
ABSTRACT

This paper describes the design and development of a set
of signal processing software tools for speech
recognition. The tools were developed for inclusion in a
comprehensive public domain speech recognition toolkit.
We describe the design philosophy underlying the
development of the tools as well as the key features that
enable realization of our design goals of modularity,
extensibility, and usability. A GUI-based configuration
tool is presented that allows complicated, multi-pass front
end algorithms to be created using a graphical editor and a
library of fundamental algorithm components. We also
discuss results of tests to verify the correctness and
usability of the tool set, including benchmarks on
SWITCHBOARD, WSJ0 and the Aurora Large Vocabulary
tasks.

KEY WORDS
Signal processing, speech recognition, algorithm.

1. INTRODUCTION

The Institute for Signal and Information Processing (ISIP)
provides a comprehensive public domain toolkit [1] for
performing speech and signal processing research. Several
differentiating features are its ease of use, extensibility,
and educational components. In this paper we describe the
design and implementation of its signal processing
components, which provide a GUI-based environment to
perform signal processing research and education.

An overview of a speech recognition system is
shown in Figure 1. The tool described here deals with the
block known as the Acoustic Front-end, which
encapsulates most of the signal processing portions of a
recognition system. Signal processing tools extract feature
vectors from speech data, and play a critical role in the
development of speech recognition systems. Many signal

processing toolkits are currently available including
popular commercial products such as MATLAB [2]. Such
toolkits provide powerful computation and analysis
capabilities, and sophisticated graphical interfaces.
Nonetheless, they also contain serious deficiencies that
limit their usefulness in a research environment. For
example, run-time efficiency and file I/O are two common
issues with such high-level tools.

Adding new algorithms to such toolkits requires
modifying the base code of the existing system, a
potentially time-consuming and costly undertaking that
can significantly impede many research efforts. Special
problems for speech recognition front ends, such as
synchronization and buffering of data along a data flow
graph, are difficult to handle in a simple and easy to
understand framework. Of even greater importance and
difficulty, data preparation for algorithms that require
multiple frames of data, such as windows and
differentiation, can be problematic.

To address these issues, we have developed a
modular, flexible environment for signal processing. The
key differentiating characteristics of our system include:

• Competitive technology with maximum flexibility;
• Well-documented and simple APIs;
• An object-oriented software design in C++.

In this paper, we present our software design rationale and
approach for maximizing modularity and usability.

Figure 1: An overview of a speech recognition system.

SIGNAL PROCESSING TOOLS FOR SPEECH RECOGNITION1

Hualin Gao, Richard Duncan, Julie A. Baca, Joseph Picone

Institute for Signal and Information Processing, Mississippi State University

{gao, duncan, baca, picone}@isip.msstate.edu

1. This material is based upon work supported by the
National Science Foundation under Grant No. EIA-
9809300. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the National Science Foundation.

2. SOFTWARE DESIGN

Research in the area of speech recognition requires the
development of large applications in a relatively short
period of time. To address these needs, we designed a
large, hierarchical software environment to support
advanced research in all areas of speech recognition,
including signal processing. This environment contains
ISIP foundation classes (IFCs) that provide features
ranging from complex data structures to an abstract file I/O
interface. IFCs are implemented as a set of C++ classes,
organized as libraries in a hierarchical structure. Some key
features include:

• Unicode support for multilingual applications;
• memory management and tracking;
• system and I/O libraries that abstract users from

details of the operating system;
• math classes that provide basic linear algebra and

efficient matrix manipulations;
• data structures that include generic implementations

of essential tools for speech recognition code.

We developed our signal processing toolkit to
stringently adhere to the IFC design philosophy and
framework. The software described in this paper involves
primarily the Algorithm and Signal Processing libraries [3]
in the IFC class hierarchy. At the outset, it was clear that
the tools must not only allow a wide selection of
algorithms, but also have the ability to vary every
parameter of each algorithm easily and finally, provide
users an efficient environment for evaluating new research
ideas. Thus, the design requirements for these tools
included:

• a library of standard algorithms to provide basic
digital signal processing (DSP) functions;

• an ability to easily add new algorithm classes and
functions without modifying existing classes;

• a block diagram approach to describing algorithms to
realize rapid prototyping without programming.

Fulfilling the first requirement enabled users to
directly realize a single algorithm such as a window with
simple programming by building an algorithm object, and
calling its functions. Meeting the second requirement
allowed users to enhance system capabilities according to
new requirements. This is described in Section 2.1. To
meet the third requirement, we developed a signal
processing control tool and a signal processing
configuration tool. These are described in Section 2.2.

 Our current offerings can be sorted into two
categories: basic DSP and support. The basic DSP
components include commonly used algorithms, such as
windows, filter, and energy etc. Support components allow
high-level manipulation of data flow through block
diagrams. Together, they provide a unique and powerful

set of signal processing capabilities, some of which
include: multi-pass processing of a signal; automatic
handling of arbitrary amounts of prior and future data
when a recipe is created; processing of a signal, saving a
constant derived from that signal to a file, and reloading
the constant.

2.1. Algorithm Library

The algorithm library contains a collection of signal
processing algorithms implemented as a hierarchy of C++
classes. The implementation of this hierarchy using an
abstract base class, AlgorithmBase, and virtual functions
or methods that comprise the interface contract, is the
single most important feature, since it makes the library
extensible. All algorithm classes are derived from this base
class. However, since it is an abstract class, no objects are
ever directly instantiated from it. Instead, it defines the
interface contract, specifying virtual functions that all
Algorithm classes must provide, and centralizes useful
protected data common to all algorithms, such as sample
frequency and frame duration. The interface contract is
summarized in Table 1.

Note that the key computational steps of any
algorithm are limited to two functions: init and apply. The
remaining functions simply facilitate configuration and
debugging. The configuration functions deal with
retrieving information from the specific algorithm that is
needed to coordinate I/O processing. For example,
getLeadingPad and getTrailingPad are used to determine

the amount of delay a specific algorithm introduces so
buffers can be adjusted accordingly. The debugging
methods were introduced to allow users to insert
debugging statements within the signal flow graph, and to
see intermediate output as the data is being processed.

Processing:
virtual boolean init();
virtual boolean apply();

Configuration:
virtual const String& className() const;
virtual long getLeadingPad() const;
virtual long getTrailingPad() const;
virtual CMODE getOutputMode() const;
virtual float getOutputSampleFrequency() const;
virtual boolean setParser();

Debugging:
boolean displayStart();
boolean displayFinish();
boolean displayChannel();
boolean display();

Table 1: An overview of the interface contract for the
Algorithm classes.

Expanding the collection of algorithms supported in
our Algorithm library is the subject of on-going research.

2.2. Signal Processing Configuration Tool

The procedure by which users employ the tools and
libraries can be described as follows: First, the signal
processing configuration tool is used to graphically
specify the sequence of algorithms and their configuration
using a block diagram. This is saved to a file containing a
description of the block diagram. This description uses a
graph data structure containing components, each of
which has its own configuration. Second, a control tool
accepts the speech data file and the recipe files produced
in the first step as input. It then parses the recipe file using
functions provided by the signal processing library to
obtain the necessary information for each algorithm.
Finally, the control tool applies the corresponding
algorithm functions to process the input speech data by
calling the correct method in the algorithm library.

We developed a Java GUI tool, shown in Figure 2 and
3, to provide users a block diagram approach to design
front ends. We chose the Java language to allow the tool
to run across a wide range of platforms and to give the
tool an industry-standard look and feel. This tool allows
users to select algorithms from an inventory of predefined
components, and to connect and configure these
components using standard graph drawing tools. Each
component represents one algorithm for which the user
can specify how to process data; each arc represents a
data flow from one algorithm to another. To create a block
diagram, the user selects the desired algorithm from the
component menu, connects each component using
directed arcs, configures each component in the diagram
by using a pop-up window after right-clicking the

component as shown in Figure 3, and saves the
configuration or “recipe” into a file. The control tool,
described in Section 2.3, uses this file to complete the
signal transformation process.

The example block diagram shown in Figure 2
illustrates many unique capabilities of the configuration
tool. All synchronization and buffering of data between
components within a single data flow and across data
flows is automatically handled by these tools. The
functional interface described in the previous section
enables this. The user need only draw the block diagram
to indicate how the signal should be processed, without
concern for data synchronization or buffering. In addition,
the exa mple illustrates the support provided for multi-pass
processing. The constant saved to a file can be easily
reloaded as input to the same data flow diagram or
differing diagrams.

Debugging information can be added to the flow
graph using a number of mechanisms. A display block can
be inserted on any arc to display data to the console
(stdout or a file) as the data propagates through the graph.
Each block can also output debugging information
through the use of a debug mode that is part of the
algorithm interface contract. Through standardization of
such capabilities through an interface contract, we can
provide a uniform interface for debugging across all
utilities and GUIs in the toolkit.

Finally, to increase the extensibility of the tool,
algorithms are presented in the interface through the
components menu, populated from a resource file. All
algorithms appearing in this menu are read from the
resource file. Adding a new algorithm requires simply
including a description into the resource file according to

Figure 3: A configuration tool that allows users to create
new front ends by configuring each component using a
pop-up window after right-clicking the component.

Figure 2: A configuration tool that allows users to create
new front ends by drawing signal flow graphs.

its format. No modifications to the source code of the
signal processing control tool itself are required. This has
allowed this tool to be used to create interfaces for a
number of related applications provided in our toolkit.

2.3 Signal Processing Library and Control Tool

The signal processing library is a collection of specially
designed modules, implemented as C++ classes, which
serve as an interface between the block diagrams, created
by the GUI configuration tool, and the computation
algorithms, described in Section 2.1. It should be noted
that the work of the signal processing library is hidden
from the user by default. Its functions include: parsing the
file containing the recipe created by the user with the
configuration tool; synchronizing different paths along the
block flow diagram contained in this file; preparing
input/output data buffers for each algorithm, particularly
for those requiring multiple frames of data, such as
windows or calculus; scheduling the sequences of
required signal processing operations; processing data
through the flow defined by the recipe; and finally,
managing conversational data.

An important attribute of the signal processing
control tool concerns its compatibility with other
components of our software. The control functions are
embedded in the recognizer so that both the recognizer
and the feature extraction use exactly the same code base.
This further enhances the usability of the toolkit, enabling
researchers to more easily achieve consistency in
experimental results by using the same data in recognition
as that used in feature extraction. Also, the fact that the
front end is embedded in the recognizer allows live input
demos to be easily created, again by supporting use of the
same data from feature extraction.

3. EXPERIMENTAL RESULTS

We tested the quality of our toolkit along two dimensions,
correctness and usability. To verify the correctness of the
computation results, we have successfully built several
complex front ends, including an industry standard front
end based on Mel-frequency cepstrum coefficients
(MFCCs) [4]. Our testing procedure entailed first
comparing the data generated from the general purpose
tools described in this paper to similar data generated from
a prior version of our software that has been publicly
available for several years, but contained less general
implementations of many algorithms. Since there are subtle
differences in the way the components are implemented,
byte by byte comparisons of the data are not always
possible or desirable.

Hence, in addition to directly comparing values in the
feature vector streams, we also ran several recognition
experiments, including Switchboard (SWB) [5] and Wall
Street Journal (WSJ). As one example, we compared the

correctness of our results against comparable baseline
systems used in the Aurora evaluations on the 5K WSJ0
task [6]. Front ends created using our general purpose
tools matched performance on these tasks achieved using
the older versions of the software. For example, we
achieved an 8.3% WER using our MFCC front end recipe,
and this matches the results reported in [4].

Next, we assessed and enhanced the usability of our
tools through extensive user testing conducted over the
course of many workshops [6]. As part of this testing, we
administered a user survey derived from the Questionnaire
for User Interaction Satisfaction (QUIS), a measurement
tool designed for assessing user subjective satisfaction
with the human-computer interface [6]. Several features of
the interface were modified or enhanced as a result of
these tests. General examples include reductions in the
number of menus, number of menu options, changes in
wording of menu options, and modifications to the
behavior of the drawing tool itself.

4. CONCLUSIONS

This paper has presented the signal processing
component of our public domain speech recognition
toolkit. This component was designed and developed in
adherence to our philosophy of providing a flexible,
extensible software environment for speech recognition
researchers. Our goal was to enable researchers to explore
ideas freely, unencumbered by low-level programming
issues. To achieve this goal, we implemented several
critical features in our signal processing software tools,
including a library of standard algorithms for basic DSP
functions, the ability to add new algorithms to this library
easily, and a GUI-based configuration tool for creating
block diagrams to describe algorithms, allowing rapid
prototyping without programming.

We have tested and verified this tool for both
correctness and usability. It empowers researchers to
easily build state-of-the-art front end systems for speech
recognition. We continue to monitor feedback from our
user community in order to maintain the highest quality of
the tool. This tool has been one of the most popular
components of our toolkit, and is suitable for teaching
basic concepts in digital signal processing.

REFERENCES

[1]. K. Huang and J. Picone, “Internet-Accessible Speech
Recognition Technology,” presented at the IEEE Midwest
Symposium on Circuits and Systems, Tulsa, Oklahoma,
USA, August 2002. (see http://www.isip.msstate.edu/
projects/speech).

[2]. The MathWorks, Inc., Natick, MA, USA (see
http://www.matlab.com/).

[3]. R. Duncan, H. Gao, J. Baca and J. Picone, “The
Algorithm Classes,” ISIP, Miss. State Univ., MS State,
MS, USA, March 2003 (see http://www.isip.msstate.edu/
projects/speech/software/documentation/ class/algo/).

[4]. N. Parihar, et al., “Performance Analysis of the
Aurora Large Vocabulary Baseline System,” Proc. of
Eurospeech ’03, Geneva, Switzerland, September 2003,
337-340.

[5]. R. Sundaram, J. Hamaker, and J. Picone, “TWISTER:
The ISIP 2001 Conversational Speech Evaluation System,”
Proceedings of the Speech Transcription Workshop,
Linthicum Heights, Maryland, USA, May 2001.

[6]. J. Picone, et al., “Speech Recognition System
Training Workshop,” ISIP, Mississippi State University,
MS State, MS, USA, May 2002 (see
http://www.isip.msstate.edu/ conferences/srstw/).

[7]. J.P. Chin, et al., “Development of an Instrument
Measuring User Satisfaction of the Human-Computer
Interface,” Proceedings of SIGCHI’88, New York, New
York, USA, October 1988, 213-218. (see
http://lap.umd.edu/q7/quis.html).

