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ABSTRACT

It has long been a goal of speech researchers to
incorporate higher-level knowledge sources such as
discourse, part of speech, and understanding constraints
into the speech recognition problem. However, current
speech recognition systems are highly tuned to N-gram,
triphone-based recognition. Thus, researchers have been
unable to exploit this knowledge without extensive
modifications to the most complex portion of an ASR
system - the decoder. In this paper, we describe a publicly-
available, state-of-the-art decoder that employs a flexible
and configurable multi-level search strategy capable of
incorporating hierarchical knowledge sources with no
changes to source code.

1. INTRODUCTION

State-of-the-art large vocabulary continuous speech
recognition (LVCSR) systems use a search strategy that
dynamically integrates a highly simplified form of the
acoustic and linguistic constraints [1]. The problem of
speech recognition is cast into a statistical framework
where we try to find the most probable word sequence
given observed acoustic signal, A [2]. We apply Bayes’
rule to create the maximum likelihood formulation of the
problem:

W= )

argmax R A WP(W).
w

P(A|W) is the probability that the observation sequence A
occurred given that the word string W was spoken. This is
typically provided by an acoustic model such as an HMM.
P(W), is the prior probability of a sequence of words and
is typically determined using an N-gram language model
or a stochastic grammar. The search process combines

these two probabilities for all possible word sequences and
selects the one sequence with the maximum probability as
the final hypothesis.

While simple and efficient, this formulation is not
accurate. As shown in Figure 2, humans employ a variety
of information sources for speech recognition. These
include acoustic pattern recognition, linguistic pattern
constraints, and syntactic and semantic pattern analysis.
There has been much research studying each of these
isolated information sources but we have not been able to
integrate them into a single parsimonious framework. This
is due, in large part, to the inflexibility of the basic search
algorithms employed for speech recognition.

Incorporating such important features to produce a more
robust recognition system often requires extensive
algorithm modifications and software changes. This paper
describes a generalized hierarchical speech recognition
system. The graph search mechanisms therein provide
extreme flexibility in defining the constraints of the
system. The key feature of this system is the extension of
the search structure to an unlimited number of hierarchical
knowledge sources each with individually adjustable sets
of parameters through the user of only a configuration file.

2. HIERARCHIAL SEARCH

Our generalized search algorithm is based upon a
hierarchical graph-based level building approach. Each
knowledge source in the hierarchy is assumed to be
representable by knowledge sources. For example, the
typical speech recognition framework can be easily fit into
this paradigm. Words constitute the top level in the
hierarchy. These can be decomposed into phonemes at the
next level and likewise phonemes can be modeled by
HMM state sequences at the bottom-most level. The
novelty of our approach is that extend this to allow for an
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Figure 1: Integration of information from four knowledge Table 1: Comparison between the generalized search and
sources at four different levels in a hierarchical structure. a typical standard algorithm.

unlimited set of knowledge sources. This provides provide longer context support. The generalized speech
flexibility and extensibility so long as the knowledge system allows any length context at each level in the
sources can be stated in a hierarchical form — a hierarchy.

requirement that we would argue is not very limiting.
Unlimited Hierarchical Levels: While most systems

For example, in Figure 1, we add part-of-speech provide for a limited depth of knowledge, the generalized
knowledge to the hierarchy. The search is decomposed hierarchical search allows any number of decompositions.
into the series of hierarchical levels, each with its own Each level is specified as a graph structure and the levels
information source. The top level integrates syntactic are combined together into one master graph structure as
information consisting of part-of-speech tags. This level is  shown in Figure 1. Because the system is specified as a set
decomposed into words which specify a strict grammar. of levels, each level has individual control parameters
The words are decomposed into phonemes which may including the pruning approaches, context dependency and
model pronunciation variability in the data. The options for compression of the graphs at that level.
pronunciations are specified in a general graph form so

there is no restriction as to the number nor the form of the Dynamically Switched Language ModelsA significant
pronunciations. Finally, the phonemes are modeled by feature of the ISIP decoder is the ability to decode
HMM states. Again, due to the generalized nature, the Simultaneously using multiple language models (LMs). It
form of the HMMs is not limited (typical HMM systems ~ can switch from one LM to another dynamically during

require left-to-right systems with diagonal covariance runtime. This is ideal for applications involving a broad
Gaussians). language model like an N-gram that covers the general

interaction with the user, but requires more specific sub-
Table 1 gives an overview comparison between the models to decode certain parts of the user speech input.
generalized hierarchical search system and a typical state-The sub-models are typically generated by defining
of-the-art LVCSR system. The principal features of the grammar structures of the language used in the specific
generalized hierarchical search are described below. recognition task. These grammar structures efficiently

incorporate the higher level knowledge to further reduce
Unlimited Context: An important technique in speech  the size of the search space. Thus, the search space is
recognition is to model coarticulation effects through the shared by hypotheses that not only follow the N-gram LM,

use of context-dependent phones. In practice, the deeperpyt also by those that are decoded in parts by a number of
the context used, the better the performance achieved. In different finite-state context-free grammars.

2001 Hub5 evaluations, for instance, one system achieved

a 5% relative reduction in WER by using Generalized Specification:The designation of search
guinphones (20.2%) in place of their usual triphone levels in the hierarchy are specified through a parameter
system (21.3%) [3]. However, most systems allow only file. This is a departure from typical LVCSR systems
triphones or they require that special software be used to which require extensive code changes to add a new
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Figure 2: Language is composed of many hierarchical constraints which interact with one another. A generalized system is
necessary to allow the incorporation of these constraints.

technique to the system. In this respect, the generalized some constant margin from the best score at each
approach provides an extremely powerful toolkit for new time frame and at each level are preserved.
research.

3.Active Instance Pruning: The number of unique
path instances can be specified. This effectively
limits the total number of scoring slots necessary in
the search process.

Pruning and Search-space CompressionSearch
typically consists of finding the most likely path through
the sequence of words. By employing dynamic

programming under the linguistic constraints (as specified 4.Lexical Trees: Two or more levels can be collapsed
by the levels in the hierarchy) we can reduce the to reduce the total size of the search space [4]. Most
computational overhead in generating an immense number LVCSR systems do this at the phoneme level to
of hypotheses. However, it is still critical that we use give an efficient form of the pronunciation lexicon.

pruning techniques to discard low-likelihood paths. The
generalized system provides independent pruning 3. EXPERIMENTS AND RESULTS

specifications at each level in the hierarchy. These include:
We have conducted several experiments on different

1.Viterbi Pruning: Using the principle of dynamic corpora to demonstrate that the system [5, 6] is
programming, only the best path coming to the comparable to state-of-the-art systems. Table 2 shows
same point in the search space is preserved small vocabulary experiments on the TIDIGITS corpus [7]

using coded speech data. Two systems were tested: a 16

2.Beam Pruning: Paths with scores that fall within ! .
g mixture HMM-based recognizer that uses whole word



Word Error Rate
Data Word Xwrd CD
Models Models
STUDIO 0.4% 0.6%
MELP 0.7% 0.8%

Table 2: WER for TIDIGITS studio and coded data using
word models and cross-word triphone context dependent
models.

Acoustic | Language
Task Model Model WER
RM XWRD Bigram 3.4%
WSJ XWRD Bigram 8.3%
WINT Bigram o
Hub5e01 YWRD Trigram 35.6%

Table 3: Performances on the Resource management, Wall
Street Journal and SWITCHBOAD corpora.

acoustic models, and a similar system that uses cross-word

triphones for its acoustic models. The performance of

these systems on the studio data was 0.4% and 0.6% WER

respectively. Using coded data, we experience a slight
degradation in performance.

We next developed a medium vocabulary system using the

DARPA Resource Management corpus [8]. This system

has a 1000 word vocabulary and a bigram language model

with a perplexity of 60. Acoustic models were cross-word
triphones with 6 Gaussian mixture components per state.
A WER of 3.4% was achieved at 9.7 real-time rate using a
600 MHz Pentium processor. We were also able to tune
the system to run at near real-time with a slight increase in
WER to 5.0%.

Finally, we have created a large vocabulary system using
the Wall Street Journal corpus [9]. This system is based on
a state-tied cross-word triphone acoustic model with 16
Gaussian mixtures per state. Evaluation of the Eval’92
data set using a bigram language model provided by
Lincoln Labs, gives a WER of 8.3% which is comparable
to state-of-art systems.

4. CONCLUSIONS

LVCSR systems have advanced significantly over the last
few years due to increase computational power and

development of very efficient search algorithms. However,
for most systems the integration of an additional
knowledge source into the search is difficult if not
impossible. We have introduced a system designed around
a generalized hierarchical search that eliminates these
significant drawbacks. We have described the flexibility of
the search which makes it a powerful testbed for
researchers to implement and test novel concepts.
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