a].
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Some Background on Nested Loops

Types of Nested Loops

DOALL and DOACROSS Nested Loops

There are two types of nested loops:
DOALL - the iterations are independent and can be

executed in any order
DOACROSS - there exist dependencies between the iterations

which impose a certain execution order

Recall that nested loops constitute most computationally intensive
part of a program

Recall that each iteration of a nested loop is considered to be a
task
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Some Background on Nested Loops

Graphical Representation Models

Graphical Representations of DOACROSS Loops

Applications with DOACROSS loops are represented by:

Directed Acyclic Graphs
(DAGs) - the numbered
vertices represent tasks
and the edges (or arcs)
represent the
dependencies among the
tasks

Figure: DAG representation of tasks and
dependencies

28



Algorithms Design for the Parallelization of Nested Loops

Some Background on Nested Loops

Graphical Representation Models

Graphical Representations of DOACROSS Loops

or in our case by:

Cartesian Spaces - the
points have coordinates
and represent tasks and
the directed vectors
represent the
dependencies among the
tasks (e.g. precedence)

Figure: Cartesian representation of tasks
and dependencies
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Some Background on Nested Loops
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Algorithmic Model - DOACROSS Loops

for (i1 = l1; i1 <= u1; i1 ++)
for (i2 = l2; i2 <= u2; i2 ++)
. . .

for (in = ln; in <= un; in ++)
S1(I);
. . .
Sk (I);

endfor
. . .
endfor

endfor

I J = {I ∈ Nn|lr ≤ ir ≤ ur ,1 ≤ r ≤ n}
- the Cartesian n-dimensional
index space of a loop of depth n

I |J|= ∏
n
i=1(ui − li +1) - the

cardinality of J
I Si(I) - general program

statements of the loop body
I DS = {d̃1, . . . , d̃p}, p ≥ n - the set

of dependence vectors
I By definition d̃j > 0, where

0 = (0, . . . ,0) and > is the
lexicographic ordering

I L = (l1, . . . , ln) - the initial point of J
I U = (u1, . . . ,un) - the terminal

point of J
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Dynamic Scheduling Methods for DOACROSS Loops

What is Dynamic Scheduling?

Definition (Dynamic Scheduling)

In dynamic scheduling, only a few assumptions about the parallel
program or the parallel system can be made before execution, and
thus, scheduling decisions have to be made on-the-fly.

What is the goal?
To minimize the program completion time and minimize the
scheduling overhead which constitutes a significant portion of the
cost paid for running the dynamic scheduler.

Why do we need dynamic scheduling?
Dynamic scheduling is necessary when static scheduling may result
in a highly imbalanced distribution of work among processors or
when the inter-tasks dependencies are dynamic (e.g. due to
changing system’s behavior or changing application’s behavior), thus
precluding a static scheduling approach.
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Dynamic Scheduling Methods for DOACROSS Loops

Dynamic Multi-Phase Scheduling

Dynamic Multi-Phase Scheduling

Motivation:
I Existing dynamic algorithms can not cope with dependencies,

because they lack inter-slave communication
I If dynamic algorithms are applied to DOACROSS loops, in their

original form, they yield a serial/invalid execution
I Static algorithms are not always efficient on heterogeneous

systems

Contributions:
Extended master-slave model with inter-slave communication
A scheme that brings dynamic DOALL (coarse grained) loops
scheduling schemes into the field of scheduling DOACROSS
loops
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Dynamic Scheduling Methods for DOACROSS Loops

Dynamic Multi-Phase Scheduling

Partitioning the Index Space with Self-Scheduling
Algorithms

Figure: Index space partitioned
with self-scheduling algorithms

I uc - scheduling dimension
I us - synchronization dimension
I PE - processing element
I P1, . . . ,Pm - slave processors; P0 - master

processor
I N - the number of scheduling steps (the

total number of chunks)
I Ci - chunk size at the i-th scheduling step
I Vi - the projection of Ci along scheduling

dimension uc

I Ci = Vi ×
∏

n
j=1 uj
uc

I VPk - virtual computing power of slave Pk (delivered speed)
I qk - number of processes in the run-queue of slave Pk
I Ak = bVPk

qk
c - available computing power of slave Pk

I A = ∑
i=1
m Ak - total available computing power of the system
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Dynamic Scheduling Methods for DOACROSS Loops

Dynamic Multi-Phase Scheduling

Existing Self-Scheduling Algorithms for DOALL loops
I PSS [Polychronopoulos and Kuck, 1987] - Pure Self-Scheduling,

Ci = 1
, good load balance / excessive scheduling overhead

I CSS [Kruskal and Weiss, 1985] - Chunk Self-Scheduling, Ci =
constant > 1
/ large chunks ⇒ load imbalance or / small chunks ⇒
excessive scheduling overhead ∴ tradeoff required

I TSS [Tzen and Ni, 1993] - Trapezoid Self-Scheduling,
Ci = Ci−1−D, where D decrement, the first chunk is F = |J|

2m and
the last chunk is L = 1
, reduces the need for synchronization and maintains
reasonable load balance

I DTSS [Chronopoulos et al, 2001] - Distributed TSS,
Ci = Ak × (F −D× (Sk−1 +(Ak −1)/2)), where:
Sk−1 = A1 + . . .+Ak−1, the first chunk is F = |J|

2A and the last
chunk is L = 1
, reduces synchronization, better load balance37
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Dynamic Multi-Phase Scheduling

Existing Self-Scheduling Algorithms for DOALL loops

Table: Sample chunk sizes given for
|J|= 5000× 10000 and m = 10

Algorithm Chunk sizes
PSS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . . 1
CSS 300 300 300 300 300 300 300 300 300

300 300 300 300 300 300 300 200
TSS 277 270 263 256 249 242 235 228 221

(D=7) 214 207 200 193 186 179 172 165 158
151 144 137 130 123 116 109 102 73

DTSS 392 253 368 237 344 221 108 211 103
(dedicated) 300 192 276 176 176 252 160 77 149

72 207 130 183 114 159 98 46 87 41 44
DTSS 263 383 369 355 229 112 219 107 209
(non- 203 293 279 265 169 33 96 46 89 86

dedicated) 83 80 77 74 24 69 66 31 59 56
53 50 47 44 20 39 20 33 30 27
24 21 20 20 20 20 20 20 20 20 8

I |J|= 5000×10000
points

I m = 10 slaves
/ CSS and TSS give the

same chunk sizes
both in dedicated and
non-dedicated
systems, respectively

, DTSS adjusts the
chunk sizes to match
the different Ak of
slaves (m/2 were
loaded)
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Dynamic Multi-Phase Scheduling

Multi-Phase Scheduling
Self-Scheduling with Synchronization Points

I Chunks are formed
along the scheduling
dimension, uc

I SPs are inserted
along the
synchronization
dimension, us

Phase 1 Apply self-scheduling algorithms to the scheduling dimension
Phase 2 Insert synchronization points along the synchronization

dimension
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Dynamic Scheduling Methods for DOACROSS Loops

Dynamic Multi-Phase Scheduling

The Inter-slave Communication Scheme

I Ci−1 is assigned to Pk−1, Ci assigned to Pk and Ci+1 to Pk+1
I When Pk reaches SPj+1, it sends to Pk+1 only the data Pk+1

requires (i.e., those iterations imposed by the existing
dependence vectors)

I Next, Pk receives from Pk−1 the data required for the current
computation

Obs. Slaves do not reach a SP at the same time, which leads to a
pipelined execution
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Dynamic Multi-Phase Scheduling

Dynamic Multi-Phase Scheduling DMPS(A )
INPUT

Master(a) An n-dimensional DOACROSS loop
(b) The choice of the scheduling algorithm [CSS, TSS or DTSS]
(c) If CSS is chosen, then constant chunk size Ci
(d) The synchronization interval h
(e) The number of slaves m; in case of DTSS, the virtual power Vk

of every slave
Master:

Init (M.a) Register slaves; in case of DTSS, slaves report their Ak
(M.b) Calculate F , L, N, D for TSS and DTSS; for CSS use given Ci

While there are unassigned chunks do:
(M.1) If a request arrives, put it in the queue
(M.2) Pick a request from the queue, and compute the next chunk size

using CSS, TSS or DTSS
(M.3) Update the current and previous slave ids
(M.4) Send the id of the current slave to the previous one
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Dynamic Multi-Phase Scheduling

Dynamic Multi-Phase Scheduling DMPS(A )

Slave Pk :
Init (S.a) Register with the master; in case of DTSS, report Ak

(S.b) Compute M according to the given h

(S.1) Send request to the master
(S.2) Wait for reply; if received chunk from master, go to step S.3, else

go to OUTPUT
(S.3) While the next SP is not reached, compute chunk i
(S.4) If id of the send-to slave is known, go to step S.5, else go to step

S.6.
(S.5) Send computed data to send-to slave
(S.6) Receive data from the receive-from slave and go to step S.3

OUTPUT

Master If there are no more chunks to be assigned, terminate
Slave Pk If no more tasks come from master, terminate
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Dynamic Multi-Phase Scheduling

Dynamic Multi-Phase Scheduling DMPS(A )

Advantages:
I Can take as input any self-scheduling algorithm, without any

modifications
I Phase 2 is independent of Phase 1
I Phase 1 deals with the heterogeneity & load variation in the

system
I Phase 2 deals with minimizing the inter-slave communication

cost
I Suitable for any type of heterogeneous systems
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Dynamic Scheduling Methods for DOACROSS Loops

Dynamic Multi-Phase Scheduling

Results
Experimental Setup

I The algorithms are implemented in C and C++
I MPI is used for master-slave and inter-slave communication
I The heterogeneous system consists of 10 machines:

I 4 zealots: Intel Pentiums III, 1266 MHz with 1GB RAM, assumed to
have VPk = 1.5 (one of them is the master)

I 6 kids: Intel Pentiums III, 500 MHz with 512MB RAM, assumed to
have VPk = 0.5

I Interconnection network is Fast Ethernet, at 100Mbit/sec
I Dedicated system: all machines are dedicated to running the

program and no other loads are interposed during the execution
I Non-dedicated system: at the beginning of program’s execution,

a resource expensive process is started on some of the slaves,
halving their Ak
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Dynamic Scheduling Methods for DOACROSS Loops

Dynamic Multi-Phase Scheduling

Results
Experimental Setup

I Machinefile: zealot1(master),zealot2, kid1,zealot3, kid2,zealot4,
kid3, kid4, kid5, kid6

I Three series of experiments for both dedicated & non-dedicated
systems, for m = 3,4,5,6,7,8,9 slaves:

1) DMPS(CSS)
2) DMPS(TSS)
3) DMPS(DTSS)

I Real-life application: Heat diffusion equation (similar results for
Floyd-Steinberg - in thesis)

I Speedup is computed with: Sp =
min{TP1

,TP2
,...,TPm }

TPAR
where

TPk
- serial execution time on slave Pk , 1 ≤ k ≤m, and

TPAR - parallel execution time (on m slaves)

Obs. In the plotting of Sp, VP is used instead of m on the x-axis
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Dynamic Multi-Phase Scheduling

Results
Heat Diffusion Equation - Dedicated Heterogeneous System
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Dynamic Scheduling Methods for DOACROSS Loops

Dynamic Multi-Phase Scheduling

Results
Heat Diffusion Equation - Non-dedicated Heterogeneous System
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Dynamic Multi-Phase Scheduling

Interpretation of Results
I Dedicated system:

I All algorithms perform better on a dedicated system, than on a
non-dedicated one , expected!

I DMPS(TSS) slightly outperforms DMPS(CSS) for parallel loops,
because it provides better load balancing by reducing the chunk
size

I DMPS(DTSS) outperforms both other algorithms because it
explicitly accounts for system’s heterogeneity , expected!

I Non-dedicated system:
I DMPS(DTSS) stands out even more, since the other algorithms

cannot handle extra load variations , expected!
I The speedup for DMPS(DTSS) increases in all cases , expected!

I h must be chosen so as to maintain the comm/comp ratio << 1,
for every test case

I h is determined empirically or selected by the user
I However, small variations of the value of h, do not significantly

affect the overall performance
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Dynamic Multi-Phase Scheduling

Conclusions

I DOACROSS loops can now be dynamically scheduled on
heterogeneous dedicated & non-dedicated systems

I Dynamic self-scheduling algorithms are also efficient for
DOACROSS loops
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What’s missing?

I A generic add-on to other self-scheduling algorithms, such that
they can all handle DOACROSS loops and account for system’s
heterogeneity without any modifications

I A model for predicting the optimal synchronization interval h and
minimizing the communication
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Enhancing Self-Scheduling Algorithms via
Synchronization and Weighting

Motivation:
Existing self-scheduling algorithms need something to enable
them to handle DOACROSS loops and something else to enable
them to be efficient on heterogeneous systems

Contributions:
A synchronization mechanism (the ‘something’)

A weighting mechanism (the ‘something else’)
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The Synchronization Mechanism S

I Enables self-scheduling algorithms to handle DOACROSS loops
I Provides:

I The synchronization interval h along us: h = Us
M

I A framework for inter-slave communication (presented earlier)

Observations:
1 S is completely independent of the self-scheduling algorithm

and does not enhance the load balancing capability of the
algorithm

2 The synchronization overhead is compensated by the increase of
parallelism ⇒ overall performance improvement
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The Synchronization Mechanism S

S adds 3 components to the
original algorithm A :

1 transaction accounting
(master)

2 receive part (slave)
3 transmit part (slave)

h is determined empirically or
selected by the user and must
be a trade-off between
synchronization overhead and
parallelism

54



Algorithms Design for the Parallelization of Nested Loops

Dynamic Scheduling Methods for DOACROSS Loops

Synchronization and Weighting Mechanisms

The Weighting Mechanism W

I Enables self-scheduling algorithms to handle load variations and
system heterogeneity

I Adjusts the amount of work (chunk size) given by the original
algorithm A according to the current load of a processor and its
nominal computational power

Observations:
1 W is completely independent of the self-scheduling algorithm

and can be used alone on DOALL loops
2 The weighting overhead is insignificant (a ? and a / operation)
3 On a dedicated homogeneous system, W does not improve the

performance and could be omitted
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The Weighting Mechanism W

W adds 2 components to the
original algorithm A :

1 chunk weighting (master)
2 run-queue monitoring

(slave)

W calculates the chunk Ĉi
assigned to Pk as follows:
Ĉi = Ci × VPk

qk
, where Ci is the

chunk size given by the original
self-scheduling algorithm A .
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Two More Existing Self-Scheduling Algorithms
For DOALL Loops

FSS [Hummel et al, 1992] – Factoring Self-Scheduling, assigns
batches of equal chunks. Ci = d Ri

α∗m e and Ri+1 = Ri − (m×Ci),
where the parameter α is computed (by a probability distribution)
or is sub-optimally chosen α = 2.
, few chunks adaptations / difficult to determine the optimal
parameter

GSS [Polychronopoulos and Kuck, 1987] – Guided Self-Scheduling,
Ci = Ri/m, where Ri is the number of remaining iterations
, large chunks first ⇒ reduced communication , small chunks
last ⇒ balance the load among processors
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Evaluation of W

Table: Chunk sizes given by the original and weighted algorithms for the
Mandelbrot set (irr. DOALL), index space size |J|= 10000 ×10000 points
and m = 4, VP1 = VP3 = 1, VP2 = VP4 = 0.8 and P2 and P4 were loaded

Chunk sizes with A Chunk sizes with W -A Par. time Par. time
A with respect to the with respect to the for A for W -A

processors’ request order processors’ request order
1250(P1) 1250(P2) 1250(P3) 1250(P1) 1250(P3) 500(P4)

CSS 1250(P4) 1250(P3) 1250(P1) 500(P2) 1250(P3) 500(P2) 120.775s 66.077s
1250(P3) 1250(P1) 500(P4) 1250(P1) 1250(P3)

500(P4) 1250(P1)
1250(P1) 1250(P3) 1250(P2) 1250(P1) 1250(P3) 500(P2)
1250(P4) 625(P3) 625(P3) 500(P4) 812(P3) 324(P2)
625(P1) 625(P3) 390(P1) 324(P4) 324(P1) 324(P3)

FSS 390(P1) 390(P3) 390(P1) 812(P3) 630(P1) 630(P1) 120.849s 56.461s
244(P3) 244(P4) 244(P1) 630(P4) 252(P3) 176(P1)
208(P3) 441(P4) 441(P2) 176(P3)

123(P1) 308(P2) 308(P4)
113(P1)

Slower slaves request work only once (they need more time to
compute a chunk) and W compensates for this
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Evaluation of W

Table: Chunk sizes given by the original and weighted algorithms for the
Mandelbrot set (irr. DOALL), index space size |J|= 10000 ×10000 points
and m = 4, VP1 = VP3 = 1, VP2 = VP4 = 0.8 and P2 and P4 were loaded

Chunk sizes with A Chunk sizes with W -A Par. time Par. time
A with respect to the with respect to the for A for W -A

processors’ request order processors’ request order
2500(P1) 1875(P2) 1406(P3) 2500(P1) 1875(P3) 562(P2)
1054(P4) 791(P3) 593(P3) 506(P4) 455(P4) 410(P2)
445(P3) 334(P1) 250(P3) 923(P3) 692(P3) 519(P1)

GSS 188(P1) 141(P3) 105(P1) 155(P4) 140(P2) 315(P3) 145.943s 58.391s
80(P3) 80(P1) 80(P3) 78(P1) 94(P4) 213(P1) 160(P3)

120(P1) 90(P3) 80(P2)
80(P1) 80(P3) 31(P1)

1250(P1) 1172(P3) 1094(P2) 1250(P1) 1172(P3) 446(P2)
1016(P4) 938(P3) 860(P1) 433(P4) 1027(P3) 388(P4)

TSS 782(P3) 704(P1) 626(P3) 375(P2) 882(P1) 804(P3) 89.189s 63.974s
548(P4) 470(P2) 392(P1) 299(P4) 286(P2) 660(P1)
148(P3) 582(P3) 504(P1) 179(P4)

392(P3) 134(P2) 187(P1)

The performance gain of W -A over A is quite significant
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The Combined S W Mechanisms

I S W enable self-scheduling algorithms to handle DOACROSS
loops on heterogeneous systems with load variations

I Synchronization points are introduced and chunks are weighted
Observations:

1 Since S does not provide any load balancing, it is most
advantageous to use W to achieve it

2 The synchronization & weighting overheads are compensated by
the performance gain
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The Combined S W Mechanisms

S W add 5 (3+2) components
to the original algorithm A :

1 chunk weighting (master)
2 transaction accounting

(master)
3 run-queue monitoring

(slave)
4 receive part (slave)
5 transmit part (slave)
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Evaluation of the S W Mechanisms

Table: Chunk sizes given by the synchronized–only and
synchronized–weighted algorithms for the Floyd-Steinberg DOACROSS loop,
index space size |J|= 10000 ×10000 points and m = 4, VP1 = VP3 = 1,
VP2 = VP4 = 0.8 and P2 and P4 were loaded

Chunk sizes with S -A Chunk sizes with S W -A Par. time Par. time
A with respect to the with respect to the for S -A for S W -A

processors’ request order processors’ request order
1250(P1) 1250(P3) 1250(P2) 1250(P1) 1250(P3) 500(P2)

CSS 1250(P4) 1250(P1) 1250(P3) 500(P4) 1250(P1) 1250(P3) 27.335s 16.582s
1250(P2) 1250(P4) 500(P2) 500(P4) 1250(P1)

1250(P3) 500(P2)
1250(P1) 1250(P3) 1250(P2) 1250(P1) 1250(P3) 500(P2)
1250(P4) 625(P1) 625(P3) 500(P4) 812(P1) 812(P3)
625(P2) 625(P4) 390(P1) 324(P2) 324(P4) 630(P1)

FSS 390(P3) 390(P2) 390(P4) 630(P3) 252(P2) 252(P4) 27.667s 16.556s
244(P1) 244(P3) 244(P2) 488(P1) 488(P3) 195(P2)
208(P4) 195(P4) 378(P1) 378(P3)

151(P2) 151(P4) 40(P1)

The slaves’ request order is the same due to existing
dependencies and synchronizations
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Evaluation of the S W Mechanisms

Table: Chunk sizes given by the synchronized–only and
synchronized–weighted algorithms for the Floyd-Steinberg DOACROSS loop,
index space size |J|= 10000 ×10000 points and m = 4

Chunk sizes with S -A Chunk sizes with S W -A Par. time Par. time
A with respect to the with respect to the for S -A for S W -A

processors’ request order processors’ request order
2500(P1) 1875(P3) 1406(P2) 2500(P1) 1875(P3) 562(P2)
1054(P4) 791(P1) 593(P3) 506(P4) 1139(P1) 854(P3)
445(P2) 334(P4) 250(P1) 256(P2) 230(P4) 519(P1)

GSS 188(P3) 141(P2) 105(P4) 389(P3) 116(P2) 105(P4) 28.526s 18.569s
80(P1) 80(P3) 80(P2) 237(P1) 178(P3) 80(P2)
78(P4) 80(P4) 108(P1) 81(P3)

80(P2) 80(P4) 25(P1)
1250(P1) 1172(P2) 1094(P3) 509(P2) 1217(P1) 464(P4)
1016(P4) 938(P1) 860(P2) 1105(P3) 420(P2) 995(P1)
782(P3) 704(P4) 626(P1) 376(P4) 885(P3) 332(P2)

TSS 548(P2) 470(P3) 392(P4) 775(P1) 288(P4) 665(P3) 25.587s 14.309s
148(P1) 244(P2) 555(P1) 200(P4)

445(P3) 156(P2) 335(P1)
34(P4)

The performance gain of S -A over S W -A is quite significant
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Results
Experimental Setup

I The algorithms are implemented in C and C++
I MPI is used for master-slave and inter-slave communication
I The heterogeneous system consists of 13 nodes (1 master and

12 slaves):
I 7 twins: Intel Pentiums III, 800 MHz with 256MB RAM, assumed to

have VPk = 1 (one of them is the master)
I 6 kids: Intel Pentiums III, 500 MHz with 512MB RAM , assumed to

have VPk = 0.8
I Interconnection network is Fast Ethernet, at 100Mbit/sec
I Non-dedicated system: at the beginning of program’s execution,

a resource expensive process is started on some of the slaves,
halving their Ak

I Machinefile: twin1 (master),twin2, kid1, twin3, kid2, twin4, kid3,
twin5, kid4, twin6, kid5, twin7, kid6

I In all cases, the kids were overloaded
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Results
Experimental Setup

I Three series of experiments on the non-dedicated system, for
m = 4,6,8,10,12 slaves:

1) for the synchronization mechanism S
2) for the weighting mechanism W
3) for the combined mechanisms S W

I Two real-life applications: Floyd-Steinberg (regular DOACROSS),
and Mandelbrot (irregular DOALL)
(Similar results for Hydro – in thesis)

I Reported results are averages of 10 runs for each case
I The chunk size for CSS was: Ci = Uc

2×m
I The number of synchronization points was: M = 3×m
I Lower and upper thresholds for the chunk sizes (table below)
I 3 problem sizes - some analyzed here, some in thesis

Problem size small medium large
Floyd-Steinberg 5000×15000 10000×15000 15000×15000

upper/lower threshold 500/10 750/10 1000/10
Mandelbrot 7500×10000 10000×10000 12500×12500
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Experiment 1
Speedups of the synchronized–only algorithms for Floyd-Steinberg

Test case VP S -CSS S -FSS S -GSS S -TSS S W -TSS
3.6 1.45 1.57 1.59 1.63 2.86
5.4 2.76 2.35 2.33 2.47 4.35

Floyd-Steinberg 7.2 2.81 2.92 3.09 3.10 5.39
9 3.41 3.50 3.49 3.70 6.27

10.8 3.95 4.07 4.27 4.34 7.09

I The serial time was measured on the fastest slave type, i.e., twin
I S -CSS, S -FSS, S -GSS and S -TSS give significant speedups
I S W -TSS gives an even greater speedup over all

synchronized–only algorithms , expected!
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Experiment 1
Parallel times of the synchronized–only algorithms for Floyd-Steinberg

Serial times increase faster than parallel times as the problem size
increases ⇒ larger speedups for larger problems , anticipated!
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Experiment 2
Gain of the weighted over non-weighted algorithms for Mandelbrot

Test Problem VP CSS vs GSS vs FSS vs TSS vs
case size (large) W -CSS W -GSS W -FSS W -TSS

3.6 27% 50% 18% 33%
5.4 38% 54% 37% 34%

Mandelbrot 15000×15000 7.2 45% 57% 53% 31%
9 49% 54% 52% 35%

10.8 46% 52% 54% 33%
Confidence Overall 40 ± 6 % 53 ± 6 % 42 ± 8 % 33 ± 4 %

interval (95%) 42 ± 3 %

I Gain is computed as TA −TW −A
TA

I GSS has the best overall performance gain
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Experiment 2
Parallel times of the weighted algorithms for Mandelbrot

The performance difference of the weighted algorithms is much
smaller than that of their non-weighted versions , anticipated!
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Experiment 2
Load balancing obtained with W for Mandelbrot

Table: Load balancing in terms of total number of iterations per slave and
computation times per slave, GSS vs W -GSS.

Slave GSS GSS W -GSS W -GSS
# Iterations Comp. time # Iterations Comp. time

(106) (sec) (106) (sec)
twin2 56.434 34.63 55.494 62.54
kid1 18.738 138.40 15.528 62.12
twin3 10.528 39.37 15.178 74.63
kid2 14.048 150.23 13.448 61.92

W -GSS achieves better load balancing and smaller parallel time
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Experiment 3
Gain of the synchronized–weighted over synchronized–only algorithms for Floyd-Steinberg

Test Problem VP S -CSS vs S -GSS vs S -FSS vs S -TSS vs
case size S W -CSS S W -GSS S W -FSS S W -TSS

3.6 50% 46% 45% 43%
Floyd- 5.4 41% 48% 44% 43%

Steinberg 15000×10000 7.2 41% 42% 41% 42%
9 39% 43% 40% 41%

10.8 38% 36% 38% 39%
Confidence Overall 39 ± 2 % 40 ± 3 % 40 ± 2 % 41 ± 2 %

interval (95%) 40 ± 1 %

I Gain is computed as TS−A −TS W −A
TS−A

I CSS has the highest performance gain 50%
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Experiment 3
Parallel times of the synchronized–weighted and synchronized–only algorithms for Floyd-Steinberg

The performance difference of the synchronized–weighted algorithms
is much smaller than that of their synchronized–only versions
, anticipated!
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Experiment 3
Load balancing obtained with S W for Floyd-Steinberg

Table: Load balancing in terms of total number of iterations per slave and
computation times per slave, S -CSS vs S W -CSS

Test Slave # Iterations Comp. # Iterations Comp.
(106) time (sec) (106) time (sec)

S -CSS S -CSS S W -CSS S W -CSS
twin2 59.93 19.25 89.90 28.88

Floyd- kid1 59.93 62.22 29.92 30.86
Steinberg twin3 59.93 19.24 74.92 24.06

kid2 44.95 46.30 29.92 29.08

S W -CSS achieves better load balancing and smaller parallel time
than its synchronized–only counterpart , anticipated!
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Conclusions

I DOACROSS loops can be dynamically scheduled using S

I Self-scheduling algorithms are quite efficient on heterogeneous
dedicated & non-dedicated systems using W

I S W Self-scheduling algorithms are even more efficient on
heterogeneous dedicated & non-dedicated systems
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Summary
I If the target platform is well identified and stable, strive to

1. accurately model the hierarchical structure, and
2. design well suited scheduling algorithms

I If the target platform is not stable enough or if it evolves too fast,
then

dynamic schedulers are the ONLY option
I But, to reduce the scheduling overhead

inject static knowledge into the dynamic schedulers
I If the target platform is a distributed system

I coarse grain methods are required to schedule tasks on distributed
and heterogeneous systems

, DOACROSS loops can now be dynamically scheduled on
heterogeneous dedicated & non-dedicated systems using S

, S W self-scheduling algorithms are even more efficient on
heterogeneous dedicated & non-dedicated systems
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Future Work

1. Implementing the dynamic scheduling and load balancing
algorithms presented here on Grid computing environments

2. Design a fault tolerant mechanism for the scheduling
DOACROSS loops to increase system reliability and maximize
resource utilization in distributed systems

3. Employ the scheduling algorithms presented earlier to perform
large scale computation (containing both DOALL and
DOACROSS loops) on computational grids

4. Use the scheduling algorithms presented earlier to schedule and
load balance divisible loads (i.e. loads that can be modularly
divided into precedence constrained loads)
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Thank you for your attention!

Questions?

80



Algorithms Design for the Parallelization of Nested Loops

Appendix

Test Problems

Mandelbrot

for (hy=1; hy<=hyres; hy++) { /* scheduling dimension */

for (hx=1; hx<=hxres; hx++) {

cx = (((float)hx)/((float)hxres)-0.5)/magnify*3.0-0.7;

cy = (((float)hy)/((float)hyres)-0.5)/magnify*3.0;

x = 0.0; y = 0.0;

for (iteration=1; iteration<itermax; iteration++) {

xx = x*x-y*y+cx;

y = 2.0*x*y+cy;

x = xx;

if (x*x+y*y>100.0) iteration = 999999;

}

if (iteration<99999) color(0,255,255);

else color(180,0,0);

}

}
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Appendix

Test Problems

Heat Diffusion Equation

for (l=1; l<loop; l++) {

for (i=1; i<width; i++){ /* synchronization dimension */

for (j=1; j<height; j++){ /* scheduling dimension */

A[i][j] = 1/4*(A[i-1][j] + A[i][j-1]

+ A’[i+1][j] + A’[i][j+1]);

}

}

}
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Appendix

Test Problems

Floyd-Steinberg Error Dithering

for (i=1; i<width; i++){ /* synchronization dimension */

for (j=1; j<height; j++){ /* scheduling dimension */

I[i][j] = trunc(J[i][j]) + 0.5;

err = J[i][j] - I[i][j]*255;

J[i-1][j] += err*(7/16);

J[i-1][j-1] += err*(3/16);

J[i][j-1] += err*(5/16);

J[i-1][j+1] += err*(1/16);

}

}
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Modified LL23 - Hydrodynamics kernel

for (l=1; l<=loop; l++) { /* synchronization dimension */

for (j=1; j<5; j++) {

for (k=1; k<n; k++){ /* chunk dimension */

qa = za[l-1][j+1][k]*zr[j][k] + za[l][j-1][k]*zb[j][k] +

za[l-1][j][k+1]*zu[j][k] + za[l][j][k-1]*zv[j][k] +

zz[j][k];

za[l][j][k] += 0.175 * (qa - za[l][j][k] );

}

}

}
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