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ABSTRACT 
 

 Computational models of human cognition have been 
applied to many complex real-world tasks including air 
traffic control, human-computer interaction, learning 
arithmetic, traversing the World Wide Web, intelligent 
tutors, instrument-based flight, and vehicle driving. There 
are numerous additional applications for these 
computational models including integration with models 
of human motion, military simulation of enemy agents in 
virtual environment training, testing of new vehicle 
designs or machine interfaces, and analysis of cognitive 
components of tasks. However, most of these models 
exist in limited two-dimensional (2D) environments. In 
order to apply computational models to tasks in a 
dynamic three-dimensional world, extensions to current 
cognitive architectures must provide the capability for 
models to perceive, process, and act in the three-
dimensional environments. The current research will seek 
to extend the vision components of a cognitive 
architecture to support computational models capable of 
simulating human vision in a dynamic three-dimensional 
(3D) environment. 

 
 

1. INTRODUCTION 
 

 The Future Combat Systems (FCS) consist of 18 
systems including unattended ground sensors, intelligent 
munitions systems, 6 classes of unmanned vehicles, the 
multifunction utility/logistics and equipment vehicle, and 
8 classes of warfighting or support manned vehicles. Each 
of these systems comes into direct or indirect contact with 
the soldier at many points introducing potential cognitive, 
ergonomic, and performance issues. The Future Force 
Warrior (FFW) soldier is treated as an integral part of the 
FCS and is expected to benefit from advanced technology 
in networking, computing, environment and physiological 
monitoring, and armor. The goal of the FFW system is to 
increase effectiveness and flexibility while decreasing 
load. In order to effectively build and deploy the FFW 
systems each of the components will need to be designed, 

prototyped, lab tested, revised, field tested, and further 
revised until the system is operational and effective.  
  
 The researchers, designers and engineers involved in 
the development of the FCS and FFW systems will likely 
utilize computer-aided design (CAD), computer-aided 
engineering (CAE) and computational simulation tools 
such as finite element analysis (FEA) in order to reduce 
development time, testing time, and overall costs. 
CAD/CAE and FEA are computational tools that allow 
designers and engineers to design and test the material 
and mechanical properties of virtual prototypes. The 
benefits of these design capabilities are such that they 
enjoy widespread use in many major industries. These 
systems have little or no built-in support for determining 
the needs of the constraints imposed by the end user 
(Porter, Case, & Freer, 1999).  
 
 Existing design tools such as Jack, RAMSIS, and 
SAFEWORK provide limited abilities to evaluate human 
interaction with virtual prototypes. However, these 
models focus primarily on user attributes such as 
anthropometry, viewing volumes, and static postures. 
These models do not predict complex human task 
performance and interaction with virtual designs (Porter, 
Case, & Freer, 1999). Computational cognitive 
architectures may provide a partial solution to simulating 
the role of the soldier in FCS and the FFW systems. These 
software architectures provide a framework for cognitive 
scientists and human factors engineers to create models 
capable of simulating human task performance. Current 
models cannot simulate the entirety of human cognition 
from sensory input to mental processing to the execution 
of motor actions. However, a number of architectures 
(e.g. ACT-R, EPIC, MIDAS, SOAR, QN-MHP) have 
made it a goal to attempt to define a formal theory of 
human perception, cognition, and action. These 
architectures may be able to provide predictive 
capabilities for consideration of human interaction with 
FCS and the FFW system. These architectures have been 
applied to real-world tasks such as driving vehicles 
(Salvucci, 2006; Liu, Feyen & Tsimhoni, 2006) and 
piloting UAVs (Ball, Gluck, Krusmark, & Rodgers, 
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2003). However, current models have limited dynamic 3D 
perceptual and motor capabilities. 
 
 Rather than develop an entirely new architecture, the 
goal of the current research is to extend an existing 
cognitive architecture, ACT-R (Anderson, Bothell, Byrne, 
Douglass, Lebiere, and Qin, 2004). ACT-R has been used 
to simulate vision in dynamic 3D environments, most 
notably in Salvucci’s model of the driver (2006). The 
extensions to ACT-R in that case were at least partly 
specific to the task of driving. The current project intends 
to place a digital human model within a virtual 
environment generated by a commercial-off-the-shelf 
(COTS) software package. In doing so, we hope to create 
a platform that will allow models of other real world tasks 
to use our more general extensions to the existing ACT-R 
architecture. This paper relates the development of 
extensions to the vision module of ACT-R. These 
extensions include modifications to motion perception 
and the encoding of spatial information.  
 
 The current paper provides an overview of the ACT-
R cognitive architecture, some details about ACT-R’s 
current vision module, and details regarding the design 
and implementation of each of our extensions. 
 
  

2. ARCHITECTURE  FOR MODELING 
 
 The development of models of human performance 
takes place within an architecture that combines a 
simulation of human cognition with an environment in 
which the digital human can perform. Our interest is in 
developing models of whole-body real-world tasks such 
as vehicle maintenance or driving. Such models require 
an extensive model of the environment and a capable, but 
general model of human cognition. The current research 
focused on extending the ACT-R cognitive architecture 
(Anderson, et al., 2004) and the Virtools virtual 
environment. 
 
2.1. ACT-R Cognitive Architecture 
 

 
Fig. 1. Diagram of the ACT-R architecture. 
 

 ACT-R is a hybrid symbolic/subsymbolic cognitive 
architecture that allows designers to develop 
computational models of human performance (Anderson, 
et al., 2004). At its core, the ACT-R architecture (see 
Figure 1) is a production system architecture where 
procedural knowledge is represented by condition-action 
rules, known as productions. As the architecture executes 
a model, the condition of the production is tested against 
the model’s awareness of the current state of the 
environment. A single production from the set of 
matching productions is selected based on expected utility 
and the production’s actions are applied. A set of modular 
systems wrapped around the core production system 
attempt to execute the actions requested by the fired 
production.  
 
 The modular systems simulate declarative memory, 
goal tracking, vision, audition, and motor actions. The 
ACT-R memory system includes two basic types of 
memory. Procedural memory is the store of condition-
action productions that are selected and executed by the 
core production system. Declarative memory is a store of 
memory units called chunks and simulates the storage, 
activation, and retrieval of memory. The goals system 
tracks the current goal of the cognitive model. The visual 
and aural systems encode sensory inputs from the 
environment as chunks of declarative knowledge. The 
oral and manual systems provide mechanisms by which 
the cognitive model can act on the environment. By 
posting module requests, the cognitive model can retrieve 
memories, work on goals, recognize visual or aural 
percepts, and perform actions.  
  
 ACT-R has been selected for the current research for 
three primary reasons. First, it has a wide range of 
capabilities in the existing cognition, perception, and 
action modules. The modular nature of the architecture 
allows us to extend the vision module while retaining the 
benefits of the existing modules. Second, ACT-R has 
been successfully applied to a variety of tasks from basic 
memory tasks to advanced tasks such as driving. Finally, 
ACT-R generates quantitative data, including reaction 
times, which can be directly compared to human 
performance data for validation purposes. 
 
2.2. Virtual Environment 
 
 Virtools, a commercially available graphics rendering 
and environment development software package, is used 
to generate the virtual environment. Virtools allows 
environment developers to construct a 3D virtual 
environment consisting of modeled objects and scripts 
that define object behaviors. Objects modeled in the 
virtual environment are tagged with symbolic information 
such as the object category, text content, and any other 
visual properties that would be difficult or impossible to 
extract directly from the visual display.  
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 A Virtools/ACT-R software interface tracks the 
location of the digital human model within the 
environment and renders the digital human model’s 200° 
horizontal by 40° vertical view of the environment every 
17 ms. The digital human model’s visual field is 
processed to determine which objects in the virtual 
environment are currently visible. Intrinsic symbolic 
information, such as spatial location and size in visual 
angle, is calculated and the extrinsic symbolic information 
associated with the objects by the modelers is extracted 
from the rendered visual field and the environment. This 
symbolic information is then passed over a network 
connection to a running ACT-R model that updates the 
internal representations of the vision module with the new 
information.  
 
 The vision module is a symbolic model of human 
visual perception in which the symbolic information that 
can be encoded from each object is directly supplied by 
the environment. While machine vision research is 
progressing, it would be computationally impractical to 
process video from real or virtual environments. Instead, 
the object attributes stored within the virtual environment 
provide the end results of the vision process without 
requiring that we simulate the entire visual process. This 
symbolic model of vision allows us to focus on modeling 
the complex interactions between attention, cognition, and 
action without being overly concerned about the details of 
sensation and perception.   
 
 

3. SYMBOLIC MODEL OF VISION 
 
 ACT-R’s vision module is based on a feature theory 
of perception that synthesizes multiple existing theories of 
visual perception (feature-integration theory; Triesman & 
Gelade, 1980), attention (attentional spotlight; Posner, 
1980) and search (guided search; Wolfe, 1994). The 
vision module’s representation of the visual field is a 
visual icon that contains all of the features that are 
currently visible in the 200° by 40° visual field rendered 
and processed by the virtual environment. An ACT-R 
model cannot directly access the features stored in the 
visual icon. The features must be the focus of visual 
attention in order to be extracted from the visual icon as 
declarative memory chunks representing the objects in the 
visual field. Two separate systems (visual-location and 
visual-object) provide the mechanisms that allow ACT-R 
to extract these chunks.  
 
 The visual-location system implements a preattentive 
search for features and conjunctions of features. The 2D 
locations of visual features are always available in ACT-
R. When the model requests a preattentive search for a 
visual location, the model must specify a set of constraints 
that will guide the search of the visual field. The visual-
location system will immediately return a single location 

that matches the specified constraints. The visual-location 
systems allow constraints on visual properties (color, 
motion, size), spatial location, and whether previously 
attended (Anderson, et al., 2004). By allowing multiple 
constraints to be specified, ACT-R allows largely 
unconstrained searches for conjunctions of features 
similar to Wolfe’s guided search (Wolfe, 1994). The basic 
visual properties supported by ACT-R include color, size, 
and type. Modelers can extend the visual icon to include 
additional features that can be used to constrain searches.  
  
 Spatial location constraints allow ACT-R to globally 
limit search to spatial areas of the visual field or to 
constrain search relative to the current focus of attention. 
For example, if the current goal is to monitor a red 
indicator light that is known to appear at the top left of the 
display, the visual-location search can be constrained to 
return the location of red features in the top left of the 
visual field. An example of a relative constraint would be 
to search for the nearest matching location to the current 
focus of attention. 
 
 ACT-R tracks whether objects in the visual field have 
been attended or not. Each object is flagged with one of 
three states: recently attended, not recently attended, and 
recently onset. At onset, the newest object may be pushed 
into the visual-object system forcing attention to shift to 
the object by what is referred to as buffer stuffing. Buffer 
stuffing provides a limited simulation of bottom-up 
attentional capture.  
 
  When the core production system specifies a set of 
constraints, the visual-location system determines whether 
any location in the visual field matches the constraints. If 
not, the vision module is set into an error state that must 
be addressed by the core production system. If one 
location matches the constraints, the preattentive search 
generates pop-out effects (Triesman & Gelade, 1980). If 
more than one location matches, one of the locations is 
randomly selected and returned. In order to find the 
desired target, a self-terminating serial search must be 
performed by the vision module.  
  
 The visual-location system provides a location 
matching some basic constraints but, in order to recognize 
the features as an object, the attentional spotlight must be 
shifted to the location. By default, ACT-R models 
attentional shifts and not the actual movement of the eyes 
(Anderson, et al., 2004; Anderson, Matessa. & Lebiere, 
1998). Salvucci’s EMMA (2001) extension to ACT-R 
allows modelers to simulate eye movements. Once 
attention is shifted to a location, object features are bound 
and encoded into a declarative memory chunk that is 
made available to the core production system through the 
vision module.  
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 The vision module has been successfully used in 
computational models applied to a range of simple and 
complex tasks. However, it is missing certain capabilities 
that are necessary for simulating vision in dynamic 3D 
environments. These missing features include aspects of 
motion perception, 3D spatial perception, and 
coordination of shifts of attention with movements of the 
head. 
  
3.1. Motion Perception 
 
 Motion is a basic features of visual perception that 
can guide attention (Wolfe, 1998; 1994). Motion is not 
included as a feature in the ACT-R vision module. In 
order to model visual attention in a dynamic 3D 
environment, we needed to extend the vision module to 
support motion as a feature. 
 
3.1.1. Preattentive Search 
 
 Moving objects are particularly important from a 
visual perception perspective. McLeod, Driver, and Crisp 
(1988) reported that moving items may be efficiently 
located amongst stationary and/or moving objects. 
However, searching for stationary objects amongst 
moving objects is inefficient. Searching for an object that 
may be moving or stationary is also inefficient suggesting 
that search cannot be directed at stationary and moving 
objects at the same time. 
 
 The particular aspects of motion that constrain the 
preattentive search by the visual-location system are 
debatable. Some evidence has identified separate systems 
for encoding the direction and magnitude of motion and 
using either system for guiding preattentive search for 
moving objects (Driver, McLeod, & Dienes, 1992). 
However, the evidence is complicated and it appears that 
motion is composed of one or two features.  
 
 Regardless of the number of features, motion features 
appear to be available for preattentive search. Our 
extension to the ACT-R vision module introduces motion 
across the 2D visual field as a feature in the visual icon. 
When the visual icon is updated from the display 
information provided by the virtual environment, the 
motion of each object is calculated by ACT-R and placed 
into the visual icon as motion features. The extended 
vision module represents motion as two features: motion 
magnitude and motion direction. As future research 
clarifies the representation of motion detection, the 
implementation may be revisited. 
 
 Both motion magnitude and motion direction are 
calculated based on the displacement of the center of the 
object in the visual field from the previous frame to the 
current frame. This limits ACT-R to an instantaneous 
estimate of motion magnitude and direction. Motion 

magnitude is defined as the displacement of the object’s 
location in the visual field in degrees of visual angle per 
second. Motion direction is specified in degrees with 0° 
representing motion along the positive X axis (to the right 
in the visual field). For example, an object moving from 
bottom left to top right across the visual field at 100°/sec 
would be represented as an object with a motion-direction 
feature of 45° and a motion-magnitude feature of 
100°/sec. 
 
 There are possible concerns with our implementation 
of motion perception and preattentive search. First, there 
is no search asymmetry in visual search for motion. As 
previously mentioned, search for a moving object among 
stationary objects is efficient. However, search for a 
stationary object among moving objects is not efficient 
(Wolfe, 1998). ACT-R does not currently implement 
mechanisms for search asymmetry. Second, while motion 
speed can guide search for a fast moving target among 
slower moving targets, our implementation’s use (and 
ACT-R’s use) of quantitative values for specifying 
constraints seems overly powerful. For both of these 
issues, Wolfe’s guided search (1994) may provide a 
potential solution. Guided search hypothesizes that search 
constraints are specified using broadly-tuned channels 
rather than the quantitative values used in ACT-R. The 
ACT-R community has expressed interest in moving the 
vision module towards guided search (Anderson, et al., 
2004) and modifying search constraints to be more 
broadly defined may be a good intermediate step toward 
that goal. 
 
3.1.2. Attentional Capture and Motion 
 
 The preattentive processes exist to guide attention to 
interesting objects in the visual field (Wolfe, 1998). 
Visual attention is guided by bottom-up and top-down 
processes. Bottom-up guidance of attention is based 
purely on the salience of the features of the object. If an 
object’s feature salience is particularly high, attention will 
be captured and drawn to the object. Top-down guidance 
is the deployment of attention driven by task-related 
expectations.  
 
 Visual attention is captured when a visual feature 
attracts attention, even when the feature is irrelevant to 
the current task. The abrupt onset of new items appears to 
be the strongest stimulus leading to attentional capture 
(Wolfe, 1998). Motion is also a particularly powerful 
visual feature (Wolfe, 1998; 1994) and we must consider 
what conditions will lead to attentional capture by motion 
features. 
 
 Motion does not capture attention (Hillstrom & 
Yantis, 1994) but the onset of motion may briefly capture 
attention. However, even the onset of motion does not 
always capture attention. Von Mühlenen, Rempel, and 
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Enns (2005) propose that attention is captured not by the 
onset of new items but rather attention is captured by 
unique spatial and temporal events. In this case, the onset 
of motion may strongly attract attention when the rest of 
the display is static. If the onset of motion occurs at the 
same time as the sudden onset of other objects, the newly 
appearing objects should more strongly attract attention.  
  
 In the buffer-stuffing implementation of attentional 
capture, whenever new objects enter the visual field, one 
of the objects may capture attention. The attention-
capturing object’s features are immediately encoded into 
a declarative memory object and pushed into the vision 
module’s buffer effectively forcing attention to shift to the 
new object. This limited system works relatively well for 
the appearance of completely new objects in unchanging 
scenes.  
 
 With the addition of motion to scenes, two features 
associated with the moving objects (location and size) are 
often changing. These changes lead the vision module to 
determine that the object is new and worthy of attention. 
This may force attention to continually be drawn to the 
moving object. The intent of ACT-R’s implementation of 
bottom-up attentional capture is that the onset of new 
objects should attract and capture attention. Change in 
location and size of an object due to continuous motion 
should not lead to attentional capture. Only the abrupt 
onset of new objects or abrupt changes in features should 
capture attention. In our extension to the vision module, 
the visual icon is able to identify when a new object 
appears and when a feature of an existing object changes.  
 
 It appears that for many feature changes, the 
changing object attracts attention. Changes in color have 
been shown to capture attention in certain cases (von 
Mühlenen, et al., 2005). Changes in color, like the onset 
of motion, are not as likely to capture attention as the 
abrupt onset of new items and, in fact, may not draw 
attention when occurring along with new items (von 
Mühlenen, et al., 2005).  In ACT-R, the onset of several 
objects coinciding with the onset of motion or changes in 
features leads to multiple objects being marked as new 
objects worthy of attention. Only one of these objects can 
attract attention, leading to the onset of motion being 
missed when there are other new objects. For our 
purposes, this result is an acceptable approximation of 
capture by unique events (von Mühlenen, et al., 2005). A 
more thorough model would include an estimate of the 
saliency of feature changes; ranking the abrupt onset of 
new objects higher than the onset of motion and other 
feature changes in existing objects. Further investigation 
into attentional capture, especially capture related to 
motion, will guide future revisions of the vision module. 
 
 

3.1.3. Encoding Motion 
 
 The ultimate purpose of the vision module is to 
model the binding of features into objects through the 
attentional spotlight mechanism. Our extensions to ACT-
R’s vision module have implemented a model of the 
perception of motion across the 2D visual field 
represented by the visual icon. It is not clear that the 
model should encode the quantitative features of 2D 
motion across the visual field in declarative memory. Wea 
are aware of no compelling reason to not make the motion 
magnitude and direction available to the core production 
system.  
 
 At the same time, it is clear that models of active 
observers must encode some spatial information in a 3D 
environment and, additionally, must deal with the 
movement of the observer. As the observer moves, the 2D 
movement of the objects will be updated but the 3D 
spatial movement of the objects in the world will only be 
updated if the object is moving relative to the world. This 
will allow the model to recognize motion resulting from 
self-motion and motion resulting from actual motion of 
objects in the environment. The next section describes the 
details of our extensions to support the extraction and use 
of spatial information from the environment.  
 
3.2. Spatial Information 
 
 In order to interact with a 3D environment, an 
observer must be aware of the spatial arrangement of the 
environment. Tversky (2003) and Tversky, Morrison, 
Franklin, and Bryant (1999) describe three major spaces 
of spatial cognition: the space for navigation, the space 
around the body, and the space of the body. Each space is 
essential for full interaction with the environment. The 
representation of the space for navigation contains 
landmarks and paths that define a simplified 2D, map-like 
view of the environment. The space around the body is a 
3D reference frame in which the location of objects is 
verbally described relative to three axes defined by the 
body: head/feet, front/back, and left/right. The space of 
the body is a proprioceptive and kinesthetic sense of 
where the parts of the body are and how they are moving. 
The current work is focused primarily on the space 
around the body – 3D relationships between the observer 
and the nearby environment.  
 
 As attention shifts around the environment, the 
spatial relation between the observer and the object that is 
currently the focus of attention is encoded into declarative 
memory. The spatial relationship includes the egocentric 
bearing and the egocentric distance of the observer to the 
object.  The spatial representation of the attended object 
may be elaborated by encoding relationships between the 
currently attended object and another object, most likely a 
landmark (Shelton & McNamara, 2001). 
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 There has recently been significant work related to 
spatial systems in ACT-R. Gunzelmann and Anderson 
(2006; Gunzelmann, Anderson, & Douglass, 2004) 
examined strategies for computing the correspondence 
between an egocentric view of a task and an allocentric 
view of a task. In their ACT-R implementation, spatial 
information from the egocentric view was encoded in two 
steps. In the first step the general egocentric location of 
the target was encoded. In the second step, the spatial 
information necessary to differentiate the model from the 
nearby objects was extracted from the display. More 
objects lead to more complex descriptions which, in turn, 
lead to slower performance. The representations 
generated by the second step may be verbal descriptions 
similar to those described by Tversky (2003) or mental 
images. Work with mental images led to the 
implementation of an imaginal buffer in ACT-R 
(Gunzelmann & Anderson, 2006) for modeling mental 
manipulations of images and a visuospatial working 
memory for visualizing spatial problems (Lyon, Gluck, & 
Gunzelmann, 2006).  
  
 Johnson, Wang, and Zhang (2003) implemented an 
ACT-R model that encoded not only the egocentric 
relationship between the observer and the object, but it 
also encoded the object-to-object relationship between the 
current focus of attention and the previous focus of 
attention. This provided a rich representation of the 
environment that is not tied to the observer’s location and 
may be used to assist in identifying the landmarks, paths, 
and nodes that make up the mental representations of 
Tversky’s (2003) space of navigation.  
 
 ACT-R/S is an implementation of a separate spatial 
module within ACT-R that encodes spatial information in 
egocentric representations that are continuously updated 
(Hiatt, Trafton, Harrison, & Schultz, 2006; Harrison & 
Schunn, 2003). ACT-R/S includes a configural system 
that encodes and updates mental representations of the 
space around the body and the space for navigation and a 
manipulative system that encodes information about 
objects for manipulation by the motor system.   
 
 While our model of encoding spatial information has 
many similar aspects to each of the existing models, our 
model also has significant differences. Our model is 
similar to ACT-R/S, but, instead of implementing a 
separate spatial module, we currently use declarative 
memory to store spatial information. We also implement 
object-to-object relationship encoding similar to Johnson, 
Wang and Zhang (2003) and do not implement automatic 
updating of egocentric spatial relations. At any given 
moment, the model has a limited awareness of the spatial 
relationships. If attention shifts to an object that is outside 
of the observer’s field of view, the model can compute the 
egocentric spatial relationship between the observer and 
the object based on the stored object-to-object 

relationships encoded through visual exploration of the 
space around the body.  
 
3.2.1. Visual Search  
 
 In Wolfe’s (1998) review of features that can be used 
for efficient search, a few cues appear to allow efficient 
guided search of objects arranged in three dimensions 
including shading, occlusion, texture cues, shadows, and 
stereoscopic depth (Wolfe, 1998). However, none of these 
cues are necessarily associated with the egocentric spatial 
relationships or observer motion cues that separate the 3D 
spatial representation from a 2D visual field 
representation + depth planes.  
 
 Royden, Wolfe, and Klempen (2001) investigated 
whether optic flow was treated differently than other 
structured fields of distractors to allow efficient search.  
The results did not show that search for a stationary object 
was more efficient in an optic flow condition than in 
another structured moving field. In the existing ACT-R 
models of spatial representation (Gunzelmann, & 
Anderson, 2006; Hiatt, et al., 2006; Johnson, et al., 2003), 
attention is required to encode an egocentric relationship 
between an object and the observer.  While individual 
depth cues may lead to efficient search, 3D spatial 
information does not appear to.   
 
 In our spatial extensions to ACT-R, we assume that 
the egocentric and object-to-object relationships extracted 
from the environment are not available for efficient, 
preattentive search and are only available after attention 
has been focused on the object. 
  
3.2.2. Encoding  
 
 Our model is similar to the Johnson, Wang and 
Zhang (2003) model of object location in that we encode 
the egocentric relationship between the observer and the 
object when attention is focused on the object. Object-to-
object relationships are also encoded for objects near the 
point of gaze. Objects that will serve as good landmarks 
(Shelton & McNamara, 2001) should be preferred for 
object-to-object relationships.  
 
 The egocentric spatial relationships encode the 
observer’s bearing to, and distance from, the edge of the 
attended object. In addition to the egocentric bearing and 
distance, the spatial system also encodes the direction and 
magnitude of the object in 3D space. The direction and 
magnitude is calculated based on the change in the 
egocentric relationship during the encoding time.  
 
 The bearing and distance from the previously 
attended object to the currently attended object may also 
be encoded as in Johnson, Wang and Zhang (2003). These 
object-to-object relationships are secondary to the 
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egocentric relationships but are essential for building 
spatial memory of the space for navigation (Shelton & 
McNamara, 2001). Some objects may be identified as 
landmarks or as providing special spatial relationships 
(e.g. walls, portals, readily visible features) and may be 
used to build hierarchical frames of reference. 
  
 Egocentric representations require regular updating 
as the observer moves through the environment (Tversky, 
2003). Rather than continuously updating based on motor 
cues or a visual mechanism (i.e. optic flow), the model 
updates only the egocentric relationship and object-to-
object relationships of those objects currently in the field 
of view. During motion, the model covertly and overtly 
shifts attention to objects in the environment to maintain 
the model’s current awareness of the environment. The 
updating of the mental representation of spatial relations 
may not be automatic (Waller, Montello, Richardson, & 
Hegarty, 2002). Our implementation requires that the 
observer attend to the environment in order to update the 
mental representations of the spatial relations in the 
environment.  
 
 Spatial awareness of the environment provides the 
model with the capability to interact with 3D 
environments. The model can maintain awareness of 
objects and visual features that move in and out of the 
visual field as the observer moves through the 3D virtual 
space. The model can encode and update the 3D spatial 
location of objects and if the model needs to view an 
object outside of the current field of view, the model can 
request a rotation of the head to a remembered spatial 
location. The model is also able to request motor 
movements to spatial locations relative to the body. These 
motor movements allow the model to interact with objects 
in the 3D environment.  
 
 The spatial system is the most recent aspect of our 
extensions to be implemented and will require significant 
future work including support for imagining observer 
motion, memory for complex motion paths, building 
representations of space of navigation, and more.  
 
3.3. Validation 
 
 Our extensions to the ACT-R vision module have not 
been validated against human data. The extensions to the 
vision module for motion perception largely mirror the 
implementation of perception for the other features ACT-
R supports. The extensions for encoding spatial 
relationships may be more controversial and will require 
more effort to validate the performance of the model. Eye 
tracking and motion capture data on human performance 
in real-world, natural tasks such as model assembly, 
navigation and human-machine interaction is currently 
being captured in our lab (see these proceedings: Thomas, 
Carruth, McGinley, & Follett, 2006).  These tasks will be 

modeled using our extensions to the vision module and 
the results will be quantitatively compared to human data 
for validation. 
 
 

4. SUMMARY 
 
 An existing model of human cognition, perception 
and action (ACT-R) was extended to better support the 
modeling of human vision in dynamic 3D environments. 
The extensions provide improved support for motion 
perception and extend spatial encoding into three 
dimensions.  
 
 In motion perception, the detection and encoding of 
the direction and magnitude of the motion of objects 
across the visual field of a digital human model within a 
COTS virtual environment was implemented. The ability 
to guide search to motion features was also implemented. 
This led to the implementation of the ability to encode the 
features of and recognize moving objects. In addition, the 
impact of changes in motion on visual attention was 
implemented based largely on the work of von Mühlenen, 
et al. (2005). 
  
 In spatial encoding, an egocentric representation of 
the visual-location system of the vision module was 
implemented. When an object is the focus of attention, the 
object’s egocentric bearing, pitch, and distance relative to 
the location of the digital human model’s head in the 
virtual environment are added to the features encoded by 
the visual system. This 3D representation of the object 
location is used in part to maintain awareness of objects 
that are no longer visible in the visual field. In our future 
work to extend the motor capabilities of the ACT-R 
architecture, these spatial locations will be used to drive 
the movement of end effectors such as the hands or the 
feet to locations to interact with objects. 
  
 The addition of these capabilities to the ACT-R 
cognitive architecture allows cognitive models to see 
visual percepts in dynamic 3D virtual environments 
developed in the COTS software package, Virtools. The 
next step is to validate these extensions by developing a 
model of a simple visual task using each of the extensions 
and directly comparing the quantitative data generated by 
ACT-R to data collected from human participants. After 
the model has been validated, attempts can be made to use 
the model for evaluating real-world tasks relevant to FCS 
or the FFW system. Future work with ACT-R will also 
include extensions of the motor system to support 
modeling human interaction with object prototypes within 
the environment. 
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