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Abstract

This paper deals with general nested loops and
proposes a novel scheduling methodology for re-
ducing the communication cost of parallel pro-
grams. General loops contain complex loop bodies
(consisting of arbitrary program statements, such
as assignments, conditions and repetitions) that ex-
hibit uniform loop-carried dependencies. There-
fore it is now possible to achieve efficient paral-
Ielization for a vast class of loops, mostly found
in DSP, PDEs, signal and video coding. We use
computational geometry methods, that exploit effi-
ciently the regularity of nested loops index spaces,
in order to significantly reduce the communication
cost, which in most cases is the main drawback of
parallel programs performance. Through exten-
sive testing, we show that the proposed method out-
performs in all cases the classic cyclic mapping,
succeeding to reduce the communication by 15%-
35%. This significant reduction of the communi-
cation volume makes our method a promising can-
didate to be incorporated into existing automatic
parallel code generation tools.
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1. Introduction

Itiswell known that most time consuming applica-
tions consist of nested DO(FOR) loops. The itera-
tions within aloop nest are either independent iter-
ations or precedence constrained iterations. Fur-
thermore, the precedence constraints can be uni-
form (constant) or non-uniform throughout the ex-
ecution of the program. The index space of a uni-
form dependence loop, due to the existence of de-
pendence vectors, is partitioned into subspaces of
points that can be executed at a certain time in-
stance. The geometric representations of these sets
form polygonal shapes called wavefronts or pat-
terns, with special attributes and characteristics.
In this paper we tackle the uniform precedence
constraints case, and we present a novel schedul-
ing technique for perfectly nested loops. The pre-
sented method exploits the geometric properties of
the index space in order to reach an efficient geo-
metric decomposition. As the problem of finding
the optimal schedule with precedence constrains
was proved to be NP-complete [6], even when
the number of available processors is unbounded,
many heuristic algorithms have been proposed,
such as [1, 2, 13, 7] for task duplication-based
scheduling, and [3, 14, 11] for bounded number of
processors. However, we take a much simpler ap-
proach to the above problem, as the index space is
characterized by regularity due to the presence of



uniform dependence vectors. In many cases where
certain conditions between the dependence vectors
hold, one can predict efficiently the exact geomet-
ric outline of the wavefront at each moment [5, 12].
Onesuch acaseiswhen theinitial wavefrontis*“re-
peated” k times at moment k (see Fig. 2(b)). Us-
ing wavefronts one can find the optimal solution
with respect to the total makespan, in contrast to the
classic hyperplane approach [4] where the solution
provided is nearly optimal, achieving a makespan
of constant delay from the earliest possible.

To achieve performance on paralel systems,
programs must take into account both parallelism
and locality. There are two main classes of mem-
ory architecturesfor parallel machines: distributed-
memory machines and shared-memory machines.
The distributed-memory machines are built from
a group of processors connected via a commu-
nication network. The shared-memory machines
present the programmer with a single memory
space that al processors can access. Shared-
memory machines can either have a single shared
memory that can be uniformly accessed by all
the processors (centralized shared-memory ma-
chines), or the memories may be physically dis-
tributed across the processors (distributed shared-
memory machines). An example of distributed-
shared-memory systems are the Silicon Graphics
Origin commercial machines.

The scheduling for distributed-memory sys-
tems is more challenging than for shared-memory
systems due to the fact that the communication
cost must be taken into account. Two things
make the communication in multiprocessor sys-
tems more inefficient than in uniprocessors: long
latencies dueto inter-processor communication and
multiprocessor-specific cache misses on machines
with coherent caches. Long memory latencies
mean that the amount of inter-processor commu-
nication in the program is a critical factor for per-
formance. Thusit isimportant for computations to
have good temporal locality. A computation has
good data locality if it re-uses much of the data
it has been accessing; programs with high tempo-
ral locality tend to require less communication. It
is therefore important to take communication and

temporal locality into consideration when deciding
how to parallelize aloop nest and how to assign the
iterations to processors.

When parallelizing nested loops, the following
tasks need to be performed: (1) detection of the
inherent parallelism, (2) computation scheduling,
(3) computation mapping, (4) explicitly managing
the memory and communication and (5) generating
the code to be executed on each processor. Here
we focus on the first three tasks. parallelism de-
tection, computation scheduling and computation
mapping (while taking into account the communi-
cation and temporal locality), or in other words the
time-scheduling and space-mapping. We accom-
plish these viathe use of anovel and efficient com-
munication scheme we call chain pattern for data
exchange between processors. Current work is un-
dergoing for generating code based on this scheme
for various high performance architectures.

This work is an extension of [5][12], in which
a geometric method of pattern-outline prediction
was presented for uniform dependence loops, but
no space mapping method was presented. In [5]
and [12] no communication cost was taken into ac-
count, and the Unit-Execution-Time (UET) model
was assumed. In contrast, in this paper the cost
for communication is accounted for and a trade-off
is given between different space-mapping schemes.
Several wavefront scheduling methods are pre-
sented and compared in [8]. In this paper we
combine the method in [5] with the static cyclic
scheduling of [8], thus presenting the chain pat-
tern scheduling, which is an improvement with re-
spect to [5]&[8] in that it enhances the datalocality
utilizing methods from computational geometry, to
take advantage of the regularity of the index space.
In particular, we identify groups of iteration points
that we call chains, defining points connected viaa
specific dependence vector, called communication
vector d. (see [12]). Specific chains are mapped
to the same processor to enhance the data local-
ity. It isawell-known fact that the communication
overhead in most cases determines the quality and
efficiency of the paralel code. The fundamental
idea behind our algorithm is that regardiess of the
underlying interconnection network (FastEthernet,



GigabitEthernet, SCI, Myrinet), or of the number
of processors within a node (for SMP systems), or
of the system’s homogeneity or heterogeneity, re-
ducing the communication cost always yields en-
hanced performance. Given two scheduling poli-
cies that use the same number of processors, the
one requiring less data exchange between the pro-
cessors will amost certainly outperform the other.
In this paper we propose that the chunks assigned
to each processors be chosen so as to ensure data
locality and reduced communication. Actually, us-
ing the geometric notion of chains and taking ad-
vantage of the regularity of the index space, this
can be achieved by simply following the flow of
dependence vectors. Extensive experimental com-
parisons of our scheme with the well-known cyclic
mapping [8] show that for the same number of pro-
cessors the volume of communication isreduced by
15% — 35%.

The contributions of this work are the follow-
ing: (1) we present a simple method for schedul-
ing nested loops to enhance the data locality, with-
out the complicated transformations of other ap-
proaches (e.g., tiling); (2) we introduce a new
scheme for the efficient space-time mapping that
trades off execution vs. communication time in or-
der to achieve overall minimum completion time.

2. Definitions and Notation

Theindex space J of an n-dimensional uniform
dependence loop is a n-dimensional subspace of
N™. Due to the existence of dependence vectors,
only a certain set of points can be executed at ev-
ery moment [12]. The geometric border of this
set, forms a polygonal shape called pattern. Our
scheduling algorithm executes every index point at
its earliest computation time (ECT), imposed by
the existing dependence vectors. This policy guar-
antees the optimal execution time of the entire loop
(assuming an unbounded number of processors).
The index space is partitioned into digjoint time
subsets denoted Paty, k > 0, such that Pat;, con-
tains the set of points of .J, whose earliest compu-
tation time is k. We call Pat;, the pattern corre-
sponding to moment k. By definition, Pat, de-

notes the boundary (pre-computed*) points. The
geometric shape of the subset of index points that
can be computed initialy is caled initia pattern
(see Fig. 1) and is denoted as Pat;. The pattern-
outline is the upper boundary of each Pat; and is
denoted as paty,k > 1. The pattern points are
those pointsthat are necessary in order to definethe
polygon shape of the pattern. The rest of the points
just completethe polygon area. The pattern vectors
are those dependence vectors d; whose end-points
are the pattern points of the initial pattern. Fig. 1
depicts these definitions.
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Figure 1. Thisistheindex space of aloop with
4 dependence vectors: d; = (1,3), d2 = (2,2),
ds = (4, 1), andds = (4, 3)

Each shaded polygon depicts what we call pat-
tern, i.e., the subset of J that can be executed at a
certain moment. The first 3 patterns are showed.
The dashed lines mark the border of each pattern,
called pattern outline. Except d4, al other vectors
contribute to the formation of the pattern outline,
therefore are called pattern vectors. On the axeslie
the pre-computed boundary points. The communi-
cation vector inthisexampleisd,. = ds. Thechain
with origin (0,0) (C(o,0y) is shown, as well as the
chains it sends data to due to d;, d4 and ds, i.e,
0(072), 0(1,0) and 0(310) reSpeCtlvely

Partitioning the index space into time patterns

*The pre-computed points designate iteration points that do
not belong to the first quadrant of the index space, but represent
initial values for specific problems.



is beneficial for the time scheduling. However it
is not sufficient for an efficient space scheduling,
because it does not address the data locality is-
sue. Therefore, an additional decomposition of the
index space is necessary in order to enhance the
data locality [9] [10]. Usually, there are certain se-
guences of points that are computed by the same
processor. Each such sequence can be viewed as
a chain of computations, that is created by a cer-
tain dependence vector, as shown in Fig. 1. This
dependence vector is called communication vector
and will be referred to as d.. It is usually cho-
sen to be the dependence (pattern) vector that in-
curs the largest amount of communication (in most
cases this is the vector with the “smallest” coordi-
nates). The goal of this scheduling schemeis elim-
inating the communication cost incurred by d.,
hence, attributing the communication cost of the
loop nest to the remaining m dependence vectors:
dy,....d,.

The communication vector d. defines the fol-
lowing family of linesin n-dimensional space: j =
p + Ad., wherep € N* and A € R. This
way, every index point belongs to one such line.
Thus, by defining the chain C,. with offset r to be
{jeJ|j=r+ M., for some X € R}, we par-
tition the index space J into aset C of such chains.
The offset r is chosen so as to have at least one of
its coordinates equal to O, in other wordsr isapre-
computed point. |Cy| and |C| arethe cardinalities of
C, and C, respectively, and C); isthe cardinality of
amaximal chaint of C. The points of C,, commu-
nicate viad; (i designating any dependence vector
except d..) with the points of Cy,,/.

Let D" be the volume of the “incoming” data
for C, i.e., the number of index points on which
the points of C,. depend on. Similarly, D2t isthe
volume of the“outgoing” datafor C;, i.e., the num-
ber of index points which depend on the points of
C:. Thetotal communication associated with C;. is
Din + Dgut. In the rest, NP denotes the number of
available processors.

TIn this paper n is the dimension of the index space and m
the number of dependence vectors, excluding d..

fGenerally, in an index space there are many maximal
chains.

3. Chain Pattern Scheduling

The chain pattern scheduling algorithm is de-
vised to enhance the data locality of programs
with uniform nested loops using the concept of
chains, and taking advantage of the optimality of
the scheduling method based on patterns. By map-
ping &l points of a chain C, to a single proces-
sor, communication incurred by d.. for those points
is completely eliminated. Furthermore, assuming
that C, sends data to C,,,...,Cy, due to de-
pendence vectorsdy, .. ., d,,, by mapping C, and
Cy,,- .., Cy,, tothe same processor the communi-
cation incurred by d4,...,d,, is adso diminated.
Similarly, the chains from which C.. receives data,
Cyys .-+, Cy , can aso be mapped to the same pro-
cessor, thus eliminating even more communication.
Generdly, it will not be possible to map &l these
chains to the same processor; yet the important
thing is the following: when assigning a new chain
to the processor that executed C., systematically
pickoneof Cy.,,...,Cr,,, Cyr, ..., Gy instead of
choosing in a random or arbitrary manner. This
strategy is guaranteed to lead to significant com-
muni cation reduction.

To better illustrate our point we consider two
different scenarios: (1) unbounded NP — high com-
muni cation = moderate performance, and (2) fixed
NP — moderate communication = good perfor-
mance. A common feature of both scenarios is that
chains are mapped to processors starting with chain
Cl0,0) and proceeding with the chains to its left
(or above) and right (or below), like a fan spread-
ing out. It is straightforward that by doing this
more points become available for execution (are
“released” from their dependencies) than in any
other way.

3.1. Scenario 1: Unbounded NP - High
Communication

This is the case where there are enough avail-
able processors so that each chain is mapped to a
different processor (see Fig. 2). Two similar ex-
amples are given: (a) A loop with three depen-
dence vectors, d; = (1,3),d2 = d. = (2,2) and
d; = (4,1) with chains formed aong d:. (b) A
loop with two dependence vectors, d; = (4,1) and



ds = d. = (2,2), with chains aso formed along
d,. Notathat in both cases, 24 chains are created.
However this scenario is somewhat unrealistic be-
cause for larger index spaces the number of chains
would be much greater and, therefore, the number
of processors required for assigning one chain to
one processor would be prohibitive. On the other
hand, this scenario does not support any kind of
data locality (except for ds), requiring alarge vol-
ume of communication between the processors. A
chain C;. has, in general, to receive datafrom m dif-
ferent chains and to send datato m different chains.
This implies that both D" and D2* are bounded
above by mC) (recall that C), isthe cardinality of
amaximal chain). The total volume of communi-
cation induced by this scheme, denoted V, is then:
V ~ 2mC)|C|. It is obvious that such a high vol-
ume of communication diminishes the overall per-
formance of the parallel program.

3.2. Scenario 2: Fixed NP — Moderate Com-
munication

This scenario is designed to minimize the com-
munication and enhance the data locdlity, thus in-
creasing the overall performance of the parallel
program. For this scenario, two aternative map-
pings are considered, as shown in Fig. 3and 4. In
order to have moderate communication, and thus
better performance than in scenario (1), an arbi-
trary NP was considered (herein 5 processors). The
first mapping (see Fig. 3(a)(b)) is an implementa-
tion of the well known cyclic mapping [8], where
each chain from the pool of unassigned chains is
mapped in a cyclic fashion, starting with C' q).
This means, that the same processor will execute
chains Cg,0), C(5,0y, C10,0) and so on. The
communication volume for this mapping depends
on NP and on the chain-offsets rq, ..., r,, corre-
sponding to dependence vectors dy,...,d,,. In
particular, if NP isgreater than the maximum coor-
dinate appearing in one of the offsets ry,...,r,,,
then the volume of communication is prohibitive,
basically being the same with the one in scenario
(1), i.e, V = 2mCy|C|. Otherwise, if NP is
equal to a coordinate of an offset r;, the commu-
nication incurred by the corresponding dependence

Figure 2. Scenario () Unbounded NP — high
communication = moderate performance: ev-
ery chain is mapped to a different processor
(unrealistic assumption with respect to the num-
ber of available processors).

vector d; is eliminated. Hence, let ¢ be the num-
ber of offsets that have one of their coordinates

equal to NP; then the volume of communication is
V = 2(m — q)C|C.

The second mapping, differs from the previ-
ous in that it intentionally zeroes the communi-
cation cost imposed by as many dependence vec-
tors as possible. In particular, in Fig. 4(a) the first
three processors execute the chains“below” d. ina
round-robin fashion, whereas the other two proces-
sors execute the chains above d .., again in a round-



4
4
S
%>
s
D
4
<
o
>
7

P2

t—lq—iv——}—

S P4
2P

P3

. e-- e -te - Tes e -te--e- N

W

(b)
Figure 3. Scenario (2) cyclic mapping: chains
are mapped to the available processorsin a cyclic
fashion starting with chain C.

robin fashion. This way, the communication cost
attributed to dj is eliminated for the chains Cg o)
to C(13,0) and the communication cost attributed to
d; is eliminated for the chains C(o1) to C(g,10)-
The difference from Fig. 3(a) is that in this case,
the processors do not span the entire index space,
but only a part of it (i.e., below or above d.). The
benefits of doing so are that a more realistic NP is
assumed while still having acceptable communica-
tion needs, and performanceisincreased asaresult.
In Fig. 4(b) due to the fact that there is no depen-
dence vector above d.., a cyclic mapping of chains

-8 --0--0--8--0--0--0--8 -7

2 4 6 8 10 12 x
(b)

Figure 4. Scenario (2) mapping with offset 3
along the x axis, and offset 2 along the y axis:
chains are mapped to the available processors so
as to minimize communication imposed by d.., d1

is possible, starting with the chain C' ) and mov-
ing above and below, so asto incrementally release
points for execution. This is similar to Fig. 3(b),
with the difference that 5 processors were used in-
stead of 3. The advantage of this scenario is that it
does not limit the degree of parallelism because it
uses all the available processors, hence being the
most realistic of the two scenarios.

To estimate the volume of communication in
this case we reason as follows: consider NP as the
sum of ¢1,...,q (i.e, NP= ¢ + ... 4+ ¢ and,
idedlly, | = m) such that each ¢; is a coordinate



of offset r;. By proper assignment of groups of ¢;
chains to processors, the communication cost in-
curred by d; is greatly diminished throughout the
index space. Even if such a decomposition of NP
in groups of ¢; processors is not possible, it is al-
ways possible to choose the appropriate integers
qi,--.,q suchthat each ¢; isacoordinate of r; and
NP> ¢;+...4+¢q. Thus, by lettingg = ¢1 +. . .+q;,
we conclude that the volume of communication is
V &~ 2(m — q)C|Cl.

Communication reduction & Cyclic
with 5 processors (1) m Chain-Pattern

30000

25000
20000

15000
10000

5000
0 bt
10x10 20x20 30x30 40x40 60x60 SOx80 100%100
Index space sizes

=

Communication volume

o Cyclic
® Chain-Pattern

Communication reduction
with 5 processors (2)

3000000
2500000
2000000
1500000

1000000
500000
=

099500203 00:30G 000G 0080 giRn000

volume

Communication

-

Index space sizes

Figure 5. Experimental resultsfor NP =5
Communication reduction

= Cyclic
with 6 processors (1) B Chain-Pattern

20000
25000
20000
15000
10000

o

s
10x10  20x20 30x30 440 B0x60 80x80 100x100
Index space sizes

Communication volume

Communication reduction B Cyclic
with 6 pr 2) m Chain-Pattern

volume

Communication

3000000
2500000
2000000
1500000
1000000
[
100 B2 R0 BBoxETR o000

Index space sizes

Figure 6. Experimental resultsfor NP =6
For the sake of simplicity, in both scenar-
ios every chain was assigned to a single proces-
sor. This is best suited for distributed-memory
systems, that consist usualy of single processor

nodes. Note however, that each chain may be as-
signed to more than one processors such that no
communication among them is required. This is
best suited for symmetric multiprocessor systems
(SMPs), where processors of a node can com-
municate through the locally (intra-node) shared-
memory. Our approach is also suitable for het-
erogeneous networks, in which case a processor
with higher computational power would be given
either longer or more chains, whereas one with
lesser computational power would be given either
fewer or shorter chains. It is obvious that the ratio
COZTAZZZT%%%T'Q is critical for deciding which
scenario and which architecture suits best a specific
application.

4. Performance Results

A program written in C++, which emulates the
distribute-memory systems model, was used to val-
idate the proposed methodology. This program im-
plements both the cyclic scheduling method [8],
and the chain pattern scheduling proposed here.
We tested index spaces ranging from 10 x 10 to
1000 x 1000 index points. For all index spaces,
the four dependence vectors of the loop nest given
in Fig. 1 and the communication vector (2,2) were
considered. Fig. 5-8 give the simulation results
when NP ranges from 5 to 8 processors. Note
that in every case, and for al index space sizes,
the chain pattern mapping performs better than the
classic cyclic mapping. In particular, the commu-
nication reduction achieved with the chain pattern
mapping ranges from 15% - 35%.

5. Conclusion

The chain pattern scheduling presented here has
some similarities with the static cyclic and static
block scheduling methods described in [8]. The
similarities are: the assignment of iterations to a
processor is determined a priori and remains fixed
— yielding reduced scheduling overhead; all three
methods require explicit synchronization between
dependent chains or tiles. However, the three meth-
ods are in the same time different, mainly because:
iterations within a chain are independent, whereas
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within atile they are not (this promotes the adapt-
ability of our scheduling to different architectures,
as previously mentioned); our method significantly
enhances the data locality, hence performs best
when compared to the static cyclic or block meth-
ods. Our methodology can be easily augmented to
automatically generate the appropriate SPMD par-
alel code, and we are currently working towards
this goal. Extensive tests show that the proposed
method outperforms in all cases the classic cyclic
mapping, succeeding to reduce the communication
by 15%-35%, which corroborate the efficiency of
our approach.
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