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Abstract

The response surface methodology (RSM), which typically uses quadratic polynomials, is predominantly used for

metamodeling in crashworthiness optimization because of the high computational cost of vehicle crash simulations.

Research shows, however, that RSM may not be suitable for modeling highly nonlinear responses that can often be

found in impact related problems, especially when using limited quantity of response samples. The radial basis func-

tions (RBF) have been shown to be promising for highly nonlinear problems, but no application to crashworthiness

problems has been found in the literature. In this study, metamodels by RSM and RBF are used for multiobjective opti-

mization of a vehicle body in frontal collision, with validations by finite element simulations using the full-scale vehicle

model. The results show that RSM is able to produce good approximation models for energy absorption, and the model

appropriateness can be well predicted by ANOVA. However, in the case of peak acceleration, RBF is found to generate

better models than RSM based on the same number of response samples, with the multiquadric function identified to be

the most stable RBF. Although RBF models are computationally more expensive, the optimization results of RBF

models are found to be more accurate.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In 2002, 42,815 people were killed in vehicle crashes.

That represents an increase of 1.5% over 2001 and the

highest level since 1990 [1]. Also in 2002, 2,926,000

people were injured from vehicle crashes, many with
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permanent injuries. In recent years, vehicle safety (crash-

worthiness) has drawn more public attention and

research on vehicle crashworthiness has gained momen-

tum in both academe and the automotive industry.

Vehicle safety can be measured by parameters such as

the contact forces exerted on the occupants and/or the

resulting accelerations during a vehicle crash [2]. Both

safety parameters (i.e., contact force and acceleration)

are closely related to the amount of energy absorbed

by the vehicle before the impact wave reaches the occu-

pants. With the aid of finite element (FE) analysis
ed.
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programs designed for dynamic contact problems, such

as LS-DYNA and PAM-CRASH, it is possible to per-

form a crash simulation and evaluate these parameters.

Furthermore, by coupling such simulation tools with

nonlinear mathematical programming procedures, we

can optimize a vehicle body to improve its crashworthi-

ness characteristics while considering other important

factors such as manufacturing cost and vehicle perfor-

mance. However, there are many challenges with crash-

worthiness optimization. Among them, we can point to

the implicit relationships between safety parameters and

structural design attributes as well as the computational

cost associated with repeated transient FE analyses.

Such concerns have led to the widespread use of meta-

modeling approaches in crashworthiness optimization.

Despite their efficiency, metamodeling techniques

could still require a significant number of crash simula-

tions, especially when the number of design variables is

large. For this reason, reduced models (i.e., component

FE models or full-vehicle FE models with fewer degrees

of freedom) have been developed and used in crash sim-

ulations [3–6]. Although helpful in understanding the

mechanism of crash and improving vehicle designs, the

reduced models have two major limitations. Firstly, it

is difficult to accurately match the exact structural con-

straint and loading conditions in the reduced model with

those in a full-scale model during impact accompanied

with large deformations. Secondly, a reduced model

can typically be used for only one impact scenario and

as such it would not be appropriate for crashworthiness

optimization involving multiple impacts. However, the

recent advances in computer technology have made it

possible to use full-scale FE models in high fidelity crash

simulations. Such models, developed by the National

Crash Analysis Center (NCAC) and other agencies in

the US, have been successfully used for crash simulation

with the results compared with real vehicle tests [7–10].

Among the commonly used metamodeling tech-

niques in crashworthiness optimization, the response

surface methodology (RSM), particularly the use of sec-

ond-order polynomials, has been the predominant meth-

od mainly because of its simplicity and efficiency.

However, the drawback of using second-order response

surface (RS) models is that they may not be appropriate

for creating global models over the entire design space

for highly nonlinear problems. Although it is possible

to develop higher-order RS models, they may not be

effective or appropriate for crashworthiness optimiza-

tion, partly due to the high computational cost in exten-

sive sampling of the design space.

Recent innovations to improve both the accuracy

and efficiency of RSM include the development and

application of the sequential local RSM [11,12], adaptive

RSM [13], and trust-region-based RSM [14]. All these

approaches partition the feasible design space into mul-

tiple small regions that can be accurately represented by
low-order RS models. Although these techniques are

very efficient for single objective optimization problems,

they may not be appropriate for problems involving

multiple objectives. Yang et al. [15], in their survey of lit-

erature on local RSM approaches, have concluded that

in multiobjective optimization problems these ap-

proaches could be ineffective because the response re-

gion of interest would never be reduced to a small

neighborhood that was good for all the objectives that

typically conflict with each other.

Jin et al. [16], compared RSM, Kriging method

(KM), radial basis functions (RBF), and multivariate

adaptive regression splines (MARS) using fourteen dif-

ferent problems, with one representing a complex engi-

neering application. They showed that RBF was the

best for both large-scale and small-scale problems based

on evaluations of the coefficient of multiple determina-

tion (R2), relative average absolute error (RAAE), and

relative maximum absolute error (RMAE). RBF was

found to be the best for overall performance on accu-

racy, robustness, problem types, sample size, efficiency,

and simplicity. By contrast, they showed RSM to be

the worst, in fact not suitable, for modeling highly non-

linear problems. However, they used only a linear RBF

that, in general, is not a very accurate metamodel for

modeling highly nonlinear problems. Krishnamurthy

[17] compared augmented and compactly supported

RBF with KM, local moving least square (MLS), and

global least square (GLS) using one mathematical func-

tion and one FE based problem. The MLS and GLS

models in his study were basically quadratic polynomi-

als; therefore, they represented local and global RS mod-

els, respectively. He showed that RBF, KM, and MLS

produced comparable and accurate results, and that

GLS performed poorly. However, the example problems

in that study did not require complex engineering anal-

ysis and thus relatively large sample sizes were generated

and used.

Despite its simplicity, RSM provides efficient yet

accurate solutions to many engineering problems [18]

and analysis of variance (ANOVA) can be used to pre-

dict model appropriateness or fitness before the model

is used in design optimization. RBF, on the other hand,

is more expensive than RSM, because it uses a series of

computationally expensive functions for a single model;

therefore, it is less efficient in performing function eval-

uations. This drawback becomes apparent when solving

multiobjective design optimization problems in which

millions sometimes even billions of solutions need to

be found in order to develop the Pareto Frontier. An-

other disadvantage of using RBF is that model fit-

ness cannot be checked using ANOVA, because by

definition an RBF passes exactly through all the design

points.

The focus of this study is to compare RSM and RBF

using limited samplings from both a nonlinear mathe-
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matical function and full-scale crash simulations, and to

assess the appropriateness of the resulting metamodels

in both problems. The remaining portion of the paper

is organized as follows. In Section 2 a brief overview

of RSM and RBF is provided followed by the metamod-

eling of a nonlinear mathematical function in Section 3.

In Section 4, we describe the crash simulation model,

multiobjective optimization problem, and corresponding

results. This is followed by the concluding remarks in

Section 5.
2. Metamodeling methodologies

The basic idea of metamodeling is to construct an

approximate model using function values at some sam-

pling points, which are typically determined using exper-

imental design methods such as factorial design, Latin

hypercube, central composite design, or Taguchi ortho-

gonal array. Model fitness is subsequently checked using

various statistical methods. In this section, we give a

brief overview of the two methods of interest in our

research.

2.1. Response surface methodology (RSM)

In RSM, we typically use first- or second-order mod-

els in the form of linear or quadratic polynomial func-

tions to develop an approximate model that provides

an explicit relationship between design variables and

the response of interest. The unknown coefficients in

the model are approximated using the method of least

squares.

Let f(x) be the true objective or response function

and f 0(x) its approximation obtained using the second-

order polynomial in the form

f 0ðxÞ ¼ b0 þ
Xm
i¼1

bixi þ
Xm
i¼1

biix
2
i þ

Xm�1

i¼1

Xm
j¼iþ1

bijxixj; ð1Þ

where m is the total number of design variables, xi is

the ith design variable, and the bs are the unknown

coefficients. For n sampling of design variables

xki(k = 1,2 . . .n, i = 1,2, . . . m) and the corresponding

function values fk(k = 1,2 . . . n), Eq. (1) leads to n linear

equations expressed as

f1 ¼ b̂0 þ
Xm
i¼1

b̂ix1i þ
Xm
i¼1

b̂iix
2
1i þ

Xm�1

i¼1

Xm
j¼iþ1

b̂ijx1ix1j;

f2 ¼ b̂0 þ
Xm
i¼1

b̂ix2i þ
Xm
i¼1

b̂iix
2
2i þ

Xm�1

i¼1

Xm
j¼iþ1

b̂ijx2ix2j;

� � �

fn ¼ b̂0 þ
Xm

b̂ixni þ
Xm

b̂iix
2
ni þ

Xm�1 Xm
b̂ijxnixnj.

ð2Þ
i¼1 i¼1 i¼1 j¼iþ1
Eq. (2) may be expressed in matrix form as

f ¼ X b̂; ð3Þ

where the vector of unknown coefficients b̂ represents

the least-square estimator of the true coefficient vector

and is solved using the method of least squares as

b̂ ¼ ðXTXÞ�1ðXTf Þ. ð4Þ
Statistical analysis techniques such as ANOVA can

be used to check the fitness of an RS model and to iden-

tify the main effects of design variables. However, main

effect analysis is not the focus of this study and will not

be discussed here. The major statistical parameters used

for evaluating model fitness are the F statistic, R2, ad-

justed R2ðR2
adjÞ, and root mean square error (RMSE).

Note that these parameters are not totally independent

of each other and are calculated as

F ¼ ðSST� SSEÞ=p
SSE=ðn� p � 1Þ ; ð5Þ

R2 ¼ 1� SSE=SST; ð6Þ

R2
adj ¼ 1� ð1� R2Þ n� 1

n� p � 1
; ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSE

n� p � 1

s
; ð8Þ

where p is the number of non-constant terms in the RS

model, SSE is the sum of square errors, and SST is the

total sum of squares. SSE and SST are calculated as

SSE ¼
Xn

i¼1

ðfi � f 0
i Þ

2
; ð9Þ

SST ¼
Xn

i¼1

ðfi � �f Þ2; ð10Þ

where fi is the measured function value at the ith design

point, f 0
i is the function value calculated from the poly-

nomial at the ith design point, and �f is the mean value of

fi.

Generally speaking, the larger the values of R2 and

R2
adj, and the smaller the value of RMSE, the better the

fit. In situations where the number of design variables

is large, it is more appropriate to look at R2
adj, because

R2 always increases as the number of terms in the model

is increased while R2
adj actually decreases if unnecessary

terms are added to the model [19]. In addition to these

statistics, the accuracy of the RS model can also be mea-

sured by checking its predictability of response using the

prediction error sum of squares (PRESS) and R2 for pre-

diction (R2
prediction). The PRESS statistic and R2

prediction are

calculated as

PRESS ¼
Xn

i¼1

½fi � f 0
ðiÞ�

2
; ð11Þ
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R2
prediction ¼ 1� PRESS=SST; ð12Þ

where f 0
ðiÞ is the predicted value at the ith design point

using the model created by (n � 1) design points that ex-

clude the ith point.

2.2. Radial basis functions (RBF)

An RBF uses a series of basic functions that are sym-

metric and centered at each sampling point, and it was

originally developed for scattered multivariate data

interpolation [20]. Applications of RBF include ocean

depth measurement, altitude measurement, rainfall

interpolation, surveying, mapping, geographics and

geology, image warping, and medical imaging.

Let f(x) be the true objective or response function

and f 0(x) its approximation obtained from a classical

RBF with the general form

f 0ðxÞ ¼
Xn

i¼1

ki/ðkx� xikÞ; ð13Þ

where n is the number of sampling points, x is the vector

of design variables, xi is the vector of design variables at

the ith sampling point, kx � xik is the Euclidean dis-

tance, / is a basis function, and ki is the unknown

weighting coefficient. Therefore, an RBF is actually a

linear combination of n basis functions with weighted

coefficients. Some of the most commonly used basis

functions include:

• Thin-plate spline: /(r) = r2 log(cr2), 0 < c 6 1;

• Gaussian: /ðrÞ ¼ e�cr2 , 0 < c 6 1;

• Multiquadric: /ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
, 0 < c 6 1;

• Inverse multiquadric: /ðrÞ ¼ 1
r2þc2, 0 < c 6 1.

By replacing x and f 0(x) in Eq. (13) with n vectors of

design variables and their corresponding function values

at the sampling points, we obtain the following n

equations

f 0ðx1Þ ¼
Xn

i¼1

ki/ðkx1 � xikÞ;

f 0ðx2Þ ¼
Xn

i¼1

ki/ðkx2 � xikÞ;

� � �

f 0ðxnÞ ¼
Xn

i¼1

ki/ðkxn � xikÞ.

ð14Þ

The matrix format of Eq. (14) is

f ¼ Ak; ð15Þ

where f = [f 0(x1)f
0(x2), . . ., f

0(xn)]
T, Ai,j = /(kxi � xjk)

(i = 1,2 . . . n, j = 1,2, . . . n), and k = [k1k2� � �kn]T. The

coefficient vector k is obtained by solving Eq. (15).
An RBF using the aforementioned highly nonlinear

functions does not work well for linear responses [17].

To solve this problem, we can augment an RBF by

including a polynomial function such that

f 0ðxÞ ¼
Xn

i¼1

ki/ðkx� xikÞ þ
Xm
j¼1

cjpjðxÞ; ð16Þ

where m is the total number of terms in the polynomial,

and cj(j = 1,2, . . ., m) is the corresponding coefficient. A

detailed discussion on the polynomial functions that

may be used can be found in Ref. [17].

It can be seen that Eq. (16) is underdetermined be-

cause there are more parameters to be solved than the

number of equations created with available sampling

points. Therefore, the orthogonality condition is further

imposed on coefficients k asXn

i¼1

kipjðxiÞ ¼ 0; for j ¼ 1; 2 . . .m. ð17Þ

Combining Eqs. (16) and (17) in matrix form gives

A P

PT 0

� �
k

c

� �
¼

f

0

� �
; ð18Þ

where Ai,j = /(kxi � xjk) (i = 1,2 . . . n,j = 1,2, . . . n),
Pi,j = pj(xi) (i = 1,2, . . . n, j = 1,2 . . . m), k = [k1k2. . .kn]

T,

c = [c1c2� � �cm]T and f = [f 0(x1)f
0(x2)� � �f 0(xn)]T. Eq. (18)

consists of (n + m) equations and its solution gives coef-

ficients k and c for the RBF in the form of Eq. (16).

It should be noted that an RBF passes through all the

sampling points exactly. This means that function values

from the approximate function are equal to the true

function values at the sampling points. This can be seen

from the way that the coefficients are found in Eq. (18).

Therefore, it would not be possible to check RBF model

fitness with ANOVA, which is a drawback of RBF.
3. Metamodeling with the branin rcos function

We start comparing the RS and RBF models with a

highly nonlinear mathematical function, the Branin rcos

function [21]. This function has two design variables and

is given by

f ðxÞ ¼ x2 �
5 � 1x21
4p2

þ 5x1
p

� 6

� �2

þ 10 1� 1

8p

� �
cosðx1Þ þ 10; ð19Þ

where x1 has a range of [�5,10] and x2 has a range of

[0,15].

We used a two-variable, seven-level full factorial de-

sign in sampling, which resulted in 49 (72 or 7 · 7) evenly

distributed design points. We first created the linear and

quadratic RS models with the 49 design points and



Table 1

Statistics of the RS models for the Branin rcos function on design points

RS model F Pr > F R2 R2
adj RMSE PRESS R2

prediction

Linear polynomial 1.7 0.19 0.07 0.03 67.5 250249 0.0

Quadratic polynomial 19.8 <0.0001 0.70 0.66 39.8 101841 0.55
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assessed their accuracies using Eqs. (5)–(12); the model

statistics are given in Table 1. The small values of R2,

R2
adj, and R2

prediction as well as the large values of RMSE

and PRESS indicate bad fits of the two RS models, even

though the quadratic model is better than the linear one.

Using the same design samples, we also created the RBF

models with the Gaussian, multiquadric, and inverse-

multiquadric functions in both regular and augmented

formats. The values of constant c in these basis functions

were chosen to be one, and linear polynomials were used

in the augmented RBF models. The Branin rcos function
Fig. 1. The Branin rcos functi
together with the RS and RBF models are illustrated in

Fig. 1.

In Fig. 1, the symbols ‘‘RSM-LP’’ and ‘‘RSM-QP’’

stand for the RS models created with linear and qua-

dratic polynomials, respectively. The RBF models

created with the Gaussian, multiquadric, and inverse

multiquadric functions are represented by symbols

‘‘RBF-GS’’, ‘‘RBF-MQ’’, and ‘‘RBF-IMQ’’, respec-

tively. The augmented RBF models are represented by

adding ‘‘-LP’’ to the symbols of those without augmen-

tation. We can see from Fig. 1 that the two RS models
on and the metamodels.



Table 2

Accuracy assessment of the RS and RBF models for the Branin rcos function

Error Metamodel

RSM-LP RSM-QP RBF-GS RBF-MQ RBF-IMQ RBF-GS-LP RBF-MQ-LP RBF-IMQ-LP

Max. (%) 22247 10391 1321 1102 2676 666 1252 2937

Min. (%) �79.7 �3596 �373 �37.3 �22.3 �478.6 �37.3 �19.7

RMSE 51.8 30.2 8.2 4.6 7.1 6.1 4.8 7.5
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do not fit the true function well; this is consistent with

the results of statistical assessment in Table 1. We also

observed that all the RBF models have better fit than

the RS models, with the two RBF models created with

the multiquadric functions in regular and augmented

format appearing to have the best fit.

As aforementioned, the model accuracy of an RBF

model cannot be assessed on design points; therefore,

we compared the accuracies of RS and RBF models at

off-design points. We used points on a 76 · 76 grid

and excluded the 49 design points in our evaluation; this

resulted in a total of 5727 (5776–49) off-design points.

The maximum errors, minimum errors, and RMSE val-

ues for all the metamodels were calculated; the results

are given in Table 2. Comparing the absolute values of

maximum and minimum errors and the RMSE values

of the metamodels in Table 2, we found that all the

RBF models predicted better than the RS models. The

two RBF models created with the multiquadric function

were identified to be the best.
4. Crashworthiness optimization problem

4.1. Finite element model

Our crashworthiness optimization problem is based

on a full-scale FE model of 1996 Dodge Neon. The

original FE model of this vehicle was developed by

NCAC. It consists of 20 types of materials and 327 parts

for a total mass of 1210 kg. It has 286,011 nodes and

273,108 (mostly shell) elements. Kan et al. [10] used this

model for frontal impact simulations and found the

results to be consistent with physical crash test data.
Fig. 2. Full-scale finite element model of 1996 Dodge Neo
Fig. 2 shows the original FE model before and 100 ms

after a frontal impact at 56.5 km/h.

Upon further examination of the original FE model,

we found it to be unstable due to the existence of a

significant amount of warped and highly skewed shell

elements. When performing preliminary design simula-

tions by changing the thickness of various parts, some

of the simulation runs terminated with errors. In our ini-

tial attempt of sampling the design space, approximately

one-third of 27 simulations crashed. Based on this obser-

vation, we modified and refined the model to improve its

stability. The revised FE model has 320,998 nodes and

582,541 elements for approximately 1.8 million total de-

grees of freedom. Details about the revised Neon FE

model can be found in Refs. [8,9]. The simulation and

optimization results presented in this paper are all based

on the revised FE model.

For crash simulations we used LS-DYNA v970 [22] on

an IBM Linux Cluster with a total of 1038 1.266 GHz

Pentium III processors and 607.5 GBRAM.A single sim-

ulation of 100 ms frontal impact (shown in Fig. 2) takes

approximately ten hours using 36 processors.

We observed instabilities in our simulations using the

explicit FE code, LS-DYNA, and had to adjust the

numerical parameters for the input to complete some

of the simulations. Similar problems were also reported

and discussed in the literature by Brezzi and Bathe in

their study of mixed FE formulations with details

appearing in Refs. [23,24].

4.2. Design objectives and variables

The vehicle impact response is best described by the

acceleration history with the peak acceleration typically
n. (a) Before impact; (b) after 100 ms frontal impact.



Fig. 3. Time history of total kinetic energy, total internal

energy, and internal energy of thirteen selected parts.
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used as a rough indicator of impact severity. The peak

acceleration is determined by both the amount of kinetic

energy that can be absorbed by the vehicle and the time

that it takes for this energy to be absorbed. Therefore,

there are two key factors to consider: energy absorption

capacity and energy absorption rate. The goal of crash-

worthiness optimization is to maximize the vehicle�s en-
ergy absorption capacity and rate in order to minimize

the amount of energy transferred to the occupants.

Our preliminary vehicle frontal impact simulations

showed that more than 40% of kinetic energy is absorbed

within the first 20 ms and more than 90% within 40 ms.

As indicated by the time history curves in Fig. 3, of 327

parts, thirteen are found to be responsible for 59% of

the energy absorption at 20 ms and for 46% at 40 ms even

though they make up only 3.7% of total vehicle mass.

Consequently, we focused our attention on these thirteen

parts with the FE model at the initial state and at three

specific instances into the crash as shown in Fig. 4. It

can also be observed from Fig. 4(c) and (d) that the
Fig. 4. FE model of thirteen selected parts at (a) initial sta
amount of deformation from 40 to 100 ms is much less

significant than that up to 40 ms. Therefore, the kinetic
te, (b) 20 ms, (c) 40 ms, and (d) 100 ms after impact.
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energy absorbed by these thirteen parts at 20 ms and

40 ms were chosen as two objectives to be optimized.

Although we expected the peak acceleration to de-

crease as energy absorption capacity and rate are in-

creased, their relationship, as will be discussed later, is

not necessarily monotonic. Therefore, the peak acceler-

ation measured at the engine top was selected as the

third objective.

We chose part thickness as design variables. How-

ever, since among the selected parts three pairs are sym-

metric, only ten design variables are needed to describe

the thickness of individual parts. Table 3 lists the thir-

teen parts along with the corresponding initial thickness,

mass, and energy absorption at three different instances

following the impact.

4.3. Optimization problem formulation

The multiobjective optimization problem described

previously is formulated as

Min F ðxÞ ¼ ð�f1ðxÞ;�f2ðxÞ; f3ðxÞÞ

s.t.
Mnew

Mold

� 1 6 0

xli 6 xi 6 xui i ¼ 1;NDV; ð20Þ

where f1(x) and f2(x) represent the amount of energy ab-

sorbed (by the selected parts) at 20 ms and 40 ms,

respectively, while f3(x) is the peak acceleration at engine

top. The design constraint keeps the mass constant while

the parts change thickness with Mold and Mnew repre-

senting the mass of selected parts at the initial design

and during optimization, respectively. Since objectives

f1(x) and f2(x) are to be maximized, their negative forms

are used in Eq. (20). The side constraints allow a ±50%

variation in design variables from their initial values

given in Table 3.

There are several alternative ways to convert a multi-

objective optimization problem such as that defined by
Table 3

Part thickness and response characteristic at initial design

Deign

variable

Part no. Thickness

(mm)

Mass

(kg)

Intern

at 20

x1 330 2.0 6.67 1.32

x2 299 3.5 4.55 0.35

x3 389 and 391 1.9 7.72 0.65

x4 390 and 392 1.5 4.09 0.32

x5 632 1.0 3.40 0.23

x6 285 0.6 4.56 0.11

x7 439 2.6 4.37 0.00

x8 627 1.0 2.93 0.10

x9 384 1.5 1.65 0.05

x10 398 and 399 1.9 4.44 0.02

Total 44.37 3.16
Eq. (20) into a single objective problem. In this study,

we chose the weighted sum formulation with the revised

optimization formulation expressed as

Min F ðxÞ ¼ �W 1f1ðxÞ � W 2f2ðxÞ þ W 3f3ðxÞ

s.t.
Mnew

Mold

� 1 6 0

W i0;
X

W i ¼ 1; i ¼ 1; 3

xli 6 xi 6 xui ; i ¼ 1;NDV ; ð21Þ

where Wi represents the weight for the ith objective with

the additional requirements that each weight has to be

greater than zero and their sum cannot exceed one. By

using different combinations of weight coefficients, a

set of solutions is obtained and the Pareto non-domi-

nance check is performed to obtain the Pareto Frontier.

A well-known problem of the weighted sum method is

that some of the solutions on the Pareto Frontier may

be missing. However the purpose of this study is to com-

pare model appropriateness instead of attempting to

obtain the entire solution set; therefore, this method is

appropriate for this study.

The optimization problem in Eq. (21) is solved using

the object-oriented multidisciplinary optimization sys-

tem developed at the Center for Advanced Vehicular

Systems (CAVS), Mississippi State University [25]. This

program uses the method of feasible sequential qua-

dratic programming (FSQP) as the optimization solver

[26]. Before optimization, we developed appropriate

metamodels for the objective functions f1(x), f2(x), and
f3(x) in Eq. (20) using RSM and RBF with the proce-

dure described next.

4.4. Metamodeling with RSM and ANOVA analysis

With 10 design variables, a first-order RS model for

each objective would consist of eleven unknown coeffi-

cients while a second-order model would have 21 un-

known coefficients excluding the interaction terms. For
al energy

ms (kJ)

Internal energy

at 40 ms (kJ)

Internal energy

at 100 ms (kJ)

1.79 1.79

0.52 0.52

1.14 1.14

0.59 0.60

0.36 0.36

0.28 0.30

0.25 0.30

0.30 0.30

0.21 0.22

0.45 0.59

5.92 6.11
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the number of design variables involved, it would be

impractical to use full factorial design (FFD) or central

composite design (CCD) for calculation of the coeffi-

cients because the number of simulations required for

these two methods would be too large. For example, a

2-level FFD would require 210 = 1024 simulations with

CCD requiring an additional 21 simulations. However,

the Taguchi L27 orthogonal array would require only

27 simulations for up to 13 design variables, each with

three levels [27]. Thus, each design variable is allowed

to have normalized values of �1, 0, 1 representing those

at lower bound, initial design, and upper bound, respec-
Table 4

Design matrix and normalized values of objective functions obtained

No. x1 x2 x3 x4 x5 x6 x7

0 0 0 0 0 0 0 0

1 �1 �1 �1 �1 �1 �1 �1

2 �1 �1 �1 �1 0 0 0

3 �1 �1 �1 �1 1 1 1

4 �1 0 0 0 �1 �1 �1

5 �1 0 0 0 0 0 0

6 �1 0 0 0 1 1 1

7 �1 1 1 1 �1 �1 �1

8 �1 1 1 1 0 0 0

9 �1 1 1 1 1 1 1

10 0 �1 0 1 �1 0 1

11 0 �1 0 1 0 1 �1

12 0 �1 0 1 1 �1 0

13 0 0 1 �1 �1 0 1

14 0 0 1 �1 0 1 �1

15 0 0 1 �1 1 �1 0

16 0 1 �1 0 �1 0 1

17 0 1 �1 0 0 1 �1

18 0 1 �1 0 1 �1 0

19 1 �1 1 0 �1 1 0

20 1 �1 1 0 0 �1 1

21 1 �1 1 0 1 0 �1

22 1 0 �1 1 �1 1 0

23 1 0 �1 1 0 �1 1

24 1 0 �1 1 1 0 �1

25 1 1 0 �1 �1 1 0

26 1 1 0 �1 0 �1 1

27 1 1 0 �1 1 0 �1

Table 5

Results of statistical analysis for first- and second-order RS models

Objective RS model F Pr > F R2

f1(x) First-order 99.9 <0.001 0.983

Second-order 89.8 <0.001 0.996

f2(x) First-order 41.8 <0.001 0.961

Second-order 112.6 <0.001 0.997

f3(x) First-order 3.5 0.0121 0.670

Second-order 3.5 0.0472 0.910
tively. Using the first ten columns in the L27 array as the

design matrix, we performed 27 simulations and devel-

oped two separate (first- and second-order) RS models

for each objective function. The design matrix and the

normalized FEA results including those for the original

structure are given in Table 4. The results of ANOVA

for the first- and second-order RS models of each objec-

tive are shown in Table 5.

Both RS models for f1(x) have large F statistics at

probability of less than 0.001. While the R2 and R2
adj of

the second-order model are marginally better than those

of the first-order model, both RS models have small
from FE simulations

x8 x9 x10 f1(x) f2(x) f3(x)

0 0 0 1.00 1.00 1.00

�1 �1 �1 0.51 0.71 1.05

0 0 0 0.57 0.77 1.26

1 1 1 0.61 0.81 1.17

0 0 0 0.81 0.89 1.02

1 1 1 0.87 0.92 0.94

�1 �1 �1 0.87 0.88 0.78

1 1 1 1.05 1.00 0.95

�1 �1 �1 1.00 0.94 0.80

0 0 0 1.13 1.04 0.88

�1 0 1 1.00 1.01 0.93

0 1 �1 1.01 0.99 1.02

1 �1 0 1.11 1.06 0.75

0 1 �1 0.97 0.94 0.74

1 �1 0 1.04 1.02 1.04

�1 0 1 1.05 1.01 0.83

1 �1 0 0.81 0.92 1.16

�1 0 1 0.79 0.90 1.06

0 1 �1 0.79 0.87 1.08

�1 1 0 1.20 1.12 0.88

0 �1 1 1.23 1.13 0.67

1 0 �1 1.19 1.10 0.73

0 �1 1 0.98 1.03 0.80

1 0 �1 0.98 0.95 0.81

�1 1 0 1.00 1.02 0.91

1 0 �1 0.99 1.00 0.72

�1 1 0 0.96 1.01 0.87

0 �1 1 1.01 1.01 0.76

R2
adj RMSE PRESS R2

prediction

0.973 0.029 0.040 0.954

0.985 0.022 0.056 0.935

0.938 0.025 0.028 0.894

0.988 0.011 0.015 0.943

0.476 0.111 0.543 0.149

0.651 0.091 1.084 0.0
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RMSE. The model statistics indicate that both first- and

second-order models for f1(x) fit sampling data very

well, with the latter being slightly superior.

For f2(x) and f3(x), a similar ANOVA analysis was

performed. The values of F, R2, R2
adj, and RMSE for

f2(x) indicate that the second-order model is better than

the first-order model. For f3(x), neither the first- nor the
second-order model fits the data well. The first-order

model has a small R2 and R2
adj and a relatively large

RMSE (0.11) as compared to the rest. The second-order

model is slightly better than the first; however, its rela-

tively small R2
adj and relatively large RMSE still indicate

a poor fit.

The PRESS statistic and R2
prediction were also calculated

for the metamodels of each objective function using Eqs.

(11) and (12) with the results also given in Table 5. For

f1(x) and f2(x), the large values of R
2
prediction indicate that

both first- and second-order RS models are fairly accu-

rate with the second-order model in each case having a

slight advantage. As for f3(x), the R
2
prediction values of first-

and second-order models are 0.149 and 0.0, respectively.

These low values indicate that neither of the two RS

models is a good predictor of the engine top acceleration

response. The results of R2
prediction are consistent with

those of ANOVA.

While mindful of the deficiencies of the RS model for

f3(x), we proceeded to solve the optimization problem in

Eq. (21) using a single global second-order RS model for

each of the objective functions. The main intent was to

generate random design points on the Pareto Frontier

for subsequent comparison with the results from direct

FE simulations as well as those based on more accurate

metamodels.

As a single global model is created for each objective

function, the model accuracy will be further checked and

compared with the above prediction using off-design

points obtained from FE validation results after optimi-

zation. Details are given in the next section.

4.5. Optimization using RS models

Due to the use of a gradient-based search technique,

the optimization problem was solved starting from more
Table 6

Design variables at eight optimum points based on second-order RS

Design point x1 x2 x3 x4 x5

1 1.00 �1.00 1.00 1.00 0.90

2 1.00 �1.00 1.00 1.00 �1.00

3 1.00 �0.03 0.58 1.00 �1.00

4 1.00 �0.99 1.00 1.00 �1.00

5 1.00 �0.68 1.00 1.00 �1.00

6 1.00 �0.82 0.96 1.00 1.00

7 1.00 �0.98 0.96 1.00 1.00

8 1.00 �0.26 1.00 1.00 �1.00
than 100 random initial design points with the best solu-

tion chosen as the optimal design. A set of solutions can

be obtained for this multiobjective optimization problem

by repeating the above procedure with different combina-

tions of the weight coefficients in Eq. (21). In this study,

we used a minimum weight of 0.1 and a weight increment

of 0.01. This means that the weight coefficients for f1(x),
f2(x), and f3(x) are chosen from 0.1 to 0.8 satisfying the

RWi = 1 constraint. This approach resulted in 62,196

possible combinations and equal number of design solu-

tions. The Pareto non-dominance criterion was then ap-

plied to the 62,196 solutions to obtain those on the

Pareto Frontier. We used the predicted optimum designs

at eight random points on the Pareto Frontier as identi-

fied in Table 6 for subsequent design validation using

complete transient FE analysis to find the exact values

of f1(x), f2(x), and f3(x) at each of the selected points.

The exact values along with the predicted values of the

three objectives are shown in Table 7.

For the eight selected points, we found the maximum

and average errors in f1(x) to be 6.5% and 2.2%, respec-

tively. For f2(x) the maximum and average errors are

3.2% and 1.5%, respectively. For f3(x), however, the re-

sults of the second-order RS model are rather poor, with

the maximum error being 29.8% and average error

15.1%. Although it is possible to improve the RS model

for f3(x), it would require additional simulation runs. An

alternative approach would be to develop RBF-based

solutions using the same number of response samples

as in the case of RSM. This procedure is discussed next.

4.6. Evaluation of RSM-based results with RBF

To investigate whether RBF-based metamodels are

any better than the RS models, we selected five types

of RBF and developed a model for each objective func-

tion. The five RBFs are:

(a) Gaussian with linear polynomial;

(b) Multiquadric with linear polynomial;

(c) Inverse-multiquadric with linear polynomial;

(d) Multiquadric;

(e) Inverse-multiquadric.
models

x6 x7 x8 x9 x10

�1.00 �1.00 �1.00 �1.00 �0.78

�1.00 �0.56 �1.00 �1.00 0.24

�1.00 0.42 �1.00 �1.00 �1.00

�1.00 �0.41 �1.00 �1.00 0.08

�1.00 �0.44 �1.00 �1.00 �0.20

�1.00 �0.97 �1.00 �1.00 �1.00

�1.00 �0.81 �1.00 �1.00 �1.00

�1.00 �0.07 �1.00 �1.00 �1.00



Table 7

Comparison of RSM predicted optima with FEA simulation results

Design point f1(x) (kJ) f2(x) (kJ) f3(x) (m/s2)

RSM FEA % Error RSM FEA % Error RSM FEA % Error

1 4.01 4.04 0.8 6.64 6.73 1.2 �1349.4 �1515.6 11.0

2 3.98 4.05 1.8 6.82 6.98 2.2 �1507.0 �1532.4 1.7

3 3.78 3.66 3.1 6.36 6.28 1.4 �1046.9 �1492.2 29.8

4 3.98 4.06 1.9 6.81 6.93 1.7 �1490.7 �1477.1 0.9

5 3.99 4.05 1.6 6.75 6.89 1.9 �1407.7 �1592.2 11.6

6 3.99 3.95 0.9 6.55 6.59 0.6 �1188.4 �1505.5 21.1

7 3.98 3.93 1.3 6.57 6.57 0.1 �1201.4 �1445.3 16.9

8 3.93 3.69 6.5 6.48 6.28 3.2 �1089.3 �1515.3 28.1

Ave. 2.2 1.5 15.1

Max. 6.5 3.2 29.8
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Functions (a)–(c) are augmented RBFs in the format

given by Eq. (16). The augmented RBFs are more desir-

able than the regular RBFs, because the formers can

handle linear responses in addition to nonlinear ones.

However, the results in Table 2 show that the augmented

RBF created with the multiquadric and inverse-multi-

quadric functions are slightly worse than the corre-

sponding non-augmented models. Therefore, we also

examine the non-augmented RBF models created with

the two functions as given in (d) and (e). The augment

RBF model created with the Gaussian function is better

than the non-augmented one in Table 2; therefore, we

use the augment RBF format in this problem as given

in (a).

On the right hand side of Eq. (16) there are 28 un-

known coefficients in the first term corresponding to

the 28 design points (one from original structure and
Fig. 5. Comparison of metamode
27 from Taguchi array). The second term is a linear

polynomial that has 11 unknown coefficients (one being

the constant and the others for the 10 design variables).

These 39 unknown coefficients are solved by Eq. (18),

which also includes the orthogonality condition given

by Eq. (17). Functions (d) and (e) follow the format

given by Eq. (13), and the 28 unknown coefficients are

solved by Eq. (15). Hence, in all functions only 28 obser-

vations are used to solve for the unknown coefficients.

Using the RBF-based models, we evaluated the

objective functions at the eight design points given in

Table 6 with a summary of results shown in Figs. 5–7.

Also included in the same figures are the objective func-

tion values from RSM-based solutions and direct FE

simulations. It can be seen from Figs. 5 and 6 that the

predicted values for f1(x) and f2(x) by Function (e) are

poor and significantly different from those by Functions
ls and FEA results for f1(x).



Fig. 6. Comparison of metamodels and FEA results for f2(x).

Fig. 7. Comparison of metamodels and FEA results for f3(x).

2132 H. Fang et al. / Computers and Structures 83 (2005) 2121–2136
(a)–(d). Fig. 6 shows that Functions (d) and (e) give bet-

ter overall predictions than Functions (a)–(c).

The errors of predicted values by the five RBFs com-

pared to the true values obtained directly from FE sim-

ulations are given in Table 8. For f1(x), the maximum

errors of Functions (a)–(e) are 6.7%, 4.4%, 8.5%, 8.1%,

and 28.7%, while the average errors are 2.6%, 2.2%,

3%, 4.7%, and 26%, respectively. This shows that Func-

tions (a)–(d) give reasonably good predictions of the true

response while Function (e) does not. A similar trend is

seen for f2(x) as well. The maximum errors of the five
RBFs for f2(x) are 4.3%, 4.2%, 8.5%, 5.8%, and 28.7%,

with average errors being 2.3%, 2.1%, 3%, 2.6%, and

26%, respectively. For f3(x), Functions (a)–(c) give poor
predicted values while Functions (d) and (e) give good

predictions. The maximum errors of the five RBFs for

f3(x) are 12.5%, 20.8%, 15%, 5.1%, and 5.8%, while the

average errors are 9.7%, 15%, 11%, 3%, and 2.7%,

respectively.

The analyses in Sections 4.4 and 4.5 showed that the

global, second-order RS model (based on 28 observa-

tions) cannot suitably represent f3(x), which appears to



Table 8

Percentage errors of RBF predicted optima compared to FEA simulation results

Objective Design

point

Gaussian +

polynomial

Multiquadric +

polynomial

Inv-multiquadric +

polynomial

Multiquadric Inverse

multiquadric

f1(x) 1 0.5 0.9 0.0 4.6 28.7

2 2.1 3.2 2.5 6.8 27.4

3 2.2 0.1 1.4 4.3 21.2

4 2.3 3.5 8.5 7.2 26.9

5 2.4 3.7 2.9 8.1 26.7

6 2.2 0.6 0.4 3.2 27.8

7 2.7 1.3 2.2 2.5 27.2

8 6.7 4.4 5.8 0.8 21.8

Ave. 2.6 2.2 3.0 4.7 26.0

Max. 6.7 4.4 8.5 8.1 28.7

f2(x) 1 0.7 1.2 0.9 1.4 22.6

2 3.6 4.2 4.4 5.3 23.0

3 1.6 0.1 1.0 1.8 15.5

4 3.3 3.9 8.5 5.1 21.9

5 3.3 4.0 3.6 5.8 21.3

6 0.7 0.0 0.7 0.1 21.6

7 1.1 0.5 0.9 0.5 21.2

8 4.3 2.7 3.7 0.9 16.2

Ave. 2.3 2.1 3.0 2.6 20.4

Max. 4.3 4.2 8.5 5.8 23.0

f3(x) 1 12.1 20.0 15.0 4.2 2.9

2 6.8 9.4 7.7 1.4 1.1

3 7.7 12.0 9.1 0.7 5.8

4 4.4 7.1 8.2 3.9 5.2

5 12.4 15.2 13.4 5.1 1.3

6 12.2 20.8 8.4 4.1 2.5

7 9.1 18.3 12.4 0.9 1.2

8 12.5 17.2 14.1 3.8 1.9

Ave. 9.7 15.0 11.0 3.0 2.7

Max. 12.5 20.8 15.0 5.1 5.8
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be a highly nonlinear function within the entire design

space. The models created by RBFs (a)–(c), with all aug-

mented by a linear polynomial as shown in Eq. (20), also

did poorly when it comes to f3(x). On the other hand, the

models created by Functions (d) and (e), which do not

include polynomial terms, give better predictions of

f3(x). The poor predictability of models in Functions

(a)–(c) may in fact be caused by the extra constraints

(i.e., the orthogonality condition) when trying to solve

39 unknown coefficients with only 28 observations. This

suggests that RBFs without polynomial terms may be

better suited for approximating highly nonlinear func-

tions when the sample size is relatively small.

Among the five RBFs, Function (d), the multiquadric

function without polynomials, is identified to be the

most stable function for all three objectives. Therefore,

the models created by the multiquadric function were se-
lected to perform the multiobjective optimization again

with the results presented in the next section.

4.7. Optimization results using multiquadric RBF

The optimization problem in Eq. (21) was solved

using different combination of weight coefficients for

f1(x), f2(x), and f3(x). The procedure for obtaining solu-

tions on the Pareto Frontier is the same as that described

previously in Section 4.5. The design variables at eight

randomly selected optimum points on the Pareto Fron-

tier are shown in Table 9 with the estimated and exact

values of the three objectives at these points given in

Table 10. The maximum errors of the RBF models for

f1(x), f2(x), and f3(x) are 5.4%, 5.2%, and 7.2%

while the average errors are 2.2%, 2%, and 5.7%,

respectively.



Table 9

Design variables at eight optimum points based on multiquadric RBF models

Design point x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1.00 �1.00 1.00 1.00 0.90 �1.00 �1.00 �1.00 �1.00 �0.78

2 1.00 �1.00 1.00 1.00 �1.00 �1.00 �0.56 �1.00 �1.00 0.24

3 1.00 �0.03 0.58 1.00 �1.00 �1.00 0.42 �1.00 �1.00 �1.00

4 1.00 �0.99 1.00 1.00 �1.00 �1.00 �0.41 �1.00 �1.00 0.08

5 1.00 �0.68 1.00 1.00 �1.00 �1.00 �0.44 �1.00 �1.00 �0.20

6 1.00 �0.82 0.96 1.00 1.00 �1.00 �0.97 �1.00 �1.00 �1.00

7 1.00 �0.98 0.96 1.00 1.00 �1.00 �0.81 �1.00 �1.00 �1.00

8 1.00 �0.26 1.00 1.00 �1.00 �1.00 �0.07 �1.00 �1.00 �1.00

Table 10

Comparison of RBF predicted optima with FEA simulation results

Design point f1(x) (kJ) f2(x) (kJ) f3(x) (m/s2)

RBF FEA % Error RBF FEA % Error RBF FEA % Error

1 3.86 3.92 1.5 6.63 6.54 1.4 �1441.4 �1551.4 7.1

2 3.86 4.00 3.5 6.64 6.67 0.4 �1451.8 �1534.3 5.4

3 3.85 3.90 1.3 6.62 6.56 0.9 �1434.9 �1467.3 2.2

4 3.85 3.91 1.4 6.61 6.57 0.6 �1430.8 �1532.0 6.6

5 3.85 3.65 5.4 6.65 6.33 5.2 �1522.2 �1627.7 6.5

6 3.85 3.89 1.1 6.60 6.50 1.6 �1428.8 �1539.4 7.2

7 3.84 3.73 3.1 6.66 6.40 4.1 �1544.5 �1619.0 4.6

8 3.84 3.83 0.3 6.68 6.59 1.4 �1570.1 �1672.3 6.1

Ave. 2.2 2.0 5.7

Max. 5.4 5.2 7.1
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Although RBF based solutions are superior to those

based on RSM, there are clear drawbacks. It should be

noted that a metalmodel created by RBF consists of the

same number of basis functions as response samples;

therefore an RBF model is computationally more expen-

sive than an RS model. For multiobjective optimization

problems the computational cost becomes significant in

that a large number of function evaluation is needed to

assess the entire Pareto Frontier. Another disadvantage

of RBF is that model predictability at the selected sam-
Table 11

Part thickness and response characteristics at optimal design based o

Deign

variable

Part no. Thickness

(mm)

Mass

(kg)

Inter

at 20

x1 330 2.9 10.00 1.99

x2 299 1.8 2.28 0.21

x3 389 and 391 2.8 11.57 0.57

x4 390 and 392 2.3 6.13 0.29

x5 632 1.4 4.91 0.40

x6 285 0.3 2.28 0.07

x7 439 1.3 2.18 0.08

x8 627 0.7 1.96 0.08

x9 384 0.8 0.83 0.06

x10 398 and 399 0.9 2.22 0.17

Total 44.37 3.90
pling points cannot be determined using ANOVA, be-

cause by definition an RBF model passes through all

the design points. Thus, it can be difficult to select the

best RBF before the models are used in design optimiza-

tion since the best RBF may be problem dependant and

can only be found through validation at off-design

points.

We select the results of the third FE simulation in

Table 10 to illustrate the improvements on the vehicle

design through optimization. The true values of the
n multiquadric RBF models

nal energy

ms (kJ)

Internal energy

at 40 ms (kJ)

Internal energy

at 100 ms (kJ)

2.51 2.50

0.44 0.46

1.10 1.13

0.55 0.58

0.60 0.61

0.18 0.21

0.35 0.45

0.18 0.19

0.19 0.21

0.45 0.60

6.56 6.92



Table 12

Comparison of initial (baseline) and optimal designs

Item Before optimization After optimization % Change

Total weight of selected parts (kg) 44.37 44.37 0.0

Internal energy at 20 ms (kJ) 3.16 3.90 23.4

Internal energy at 40 ms (kJ) 5.92 6.56 10.8

Internal energy at 100 ms (kJ) 6.11 6.92 13.3

Peak acceleration (m/s2) �2126.0 �1467.3 �31.0
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ten design variables, i.e., the thickness of thirteen se-

lected parts, are calculated using the original values in

Table 3 and the normalized values in the third row of

Table 9. The internal energies of the optimized parts at

20 ms, 40 ms, and 100 ms are given in Table 11 along

with each part thickness. A comparison of the initial

and optimum designs with respect to mass, internal en-

ergy absorption, and the peak acceleration is shown in

Table 12. Fig. 8 illustrates the time histories of the total

internal energy of the thirteen parts before and after
Fig. 8. Time history of internal energy for selected parts before

and after optimization.

Fig. 9. Peak acceleration measured at the engine top before and

after optimization.
optimization. Fig. 9 shows a comparison of acceleration

histories for both the original and optimum designs. The

optimum design has an increased energy absorption

capacity at all measured instances and decreased peak

acceleration without any increase in the total vehicle

mass. The energy absorbed by the thirteen parts are

23.4%, 10.8%, and 13.3% more than those of the original

design at 20 ms, 40 ms, and 100 ms, respectively. The

peak acceleration of the optimum design is reduced by

31% over the original design. These results show that a

significant improvement in vehicle�s crashworthiness

performance can be made without incurring mass pen-

alty, a key factor affecting the manufacturing cost.
5. Conclusions

In this paper, we discussed the development, applica-

tion, and accuracy of RSM and RBF based metamodels

in multiobjective crashworthiness optimization of a full-

scale vehicle model. Because of the high computational

simulation cost, metamodels were developed using a rel-

atively small number of simulation samples. Among the

three design objectives considered, the engine top accel-

eration was the most difficult to model due to its highly

nonlinear relationship with the selected design variables.

Although both first- and second-order RS models pro-

duced acceptable estimates for energy absorption re-

sponses, they failed to produce good results for the

engine top acceleration. By contrast, multiquadric and

inverse-multiquadric RBFs resulted in fairly accurate re-

sponse models even for engine top acceleration. In par-

ticular, the multiquadric function was found to produce

the most stable RBF for all three objective functions.

This is consistent with the founding in the accuracy

assessment of metamodels created for the nonlinear Bra-

nin rcos function.

The use of RSM or RBF, especially in a complex

problem such the one considered in this paper, involves

several tradeoffs that could ultimately be traced to the

need for additional response samples. In the case of

RSM, the inclusion of interaction terms (in the sec-

ond-order model) does require additional response sam-

ples whereas the examination of model accuracy

through ANOVA does not. Similarly, in the case of

RBF, the inclusion of augmenting polynomials was
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unnecessary but in order to check the accuracy of an

RBF model, it was necessary to conduct additional

simulations, as ANOVA could not be used.

Finally, the successful implementation of a multiob-

jective optimization scheme showed that vehicle perfor-

mance could be improved without an increase in vehicle

mass, which is a major consideration in design and man-

ufacturing of automobile bodies.
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