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Abstract— In this paper we give a theoretical model for
determining the synchronization frequency that minimizes the
parallel execution time of loops with uniform dependencies dy-
namically scheduled on heterogeneous systems. Using this model
we determine the synchronization frequency that minimizes the
estimated parallel time. The accuracy of our method is validated
through experiments on a heterogeneous cluster. The results show
that the synchronization frequency minimizing the parallel time
determined by our method, is very close to the synchronization
frequency found experimentally.

I. INTRODUCTION

Many scheduling algorithms have been devised for nested
loops with and without dependencies on general heterogeneous
distributed systems. When scheduling tasks on heterogeneous
distributed systems, there are three issues that must be ad-
dressed: machine and network heterogeneity), variable work-
load (non-dedicated system) and communication overhead.
The existence of dependencies in nested loops incurs cross-
node communication. In order to minimize the communication
overhead, the frequency of the cross-node communications
should be set such that the highest level of parallelism is
achieved while the synchronization overhead is kept to a mini-
mum. In a coarse grain approach to parallelizing applications,
the problem domain is partitioned into chunks of equal or
variable size, which are assigned to the existing processing
nodes. An important class of coarse grain scheduling algo-
rithms are the self-scheduling schemes, which dynamically
assign chunks of variable sizes to processing nodes. The self-
scheduling algorithms differ in the way they compute the
amount of work assigned to each node. In [11] it was shown
that these algorithms can be efficiently applied to loops with
dependencies. The focus of this work is finding the best trade-
off between parallelism and synchronization overhead of such
loops in heterogeneous systems. We find the synchronization
frequency that minimizes the parallel time and we show it is
very close to the actual synchronization frequency that gives
the least parallel time.

Related Work. A significant amount of work exists for

determining the optimal partitioning of nested loops with
dependencies for homogeneous distributed systems ([3], [5],
[8], [9] and references therein). Ponnusamy et al [2] used
the inspector/executor model to predict the communication re-
quirements of the code and carry out communication optimiza-
tion at runtime for irregular concurrent problems. Huang et al
[4] presented a scheduler that divides a partially parallel loop
into independent wavefronts and then executes the iterations in
a wavefront parallelly. Lowenthal et al [7] proposed a method
for accurately selecting at runtime the block size in pipelined
programs. The block size was selected at run-time according
to the workload variations that occur with highly irregular
programs. The problem of finding the optimal partitioning
of iteration spaces for heterogeneous systems has not been
studied to the same extent. Boulet et al [14] were the first to
apply loop tiling on heterogeneous systems. They divide fully
permutable loops into equally sized tiles and allocate blocks
with more tiles to faster processors. A good tile allocation is
achieved through an algorithm that selects the best possible
allocation based on a cost function. Variable size tiles are
avoided in order to simplify code generation. Chen and Xue [6]
assign tiles of variable size to processors based on a function
that minimizes the parallel time according to a computation
and a communication cost model. None of the above works
addressed the case of dynamically computing and allocating
chunks of computations to processors on heterogeneous sys-
tems.

Our Approach. In this paper we propose a theoretical model
for finding the synchronization frequency which minimizes the
parallel execution time of loops with dependencies when these
are scheduled on heterogeneous systems using self-scheduling
algorithms. Self-scheduling algorithms [11] are dynamic load
balancing algorithms and they dynamically compute the size
of a chunk and assign it to a node. In our approach, the
chunks computed by a self-scheduling algorithm are also
weighted according to each node’s computational power. The
computational power is determined according to the number
of processes in the run queue of a node and its nominal
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computation power. The nominal computational power of each
machine can be established as the normalized execution time
of a small subset of the application on each machine. Using the
number of processes in the run queue, as workload descriptor,
was shown to be the best choice compared to other workload
descriptors [1].

Contribution. This paper gives an experimentally verified
theoretical model that determines the synchronization interval
that minimizes the communication overhead, while yielding
sufficient concurrency for reaching the best possible overall
performance on non-dedicated heterogeneous systems.

Organization. The paper is organized as follows. Section
II gives some background on loops with dependencies and
pipelined computations. We present the model that gives the
optimal synchronization frequency for heterogeneous systems
in Section III. We experimentally validate our model in Section
IV and we draw conclusions in Section V.

II. BACKGROUND AND NOTATIONS

The iteration space of a parallel loop is modeled as an n-
dimensional Cartesian space J (J ⊂ Zn), where n is the
depth of the loop nest and each point of this n-dimensional
space is a distinct iteration of the loop body. Without loss
of generality we assume that the loops have index points
(u1, . . . , un), where 1 ≤ ui ≤ Ui, 1 ≤ i ≤ n. Typically
self-scheduling algorithms divide the iterations into chunks
of consecutive rows, resulting in the partition of a single
dimension of the iteration space. This dimension, denoted U c,
is called the chunk dimension (see Fig. 2). An overview of the
CSS, GSS, FSS, TSS and DTSS self-scheduling schemes (as
they were devised for loops without dependencies) is given in
[10] and references therein.

In nested loops, dependencies are modeled by dependence
vectors (oriented vectors in the n-dimensional Cartesian space)
whose set is denoted by DS = {d̃1, . . . , d̃r}. We assume the
dependence vectors are constant. Dependencies give rise to
cross-node dependencies, which result when the computation
of a data element on one node cannot be performed without
the data element(s) on another node. The existence of such
dependencies can slow down and (in extreme cases) even se-
rialize the parallel execution. These dependencies are common
in scientific codes, including, for example partial differential
equations or computer graphics.

In self-scheduling schemes the idle processors (workers)
usually request work from a master. In this work we assume a
master-worker model with m workers, which are assigned the
iterations to execute by the master. We denote by N the total
number of scheduling steps. Applying self-scheduling algo-
rithms to nested loops with dependencies, leads to a pipelined
parallel execution due to the data dependencies [11][15]. The
chunk sizes given by the self-scheduling algorithms along
Uc are denoted Vi, for i = 1, . . . , N . For a nest with n
loops, the resulting chunks are n-dimensional parallelepipeds.
The size of the entire n-dimensional chunk at scheduling
step i is Ci. Pipelined execution is achieved by inserting
equally spaced synchronization points along another (usually
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Fig. 1. Space diagram of a coarse-grain pipeline with m stages, M instances
and m + (M − 1) steps.

the largest) dimension of the iteration space, which we call
Us. It is obvious that the application must have at least two
dimensions (n ≥ 2). If the application has more than two
loops, we take as Uc and Us the two outer loops.

Generally, each chunk assignment round corresponds to a
pipeline with as many stages as the number of workers m
(see Fig. 1). The total number of assignment rounds, i.e., the
number of pipelines is denoted by p. In a pipeline organization,
each worker synchronizes with its neighbors (called local
synchronization). Synchronization is performed throughout the
execution of each pipeline at predetermined points, called
synchronization points. A synchronization interval, denoted h,
is the number of iterations along Us upon the computation
of which neighboring workers synchronize. We define the
synchronization frequency as the number of synchronization
points over the synchronization dimension. We insert M
synchronization points along Us (see Fig. 2). The pipeline
requires m+(M−1) steps, where m is the number of workers,
which is also the pipeline latency of a pipeline with m stages.
Data produced at the end of one stage are fed to the next stage.
The length of the synchronization interval determines the
amount of computation before sending a message. It becomes
obvious that the synchronization frequency plays an important
role in the total parallel time. Frequent synchronization implies
excessive communication, whereas infrequent synchronization
may limit the inherent parallelism.

III. DETERMINING THE SYNCHRONIZATION FREQUENCY

FOR HETEROGENEOUS SYSTEMS

Distributed versions of the loop self-scheduling algorithms
(CSS, TSS, FSS, GSS) have been studied before ([12], [10],
[16] and references therein). The approach used in Distributed
TSS can be applied to the other self-scheduling algorithms so
that they can be efficiently run on non-dedicated heterogeneous
systems [10] [16]. In this work, this is accomplished by
transforming the array of m physical heterogeneous processors
into an array of A virtual homogeneous processors, each
with computational power 1. A heterogeneous worker k is
modeled as a set of Ak virtual homogeneous workers, where
Ak represents its available computational power and k =
1, . . . , m. The available computational power is taken as the
ratio of the virtual computational power (V Pk) of the worker
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Fig. 2. Partitioning of a 2D iteration space into chunks, and placement of
synchronization points.

over the number of processes in its run-queue (qk) [1][10].
We consider that the slowest worker has Ak = 1. The number
of virtual processors is equal to the total available power of
the heterogeneous system, i.e., A =

∑m
k=1 Ak. The ratio

m
A is an indicator of the system heterogeneity. In this case,
each pipeline consists of A stages instead of m, and M
instances. Unlike the approaches in [10] and [16], here, we
use the virtualization method directly in the implementation
of the algorithms. In the rest of the paper we will refer to the
distributed algorithms applied to arrays of A virtual processors
as DCSS, DGSS, DTSS and DFSS.

In order to estimate the parallel time we describe the
computation and communication cost models:

Computation cost model: We define the computation cost
as a linear function of the computation cost per iteration
times the number of iterations. Each virtual processor has a
computational power equal to the computational power of the
slowest physical processor. Hence, the computation cost of a
subchunk is:

tp = hVicp, (1)
where Vi is the size of chunk Ci along the scheduling
dimension Uc, and cp is the computation time per iteration
of the slowest worker (Fig. 3).

Communication cost model: We assume that the cost of
sending a message is equal to the cost of receiving a message.
This is a simplistic but realistic assumption, since in most
cases the send and receive operations are executed in pairs
between communicating workers. Therefore, the cost t c of
communicating a message of size h (Fig. 2 and 3) between
two workers is:

tc = cd + hcc, (2)
where cd is the start-up cost (the time to send a zero-length
message including the hardware/software overhead of sending
the message) and cc is the network throughput, defined as

1
sustained bandwidth , where the sustained bandwidth is the

ratio of the amount of data sent over the actual time measured
at the application level.
Observation: In a heterogeneous system, processors may
communicate at different speeds, even if the interconnection
network is homogeneous. Also, when several processors send
a message at the same time, network congestion occurs. We
take both these facts into account by timing multiple ping-
pong tests between multiple pairs of processors and taking
the average cc and cd.

Fig. 3 represents p replications of Fig. 1. The total parallel
execution time is the completion time of the last subchunk of
the problem, illustrated in Fig. 3 as “PA, subchunk M, pipeline
p”. The total parallel time can be estimated as the sum of the
total computation time, the total communication time and the
work assignment time. We assume that the iteration space is
computed in p pipelines, where p = � N

A �. The output of one
pipeline is the input of the next pipeline. Thus, the total parallel
time is the sum of the completion times of all p pipelines plus
the time to transfer date between pipelines. Each pipeline can
be completed in A+(M −1) steps (see Fig. 1 and 3). Each of
these steps consists of a receive, compute and send operation.

Let VjA+1 denote the size of the first chunk for j =
0, . . . , p − 1 given by a self-scheduling algorithm. The total
computation time for all pipelines is:

Tcomp = hUccp
m

A
+cp(Us−h)

p−1∑
j=0

VjA+1 (3)

Remark 1. (1.a) Since we have p pipelines, the problem can
be computed in p[A+(M −1)] steps. The first term of eq. (1)
is the computation time of all last subchunks of the problem.
This is illustrated by the vertical shaded rectangle in Fig. 3.
Since we use as cp the computation time per iteration of the
slowest workers, we must scale the first term by m

A .
(1.b) Similarly, the second term of eq. (1) represents the
computation time of the M−1 instances of every pipeline. This
is also illustrated in Fig. 3 by the horizontal shaded rectangles.
For the self-scheduling algorithms considered herein we take
into account the computation time of the first chunk of each
pipeline because it is always greater than the computation time
of all other chunks in the pipeline. It is obvious that the total
computation time is the sum of all vertical and horizontal
shaded rectangles, meaning the total number of steps of all
pipelines (see Fig. 1 and 3).

We note that data exchange occurs only between the m
physical processors and not between the A virtual processors.
We denote by tc the time to send or receive a message (taken
twice for a complete communication operation) and defined by
eq. (2), and by Ttran the time to transfer the necessary data
from one pipeline to the next. Thus, the time to perform all
receive and send operations, i.e., the communication time for
all pipelines and for transferring the data between two adjacent
pipelines is derived as:

Tcomm = p(m − 2)(2tc) + ptc(
Us

h
− 1)

+(p − 1)Ttran (4)
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Fig. 3. Computation and communication pattern of an iteration space with p pipelines, each with A stages, M instances and A +(M − 1) number of steps.

Remark 2. (2.a) For a given problem size, the communication
time is a linearly increasing function of m and p. The first
term of eq. (1) represents the communication time associated
with the computation of all last subchunks of the problem (i.e.
the first term of eq. (1)).
(2.b) Similarly, the second term of eq. (1) is the communi-
cation time associated with the computation of all M − 1
instances of each pipeline (i.e. the second term of eq. (1)).
Ttran is the time to transfer the necessary data from one
pipeline to the next and is given by 2 (cd + Uscc) (see Fig.
3).

Since we use the master-worker model, the work assignment
time is Twa = 2tc + csch, where 2tc is the transmission time
needed for the work request to reach the master and for the
master’s reply to reach the worker; csch is the time needed for
the master to compute the next executable chunk size, called
scheduling overhead. Therefore, the total parallel time is:

Tpar = Tcomp+Tcomm+Twa (5)

Note that Twa is taken only once because the work assignment
time for every chunk is overlapped with the worker’s compu-
tation or communication operations, except for the first chunk
of the problem.

We are interested in finding the minimum of the parallel
time defined above as a function of h. This is stated as
Proposition 1. Table I summarizes the formulas giving the
number of scheduling steps and the chunk sizes of the various
schemes. F , L, D and α are parameters used by the algorithms
and are described in [10]. For the various N and V i given by
the different self-scheduling algorithms, the minimum parallel
time can be found by differentiating of Tpar and verifying
that the second order derivative is positive. We note that the
values of N and Vi are computed as described in Section [10]
by applying the self-scheduling algorithms to an array of A
processors.

TABLE I

SCHEDULING STEPS AND CHUNK SIZES

N Vi

DCSS Uc

Vi
1 ≤ Vi ≤ Uc

A

DGSS Aln�Uc

A � (1 − 1
A )i Uc

A

DTSS 2Uc

F+L F − (i − 1)D
DFSS A�1.44lnUc

A � ( 1
α )i+1 Uc

A

Proposition 1. It can be proved that the parallel time Tpar

assumes a minimum as a function of h at:

hopt =
√

Us p A cd

(2m−5)Accp+Uccpm−cpA
Pp−1

j=0 VjA+1
(6)

IV. EXPERIMENTAL VALIDATION

Setup. The experiments were performed on a cluster of 17 (1
master and 16 workers) Intel Xeons CPUs at 2.8GHz, with
2GB RAM, interconnected with GigaBit Ethernet. In order to
make the system heterogeneous, we put an artificial load in
the background of m/2 of the workers. The results presented
below are the average of 20 runs for each experiment. As a
test case we used the Floyd-Steinberg (F-S) error dithering
kernel from computer graphics, which is a doubly nested loop
with 4 dependencies. We ran F-S for m = 16 workers.
Estimation of parameters. To quantify the communication
parameters we developed a benchmark program, that sim-
ulates a small scale master-worker model with cross-node
communication. It performs send and receive calls between
all pairs of workers for different messages sizes, in order to
simulate levels of network congestion similar to those of the
actual application. We measured the average round-trip time
for all data exchanges and then divided it by 2, assuming
that the send and receive times are equal. This allowed us to
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estimate the start-up time cd = 8 × 10−5s and throughput
cc = 6.55 × 10−7s. The scheduling overhead was measured
for each algorithm and the values of csch are as follows: DCSS
csch = 3.2×10−5s, DGSS csch = 8.5×10−5s, DTSS csch =
3.4×10−5s and DFSS csch = 7×10−5s. We ran a small size
version of the (F-S) application on both the overloaded (slow)
and ordinary (fast) workers, in order to obtain their c p. The
cp for the fast worker was cfast

p = 5.6 × 10−8s and for the
slow cslow

p = 2cfast
p . And thus, V P slow = 1 for the slow and

V P fast = 2 for the fast workers.
For the parallel tests, we overloaded m/2 of the processors.

For m = 16 nodes, the total available power was A = 24. We
ran F-S with DCSS, DTSS, DFSS, and DGSS on an image
frame of 50K×150K pixels for a synchronization interval in
the range of 20, 40, . . . , 1000 and measured the actual parallel
time. We plotted this time against the theoretical parallel time
obtained by eq. (5). We also determined theoretically the
optimal synchronization interval hopt for each algorithm, on
24 virtual processors. The results are shown in Fig. 4. One
can see that our method describes accurately the behavior of
the system because the theoretical curve follows closely the
actual curve in all cases. The results show that the optimal
hopt given by eq. (6) is very close to the actual ha that gives
the minimum parallel time in practice.

V. CONCLUSION

We proposed a method for determining the optimal syn-
chronization frequency for loops with dependencies on het-
erogeneous systems. The method is general and applicable to
the class of self-scheduling algorithms. The method is useful
because a poor choice of the synchronization frequency leads
to severe performance degradation and the cost of determining
the best performance through exhaustive searching of all
possible values of h is clearly prohibitive. We showed that
the optimal synchronization interval given by our method is
very close to the actual synchronization interval. The accuracy
of the proposed methodology, in all cases, is confirmed by
experimental results on a heterogeneous cluster.
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