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Abstract

Solution adaptive grid strategies based on the redistribution of a fixed number of points are described in this paper. The redis-
tribution is performed using weight functions that vary based on significant flow features. The weight functions are evaluated using an
equidistribution principle. In this paper, emphasis is placed on the development of weight functions applicable to compressible flows
exhibiting large scale separated vortical flows, vortex—vortex and vortex—surface interactions, separated shear layers and multiple
shocks of different intensities. Algebraic, elliptic and parabolic methods of grid generation have been utilized for structured grid re-
distribution. Additionally, a point movement scheme is presented for generalized (structured/unstructured/hybrid) grid adaptation.
Computer Aided Geometry Design (CAGD) techniques are combined with redistribution schemes to maintain the fidelity of solid
boundaries. In particular, solid boundaries are represented using Non-Uniform Rational B-Splines (NURBS). A grid generation
software system — Parallel Multiblock Adaptive Grid generation (PMAG) — using an elliptic redistribution scheme is also described
with emphasis placed on the parallel implementation for multiblock structured grids with unstructured blocking topologies and on
interpolation issues. Computational examples demonstrating the influence of different weight functions and grid redistribution
strategies are presented. © 2000 Elsevier Science S.A. All rights reserved.

1. Introduction

Rapid access to highly accurate simulation data about complex configurations is needed for multidis-
ciplinary optimization and design. In order to efficiently meet these requirements, a closer coupling between
the analysis algorithms and the discretization process is needed. In some cases, such as free surface flows,
temporally varying geometries, and fluid structure interactions, the need is unavoidable. In other cases, the
need is to rapidly generate high quality grids and automatically adjust these grids in response to features in
the solution. Techniques utilizing unstructured grid topologies and/or solution-adaptive grids can be used
to speed the grid generation process and to automatically cluster mesh points in regions of interest. Im-
portant global flow features can be significantly affected by isolated regions of inadequately resolved flow.
These regions may not exhibit high gradients and may be difficult to detect.

Several approaches have been employed for both structured and unstructured grid adaptation
[1,7,11,12,14,15,22,32]. The most widely used approaches utilize grid point redistribution, local grid point
enrichment/derefinement, or local modification of the actual flow solver. However, the success of any one of
these methods ultimately depends on the feature detection algorithm used to identify candidate regions for
refinement. Typically, weight functions are constructed to mimic the local truncation error and may require
substantial user input. In the case of structured grids, most problems of engineering interest involve
multiblock grids and widely disparate length scales. Hence, it is desirable that the feature detection algo-
rithm recognize flow structures of different types as well as differing intensity, and adequately address the
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issues of scaling and normalization across multiple blocks. These weight functions can then be used to
construct blending functions for algebraic redistribution, interpolation functions for unstructured grid
generation, forcing functions to attract/repel points in an elliptic system, or to trigger local refinement based
upon application of an equidistribution principle.

In this paper, algorithms for grid adaptation based on redistribution/movement of a fixed number of grid
points are presented. An overall approach to adaptation is presented. The weight functions developed
utilize scaled derivatives and normalizing procedures to minimize or eliminate the need for user input. The
ability to detect flow features of varying intensity and the lack of user defined inputs for definition of the
weight functions are key characteristics of the developed weight functions. Redistribution algorithms using
algebraic, elliptic, parabolic, and point movement techniques are presented. The application of Non-
Uniform Rational B-Splines (NURBS) is explored for surface/volume grid redistribution, for maintaining
fidelity of solid geometrical components, and for treatment of block interfaces. An adaptive grid system
capable of automatically resolving complex flows with shock waves, expansion waves, shear layers, and
complex vortex—vortex and vortex—surface interactions that is executable in a parallel computing envi-
ronment is discussed. Computational examples to demonstrate the success of the methods utilized are
presented.

2. Approach to adaptation

For structured grid topologies, redistribution of a fixed number of grid points, commonly referred to as
r-refinement, is by far the simplest to implement and most widely utilized grid adaptation strategy [11]. For
unstructured/hybrid or generalized grid topologies where the connectivity is specified explicitly, strategies
based on A-refinement, derefinement, and point movement [27] are more attractive and are widely used. In
this paper, redistribution schemes for structured grids with multiple, topologically distinct blocks are
explored. Also considered is a point movement approach for generalized grid topologies.

Adaptive redistribution of points traces its roots to the principle of equidistribution of error [34] by
which a point distribution is set so as to make the product of the spacing and a positive weight function, w,
constant over the set of points

wAx = constant. (1)

With the point distribution defined by a function &;, where £ varies by a unit increment between points, the
equidistribution principle can be expressed as

wx = constant. (2)

This one-dimensional equation can be applied in each direction in an alternating fashion [7,11,12]. Direct
extension to multiple dimensions using algebraic [7], variational [33,34], and elliptic [11,12,15] systems are
well documented in the literature. The definition and evaluation of the weight function is the key to a
successful adaptation.

Structured grid generation methods using algebraic methods (where interpolation schemes or Com-
puter Aided Geometry Design (CAGD) techniques are utilized) and methods using partial differential
equations (where elliptic, parabolic, or hyperbolic equations are solved) can be utilized for adaptive re-
distribution of grid points. In general, the adaptive redistribution process consists of three main steps.
The first step is to define appropriate weight functions representative of important solution features. The
second, and probably the most crucial step, is to redistribute the grid points in the computational domain
in a manner consistent with the aforestated weight function. It is crucial that the geometric fidelity of
solid boundaries be maintained during the redistribution process. Also, grid quality, as measured by
orthogonality, cell aspect ratio, and smoothness, must be maintained. The third and the final step is to
modify the metric terms to reflect grid movement with a consistent grid speed or to re-evaluate the flow
variables and metric terms at the new grid locations using an appropriate search/interpolation scheme.
Time accuracy is achieved by transforming the time derivatives through the addition of convective-like
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terms containing the grid speeds in a manner that does not alter the conservation properties of the
governing PDEs.

The parametric, control points-based, NURBS [7,28] is utilized for algebraic grid adaptation and for
redistribution of grid points on solid boundaries associated with the geometrical configuration under study.
The convex hull, local support, shape preserving forms, and variation diminishing properties of NURBS
are extremely attractive in engineering design applications and in geometry/grid generation. In fact, the
NURBS representation has become the ‘defacto’ standard for the geometry description in most modern
grid generation systems [25,28].

The NURBS representations [28] for a curve, surface, and volume are as follows:

Curve: C(t)= 2o W(H)d@)NF (1)

o - ) 3
S, WONE() ®)
o\ k-1 ; _ k—1
Wi — = TONE W) (LG8 = ONE (0 "
! Tli+k—1)—T3G Ti+k)—-T>E+1)"’
where k is the order of the curve, T the knot sequence and
a1 AT <t < T+ 1),
N (1) = {0 otherwise. (5)

W is the weight function, d the control polygon, N the basis function and # is the last index of control
polygon
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the basis functions are defined in the same manner as Egs. (4) and (5).

The relationship between the order &, number of knots ny,,, and the number of control points (n + 1)
can be expressed by nynee = (n+ 1) + k.

Curve/surface/volume grid point redistribution can be accomplished by evaluating the underlying
NURBS representation at the specified parametric locations. The usual practice is to transform all pertinent
geometrical entities into NURBS representations resulting in a common data structure. However, in many
instances, only the grid information is available and the boundaries/surfaces of interest are represented by a
discrete set of points. The inverse NURBS formulation can be used to uniquely transform discretized sets
or networks of points into appropriate NURBS descriptions. For a curve in R*, for example, the problem
can be stated as: given a set of data points (X;,Y,Z)i=1,...,N, find the control points d;,

i=0,...,N+ 1, which can be used to interpolate the given discrete points:
N+l
(t;12) ZdN (i) =R;, j=1,...,N, (8)

where ¢ is the knot sequence based on the arc length of the interval [t;,ty»] R; = (X}, ¥}, Z)).

However, there are N + 2 unknowns (i =0, 1,...,N + 1) to be evaluated. The additional two equations
are obtained by specifying the end conditions (e.g. parametric derivatives at the end points). The entire
system to be solved is as follows:
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where R}, R}, are the derivatives at R; and Ry.
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It can be observed that the matrix in Eq. (9) can be readily transformed to a tridiagonal system with
simple algebraic manipulation. Also, notice that Eq. (9) is valid even with duplicate and triplicate discrete
points. Similar algorithms in higher dimensions can be obtained using a tensor product formulation [28].

3. Weight functions

Typically, weight functions for solution adaptive grid generation are constructed to mimic the local
truncation error and may require substantial user input. These weight functions can then be used to
construct blending functions for algebraic redistribution, interpolation functions for unstructured grid
generation, forcing functions to attract/repel points in an elliptic system, or to trigger local refinement.
Several papers, such as those by Thompson [11], Anderson [12], Soni and Yang [13] and Soni et al. [14],
present applications where significant improvements in accuracy have been obtained through the use of
adaptive grid procedures. Most of these techniques are based on weight functions comprised of combi-
nations of flow variable derivatives, and require input for the selection of these variables, as well as their
coefficients. Dwyer [15] and Soni and Yang [13] have developed scaling procedures to lessen the required
user input for construction of these weight functions. It is believed that an adaptive grid system which
requires no user input while ensuring an efficient grid point distribution would dramatically increase the
routine use of CFD in the design and analysis environment. The development of such a system is the ul-
timate objective of this work. The weight functions developed here utilize extensive scaling and normal-
ization, and hence, may not be the most efficient for a given problem, but are intended to remain useful for
a wide range of problems with no user input. The weight function developed here utilizes scaled derivatives
and normalizing procedures to minimize or eliminate the need for user input. In this work, solution
adaptive redistribution of grid points is achieved via equidistribution of the weight function through the use
of forcing functions in elliptic systems, parabolic systems, and algebraic systems.

3.1. Construction of weight functions

Application of the equidistribution law results in grid spacing inversely proportional to the weight
function, and hence, the weight function determines the grid point distribution. Ideally, the weight function
would be equal to the local truncation error ensuring a uniform distribution of error. Determination of this
function is one of the most challenging areas of adaptive grid generation. The overall solution is only as
accurate as the least accurate region. Excessive resolution in a given region does not necessarily increase the
accuracy of the overall solution. Evaluation of higher-order derivatives from discrete data is progressively
less accurate and is subject to noise. However, lower-order derivatives must be non-zero in regions where
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the variation of higher-order derivatives is significant, and are proportional to the rate of variation.
Therefore, it is possible to employ lower-order derivatives as proxies for the truncation error. Construction
of weight functions often requires the user to specify which derivatives are to be used as well as their relative
proportions. This can be a time consuming process. Also, due to the disparate strength of flow features,
important features can be lost in the noise of dominant features.

Weight functions based on this paradigm have been developed by Soni and Yang [13] and Thornburg
and Soni [8]. The weight function of Thornburg and Soni [8] has the attractive feature of requiring no user
specified inputs. Relative derivatives are used to detect features of varying intensity, so that weaker but
important structures, such as vortices, are accurately reflected in the weight function. In addition, each
conservative flow variable is scaled independently. One-sided differences are used at boundaries. No-slip
boundaries require special treatment since the velocity is zero and are handled in the same manner as zero
velocity regions in the field. A small positive quantity, ¢, is added to all normalizing quantities. In the
present work, the weight function uses the Boolean sum construction method of Soni and Yang [13].
Additionally, the normalizing derivatives have been set to an initial or minimum value of ten percent of the
freestream quantities. This alleviates problems encountered in flows without significant features to trigger
adaption in one or more coordinate directions. Otherwise a few percent variation would be normalized to
the same level as a shock or other strong feature.

Analysis of the weight functions explored to date indicates that density or velocity derivatives alone are
not adequate to represent the different types and strengths of flow features. Density, or pressure for that
manner, varies insufficiently in the boundary layer to be used to construct weight functions for represen-
tation of these features. While velocity derivatives by themselves are adequate for resolving boundary layers
in viscous flows, additional variables must be included to represent other flow features such as shocks or
expansions.

The current weight function is as follows:

w! w? w?
w=1 10
+ max(W', w2 w?3) @ max (W', w2 w3) @ max(W, w2 w3)’ (10)
where
W [ sl
Wk — Z g+ o TaT+e (k=1,2,3). (11)

vt quk \ 7 ]
lg'|+e lg'[+e&
max max

Usually o, ou, ov, and gw are utilized for i =1,2,3, and 4 respectively. However, the user may select
variables for adaptation based on the particular application being considered.
The symbol @ represents the Boolean sum, which, for two variables ¢; and ¢», is defined as

91D g2 =q1+ 92— q19>. (12)

Note that the Boolean sum is defined only when 0 < ¢; <X 1, which brings in both logical or/and effects in
the evaluation of weights. Normalization and scaling applied in the computation of weight functions en-
sures the satisfaction of this criteria. Note that the directional weight functions are scaled using a common
maximum in order to maintain the relative strength.

Intuition and experience of the user can be used to determine the location of relatively ‘weak’ features
such as shear layers. Feature detection could be improved if this ‘(knowledge’ could be incorporated into the
weight function. It is critical for the adaptive procedure to recognize all flow features and not be dominated
by a single feature such as a strong shock. Additionally, only structures that have been at least partially
resolved by the flow solver can be detected by the weight function. Any feature completely missed in the
simulation will not be detected. Hence the quality of the weight function is dependent upon the quality of
the solution. The adaptation procedure and the flow solver should be coupled so that the adapted grid can
reflect all the features that are detected as the solution progresses and improves due to adaptation. If the
weight functions are to be used directly, such as in the algebraic redistribution technique, smoothing is
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required. However, when performing approximate equidistribution via forcing functions, it seems to be
more effective to smooth the forcing functions directly.

3.2. Simple modification to weight function

Grid adaptation can become tricky when the spacing of the initial grid is not adequate to resolve a
significant flow field feature. This situation can occur where there is insufficient clustering of grid lines near
a shock. Even though the shock may be captured within two cells, the resulting weight function is corre-
spondingly smaller which results in inadequate adaptation near the shock. In order to remedy this situation,
the weight function contribution in each direction is normalized individually. This gives equal importance
to all the three directions. Also, the weight function is scaled by the normalized square of the spacing in
each direction. The modified formulations of the weight functions is presented in Egs. (13) and (14):

W w2 W
w=1 13
+ max(w!) © max(w?) © max(w3)’ (13)
where
k Wkgkk

= (e (k=1,2,3), (14)

and W* is defined in Eq. (11).

4. Grid point redistribution: structured grids
4.1. Algebraic methods

An algebraic interpolation scheme based on transfinite interpolation is widely utilized for grid generation
[25,26]. Transfinite interpolation is accomplished by the appropriate combination of 1D projectors F for the
type of interpolation specified. For a three-dimensional interpolation from all six sides (surfaces) of a
section, the combination of projectors is the Boolean sum of the three projectors

FOROGFR=F +F+F-FRF-RBE - BE + RBE. (15)

For adaptive grid redistribution, a NURBS representation is used as the projector F in each of the
directions associated with the transfinite interpolation. Alternatively, a NURBS surface/volume description
can be directly evaluated. The NURBS volume is defined by extending the surface definition in a tensor
product form and is presented in Eq. (7).

4.2. Elliptic methods

The elliptic generation system

3
glrag+ Y & Pra =0, (16)

3
=1 k=1

3
~ =

l

J

where r is the position vector, g/ the contravariant metric tensor, & the curvilinear coordinate, and P; the
control function, is widely used for grid generation [1]. Control of the distribution and characteristics of a
grid system can be achieved by varying the values of the control functions P, in Eq. (16) [1]. The application
of the one-dimensional form of Eq. (16) combined with equidistribution of the weight function results in the
definition of a set of control functions for three dimensions given by

P=-t (i=1,2,3), (17)
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These control functions were generalized by Eiseman [2] as

30 i _
=% o =123 (18)

In order to conserve some of the geometrical characteristics of the original grid, the definition of the
control functions is extended as

Pi = (Pinitial geometry) + Ci(Pwt) (l = 17 27 3)7 (19)

where Piitial geometry 18 the control function based on initial geometry, Py, the control function based on
current solution, and ¢; is the constant weight factor.

These control functions are evaluated based on the current grid at the adaptation step. This can be
formulated as

1)1<”> = Pi(nfl) + Ci(PWt)(nil) (l = 17 27 3)7 (20)
where
E(U :R(O) +C,(Pwt)(0) (l = 13233) (21)

A flow solution is first obtained with an initial grid. Then the control functions P; are evaluated in ac-
cordance with Egs. (17) and (20), which are based on a combination of the geometry of the current grid and
the weight functions associated with the current flow solution [11].

Evaluation of the forcing functions corresponding to the current grid geometry has proven to be
troublesome. Direct solution of Eq. (16) for the forcing functions using the input grid coordinates via
Cramer’s rule or IMSL libraries was not successful. For some grids with very high aspect ratio cells and/or
very rapid changes in cell size, the forcing functions became very large. The use of any differencing scheme
other than the one used to evaluate the metrics, such as the hybrid upwind scheme [8], would result in very
large mesh point movements. An alternative technique for evaluating the forcing functions based on de-
rivatives of the metrics was implemented [3].

1 (gi)ee 1 (82)ae 1 (833)s
Pi:— — 4 — ,g_'__ == l:17273 22
2 gn 2 gn 2 g3 ( ) 2

This technique has proven to be somewhat more robust, but research efforts are continuing in this area.
4.3. Parabolic methods

The effectiveness of utilizing systems of partial differential equations to generate solution adaptive node
distributions for discrete solutions of field equations is well documented. In addition to the elliptic tech-
niques described in the previous section, hyperbolic systems [16,17] have also been used to generate
adaptive grids for a variety of configurations.

The two main advantages provided by elliptic systems are: (1) the smoothness of the resulting mesh and
(2) the ability to control grid point locations. The primary disadvantage is the execution time required to
solve the resulting elliptic system. The main advantage of the hyperbolic system is the execution time needed
to generate the grid. Hyperbolic systems can be solved in much less time than elliptic systems — typically one
to two orders of magnitude less. However, purely hyperbolic systems do not guarantee the same degree of
smoothness because of a lack of dissipation. This shortcoming is remedied through the addition of dissi-
pative terms [19].

Parabolic systems provide a compromise between these two approaches since grids generated using
parabolic methods can be obtained in times competitive with those generated using hyperbolic schemes. In
addition, the presence of dissipation helps to ensure a smooth grid point distribution. The approach used
here is based on the initial work of Nakamura [18] for static grids, later extended by Noack and Anderson
[20] and Noack and Parpia [21] to solution adaptive grids.
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The method employed here is discussed in some detail in the sections that follow. Although only two-
dimensional domains are considered here, extension to three dimensions is straightforward and has pre-
viously been demonstrated [21] for a similar approach.

4.3.1. Description of method

As with any initial value problem, computation for a parabolic scheme is begun from an initial data
line — typically the body surface. The next layer of points is computed using the specified algorithm.
Once computation of this layer is complete, it is used as the initial data line for the next layer, etc.

Direct application of the elliptic grid generation equations as a marching scheme results in an ill-posed
problem. In parabolic methods, the concept of a local reference grid [18,20] is used to make the problem
well posed. Two layers of a local reference grid are generated from the initial data line. The elliptic
equations are applied to the intermediate layer using the points in the outer layer as known values. The
application of the elliptic grid generation equations to the intermediate layer can be viewed as a smoothing
of the reference grid. The outer layer location can be altered during the smoothing process by recomputing
the outer layer grid point positions using the reference grid generation technique. It should be noted that
the resulting smoothed grid still exhibits many characteristics of the reference grid. This point has im-
portant ramifications for solution adaptive grids. Specifically, the reference grid must be constructed to be
consistent with the grid spacing implied by the chosen weight function used in the smoothing equation.

As shown in [20,21], it is possible to impose an outer boundary location by modification of the reference
grid generation procedure.

4.3.2. Reference grid generation
An orthogonal reference grid is generated using an algebraic scheme. Starting from an initial data line j,
the grid points at the next marching layer j + 1 are computed using

Fijp1 = Fij+ 0 m;j, (23)

where r is the position vector, ¢ a specified spacing function, and n is the local unit normal to the
n = constant line j. Eq. (23) is applied again after incrementing j to generate the second or outer layer of the
reference grid. It should be noted that this method is equivalent to solving a hyperbolic system. In some
cases, it is helpful to smooth the unit normals in strongly non-convex regions. If no adaptation is required
or if there is no outer boundary, the j + 1 layer of the reference grid is smoothed as described below.

If there is a specified outer boundary, the reference grid is modified so it smoothly merges with the outer
boundary following the method of Noack and Anderson [20]. This merging is accomplished using a
blending function ¢ as follows:

Fijp1 = org + (1 — o)y, (24)

where r, is computed using a linear interpolation based on distance from the outer boundary

Fg =rij + (%) (Fijmax = ¥iy), (25)
ij

where /;; is the distance from the point (i, j) to the point (i, jmax) computed using a summation of 6. The

blending function ¢ is a user specified, continuous function that is zero at the wall and unity at the outer

boundary.

Finally, as noted above, the smoothed grid exhibits characteristics of the reference grid. Therefore, ¢ (the
spacing function for reference grid) should be modified based on the weight function used in the smoothing
step. The approach taken here is to apply equidistribution along each ¢ = constant coordinate line. For the
weight function w, equidistribution can be shown to be equivalent to

See + ¢pse =0, (26)

where s is the arc length along the ¢ = constant line and ¢ = w:/w. 6 is computed using the distance be-
tween adjacent grid points on the { = constant coordinate line.
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4.3.3. Smoothing of reference grid points
Once the reference grid has been generated, the grid point distribution is smoothed by applying the
elliptic Poisson equation

g (ree + pre) — 281z + gu (ryy + Ypry) =0 (27)

at i, j + 1. All derivatives in the above expression are approximated using central differences. The resulting
matrix system is solved using a scalar tridiagonal inversion algorithm. In practice, it has been found that
reducing the grid point movement induced by the smoothing by an order of magnitude results in a grid that
is sufficiently smooth. Typically, this requires the equivalent of two to three iterations of an elliptic solver.
Domains containing strongly non-convex regions may require additional iterations.

5. Grid point movement

One of the many techniques for grid adaptation by node movement uses a weighted Laplacian approach
[22]. This approach is simple to implement and can be used for any grid topology. The weights are cal-
culated using the same approach as used for structured grids. The gradient at the cell center, used in
evaluating the weight function, is calculated by applying Gauss’ theorem

1 1
Vf::;ranfndA::;:E:fﬂdA, (28)

faces

where V is the cell volume, n the positive outward unit normal to the control surface, and d4 is the control
surface area. The gradients and the corresponding weight functions are calculated in physical coordinates.
A typical form of the weighted Laplacian [22] is written as

Zedges VV"O (Kfl B Zg)

=yt o :
Zedges VV’O

(29)

where r is the position vector, superscript n + 1 and » the indicate relaxation levels, ¥, the weight function
for the edge connecting nodes i and 0, and w is the relaxation parameter.

6. Surface point redistribution

Accurate representation of the flow field in the vicinity of boundaries is critical for an acceptable overall
solution. Physical processes occurring near the boundaries often drive the flow physics in other regions of
the domain. This is especially true for no-slip surfaces. Hence, the quality and distribution of the grid in no-
slip regions is of critical importance. Mesh orthogonality may also be required for the implementation of a
turbulence model. When using an adaptive procedure based on a redistribution strategy, the interior points
move as the grid is adapted. This leads to distorted cells if the boundary points are not redistributed in a
consistent manner as the grid is adapted. Both grid quality and geometric fidelity must be maintained
during the redistribution process. In this approach, all surfaces of individual blocks are treated in the same
manner — whether they are block interfaces or physical boundaries. The NURBS description of the un-
derlying geometry associated with the interface has already been presented. This description is used to
generate the redistributed surface based on a user specified distribution mesh. The entire surface or a
subregion can be redistributed. Subregions can be used to fix points, such as sharp corners or transition
points between boundary condition types. For solid surfaces, the distribution mesh is based on the nearest
interior surfaces. The spacing between surfaces is small and the surfaces are of a similar geometric shape
resulting in a nearly orthogonal coordinate system. Block interfaces are treated by redistributing the current
block surface based on its corresponding surface in the neighboring block.
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7. Parallel multiblock adaptive grid system

A parallel grid adaptation system for general three-dimensional structured multiblock domains (Parallel
Multiblock Adaptive Grid System, PMAG) [31], developed utilizing described techniques, is presented in
this section. The PMAG was developed as a stand-alone module that reads in PLOT3D [4] grids and
solution files as input. The grid adaptation scheme is based on the redistribution of grid points using an
elliptic solver with weight functions as described previously. The grid blocks are treated as individual
domains that may be distributed over multiple processors. MPI [29,30] is used for message passing. On
shared memory machines, each block can be split over multiple threads. The weight function used has been
previously described in Section 3. A Neumann surface boundary condition has been implemented using
NURBS representations for the geometrical entities described previously to maintain geometric fidelity. A
parallel multiblock solution interpolation algorithm has been incorporated to guarantee accurate adap-
tation. The system can also be used as a multiblock elliptic grid generator [9]. The PMAG system was
developed with the following goals in mind:

1. There should be absolutely no restriction on block connectivity. A block can be connected to any block
including itself, thus supporting a wide range of complex three-dimensional topologies.

2. The algorithm should adapt a multiblock grid concurrently with each block solved in an individual pro-
cess. These processes could be run on a shared memory parallel machine or distributed over a network of
workstations. The algorithm should be scalable. Communication latency should be minimized.

3. Grid adaption should require minimum user interaction to resolve all important flow features. The Neu-
mann boundary conditions should be incorporated to maintain grid quality near body surfaces. Solution
interpolation must be included.

7.1. Parallel implementation

The distribution of grid points in each block is performed as an independent process. PMAG spawns
processes equal to the number of topological blocks. Each block is stored in a separate disk file. This is done
to enable concurrent reading and writing of grid files by each process. The user needs to supply the con-
nectivity information for each block. This includes information about shared faces and fixed patches. Grid
lines must be continuous across adjoining blocks. The inter-block faces, edges, and vertices that do not
describe a fixed body must be free to float in the space. This requires that the point distribution on the block
faces be computed with an exchange of information across the faces. Each block has a layer of ghost cells
that contain data from the neighboring blocks. These data are updated at intermediate intervals using
asynchronous communication. Individual processors are responsible for computing the control functions
and executing the elliptic solver. A global norm is computed after each iteration for comparison with a
specified convergence criterion. Solution interpolation and boundary point movement using a NURBS
surface definition is performed after every n iterations as specified by the user.

This algorithm achieves scalability through the use of threads. If excess processors are available, the
processes subdivide their domains by unrolling the outermost loop of the solver and the search algorithm
and spawning a thread for each subdomain. Controlling the number of threads spawned by each process
aids in load balancing. The larger blocks are allowed to spawn more threads than the smaller blocks.
Splitting the domain into subdomains also leads to better cache performance. Threads are used with MPI
although the MPICH implementation is not thread safe. Therefore, only one thread is active at the time of
inter-process communication. The rest of the threads stop during this time. A further enhancement to the
current version would have other threads continuing the computations with locks on the data while one
thread is dedicated to communications.

7.2. Handling shared faces

To guarantee complete continuity of grid lines across block faces, each block sends a face to its
neighboring block as shown in Fig. 1. The elliptic generator can then run using the face from the neigh-
boring block as a Dirichlet boundary. After every iteration, the updated faces are transmitted to the
neighboring block. This way, the face point positions are computed using the elliptic equations at every
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Fig. 1. Exchange of information.

step. However, the face point locations are computed independently for each block. Hence it is possible that
the face points may not coincide after an iteration. To eliminate this discontinuity, some sequential mul-
tiblock codes keep track of the faces, edges, and vertices belonging to each block. Connectivity tables are
maintained to identify shared vertices, edges, and faces. At the end of each iteration, these connectivity
tables are used to select the copies of the common face, edge, or vertex and then an averaged value (or a
value computed using the elliptically solver) is broadcast to all the owners.

Another method especially amenable for C language codes uses pointers to faces, so that only a single
copy of a shared face is maintained, with both blocks pointing to the same memory location. Clearly, the
later strategy cannot be used when the blocks have been assigned to different processors. The first strategy
of collecting all copies and then broadcasting an average can work in a parallel implementation but only
with a communication penalty. In the case of a simple structured topology with eight vertices, twelve edges,
and six faces per block, each face can be shared by only one other block. One edge is shared by four blocks
and a vertex is shared by eight blocks. In such a case, to retrieve unique face, edge, and vertex locations,
each block needs to communicate with 26 neighboring blocks. Since an elliptic system has a three-point
stencil, and since both blocks have identical copies of all three faces required for computation of the block
boundary face, the face points calculated for the each block using the elliptic system should be the same.
Hence, the face point locations are computed individually using point Jacobi iteration (to guarantee a
three-point stencil).

The point distribution in the interior of the block is computed using the standard tridiagonal system. The
control functions for the points on the shared faces are also evaluated using only a three-point stencil
guaranteeing that neighboring blocks compute identical locations for the shared points. The simplicity of
this scheme is its major advantage. No complicated global connectivity tables need to be maintained. This
makes the code extremely flexible, enabling it to handle a wide variety of block topologies, including 0 grids
embedded in A grids, periodic boundary conditions, etc. For the above strategy to be successful, the basic
premise is that all blocks sharing a particular point must have identical copies of its complete stencil. The
user input specifies only the blocks that share a face with the current block. This means that a block has no
information about its diagonally opposite neighbor. A communication strategy that allows each block to
acquire information from its diagonal neighbors is described in the next section.

7.3. Communication between shared faces

Each block is aware only of the neighboring blocks with shared faces. This means the block cannot
directly access the corner points from its diagonally opposite block. To overcome this problem, the blocks
communicate faces inclusive of the extra points received from the neighboring blocks (shown by the da-
shed-blocks). However, this means that the blocks that send the points before receiving the faces from the
neighbors would send out old points to the neighbors. One way to overcome this problem is to perform
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communication in a cyclic loop. However, the resulting communication process would be sequential and
result in a large communication latency. The problem can be overcome by simply performing the com-
munication process twice. This strategy allows results in the use of asynchronous communication, so that
more than just two blocks communicate at any instant. In case of the simple topology discussed in the
earlier section, each block would now communicate only 12 times. Note that doing the entire communi-
cation process twice does involve transmission of some redundant information. This could be avoided by
sending only edge and vertex information in the second communication process. This feature has yet to be
implemented in PMAG.

7.4. Parallel multiblock interpolation

Once the points are redistributed, the original solution needs to be interpolated onto the new grid. A
parallel grid adaptation algorithm supporting general multiblock topologies makes solution interpolation
significantly more complex. The grid points can move outside the original domain of a block. In such a
case, the block does not have enough information to interpolate the solution and adaptive functions to all
its points. Each block now needs to query all other blocks for the points that are no longer within its
domain. The search algorithm starts with a search and interpolation of all points found within each block.
Each process creates a list of points that are not found within its domain. These lists are concatenated into a
global list which is broadcast to all processes for search. The processes then locate and compute the in-
terpolated solutions for the points found within their domains. A final all-reduce over all processes makes
the solutions known to all the processes. This operation takes 4 log P communications. A shift operation
(the list of external points are shifted in a circle through all processes) would take P communications to
complete. Hence a shift would be faster for domains where the number of blocks <16. Ideally a polyal-
gorithm should be used to switch methods according to the number of processes. The shift has not yet been
implemented in PMAG.

8. Applications
In this section, application of the strategies discussed in the previous sections is illustrated using several

examples. These sample cases range from aerodynamic simulations in the low speed, supersonic, and hy-
personic flight regimes to simulation of shock propagation after a nuclear collision.

WEIGHT WITH/WITHOUT BOOLEAN

Fig. 2. Comparison of weight functions.
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8.1. Influence of weight functions

Two-dimensional flow past a wedge at Mach 2 [6] is used to illustrate the enhanced detection capabilities
of the weight function resulting due to incorporation of Boolean sum in Egs. (10) and (11). Fig. 2 shows a
comparison of the weight functions evaluated without using the Boolean sum, in the lower half plane, and
the Boolean sum, in the upper half plane. It can be observed that both weight functions clearly detect the
primary shock. It can also be seen that the expansion fan, the boundary layer, and the reflected shocks are
much more clearly represented within the weight function using the Boolean summation.

Adapted grids using both weight function formulations are presented in Fig. 3. The high gradient regions
of the expansion region are only reflected in the adapted grid using the weight function using the Boolean
summation. The reflected shock is also much sharper. Fig. 4 shows a comparison of the solution obtained
using the adaption procedure with the solution obtained using the original, unadapted grid. The enhanced
resolution of the flow features is clearly evident.

The effect of the modified weight function (given by Eqs. (13) and (14)) on adaptation is demonstrated in
Fig. 5. This case represents a chemically reacting, supersonic flow through a convergent channel. The initial
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Fig. 3. Comparison of adapted grids.

ADAPTED/ORIGINAL SOLUTION (BOOLEAN)

Fig. 4. Comparison of solutions using adapted grid.
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Fig. 5. Effect of g terms in the adaptation (chemically reacting flows): (a) initial grid and U component of velocity; (b) adapted grid
without gy terms (Eq. (10)); (c) adapted grid with gy terms (Eq. (13)).

grid and the U velocity component are shown in Fig. 5(a). The adaptation is based on the U,V components
of velocity, pressure, temperature and Mach number. Since there was insufficient grid clustering present in
the near the shock region in the initial grid, the adaptation was not effective in the vicinity of the shock (see
Fig. 5(b)). By introducing the metric terms in the weight function, the shock is captured properly (Fig. 5(c))
and other solution features are evident in the resulting adapted grid.

8.2. Algebraic method

The incompressible flow over a cylinder at a Reynolds number of 500 is the first example [23] of the grid
adaption strategy using algebraic distribution of points. The grid dimension used for this simulation is
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181 x 121. The two-dimensional velocity components were used in the weight function. After several time
steps, flow separation occurred behind the cylinder and mesh points were redistributed in response to the
solution as shown in the Fig. 6. As the time progressed, the shed vortices were convected downstream of the
cylinder. Fig. 6 clearly shows the redistribution of the grid points in the wake in response to the shed
vortices.

An unsteady shock movement through a generic inlet is used to demonstrate grid adaptation for un-
steady flows [23]. The grid used for this problem is of size 200 x 40 and the inlet Mach number is 3. The
initial condition is taken as the converged supersonic flow through the entire inlet and the grid is adapted
based on these conditions. A pressure increase was then imposed at the exit plane resulting in the formation
of a normal shock that begins to move upstream. The algebraic adaptive grid redistribution algorithm
automatically adjusts the mesh to resolve this shock, as can be seen in Fig. 7.

The next case considered is the inviscid, hypersonic, real gas flow over a blunt nose [23]. The freestream
conditions, corresponding to an altitude of 10 km, were: pressure = 26.5 kPa, density = 0.414 kg/m?, and
temperature = 223 K. The freestream Mach number is taken as 10 at zero angle of attack. A five-species air
model is used for this simulation. Temperature was used as the variable in the weight function. The initial

Fig. 6. Incompressible flow over a cylinder: vortex shedding and the corresponding adapted grid.
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Fig. 8. Grid adaptation for hypersonic, five species air, flow over a blunt nose.

grid, adapted grid, and the corresponding temperature contours are shown in Fig. 8. It can be seen from the

temperature contours that grid adaptation results in a much thinner and cleaner shock.

8.3. Parabolic method

The application demonstrating the parabolic adaptive grid technique is an inviscid supersonic (Mach 4)
channel flow. The lower wall consists of a horizontal segment followed by a 20° ramp. A 20° expansion then
returns the flow to the horizontal. The upper wall (or symmetry boundary) is parallel to the horizontal
lower wall. An oblique shock forms at the ramp on the lower wall. The shock reflects off the upper wall and
interacts with the expansion that occurs because the flow is turning back to the horizontal. The solution

variables used in the weight function were density, pressure, and Mach number.
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The solution adaptive grid generated for the inviscid channel flow is shown in Fig. 9. The adaptation
procedure does a good job of clustering grid points in the regions near the initial and reflected shocks as
well as the expansion. Points on the lower and upper boundaries were held fixed during the grid generation
process. The grid dimension was 51 x 31.

8.4. Point movement

An example of the grid adaptation using the weighted Laplacian approach is shown in Fig. 10. An
unstructured grid for a geometry representative of a scramjet engine is considered for this example. The
inlet Mach number is taken as 3 and the resultant pressure distribution together with initial grid is shown in
Fig. 10(a). The weight function is based on the four conserved variables and is plotted in Fig. 10(b). The
adapted grid and the solution on the adapted grid are shown in Fig. 10(c) and (d). It can be seen from the
pictures that the shocks and expansion fans are captured more distinctly in comparison to the original
unadapted grid.
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Fig. 9. Parabolic adaptive grid for supersonic channel flow.
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Fig. 10. Grid adaptation for unstructured grid using weighted Laplacian approach: (a) initial grid and pressure distribution; (b) initial
grid and weight function; (c) adapted grid; (d) pressure distribution on adapted grid.
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8.5. PMAG system

The multiblock grid adaptation capability based on the elliptic redistribution scheme is included in the
PMAG system. The ability of PMAG to generate grids appropriate for computing complex, three-
dimensional flow fields is demonstrated by simulating a supersonic flow around a tangentogive cylinder at a
Mach number of 1.45 and an angle of attack of 14°. The CFD systems, NPARC [5] and CFL3D [10] are
utilized for this simulation. Detailed descriptions of the simulations are reported in [35]. The initial grid and
the solution are presented in Fig. 11(a)—(b). The weight functions evaluated using the formulation presented
in Egs. (10) and (11) is displayed in Fig. 11(c). It can be seen that the solution features presented in
Fig. 11(b) are captured by the weight function. Fig. 11(d) shows the adapted grid. The adapted grid shows a
concentration of grid points in the primary and secondary shock regions as well as in the boundary layer
regions. The concentration in the vortex core is also pronounced.

Fig. 12 shows two different longitudinal locations, one displaying the solution and the weight function
and the second displaying the solution and the adapted grid. The flow features corresponding to the vortex
and the feeding sheet are clearly visible in the weight function as well as in the adapted grid. Axial and

JIIiT]

() | (d)

Fig. 11. Grid adaptation for massively separated flows: (a) initial grid; (b) initial solution; (c) weight function; (d) adapted grid.
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Fig. 12. Grid adaptation showing the capturing of the vortex core: (a) solution and weight function; (b) solution and adapted grid.

Table 1
Comparison of forces and moments

Forces Experimental data Unadapted NPARC (BL) Adapted NPARC (BL)
Axial 0.1957 0.3307 0.3309
Normal 1.9100 1.8855 1.9052
Moment 10.2417 10.0314 10.2060

normal forces and moments were computed from solutions obtained from the adapted and unadapted grids
and are compared with the experimental data in Table 1. The axial force determined from the experimental
data is misleading due to a discrepancy during testing [35]. However, the normal force and moment for the
adapted grid show better agreement with the experimental data than the normal force and moment for the
unadapted grid.

8.6. Shock wave propagation after nuclear collision

One example of the efficacy of grid adaptation outside of the field of aerodynamics is in the field of
nuclear science. Grid adaptation is utilized in the simulation of the impact of two nuclei to track the
propagation of the shock wave resulting from the impact [24]. The time evolution of a head-on collision of a
Uranium 238 nucleus with a Silicon 28 together with the gradient and the adaptive grid is shown in Fig. 13.
The density is used in the weight function. It can be seen from the figure that the adaptation is able to track
the propagation of the shock wave due to the impact of the nuclei.

9. Summary and conclusions

Several methodologies for redistributing a fixed number of points to construct solution adaptive grids
were described. Examples covering a wide range of flow conditions were presented to demonstrate the
influence of the weight function on the quality of the solution adaptive grid as well as to validate several
redistribution methods. The weight function incorporating the Boolean summation of properly scaled,
directional weights was shown to be effective in resolving complex flow features. The results presented in
Fig. 11 demonstrate the capability of the weight function to detect shocks of varying strengths, primary and
secondary vortices, and shear layers. Further research needs to be done to determine the appropriateness of
using weight functions of this type in adaptive schemes using refinement and derefinement. Based on the
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Fig. 13. Different stages of head on collision of uranium 238 and silicon 28 nuclei and the corresponding adapted grid.

results shown in this paper, the construction of the weight function is a key component of any adaptive grid
system.

Also demonstrated were several types of redistribution methods. The efficacy of the algebraic and elliptic
redistribution methods for unsteady/moving grid problems was demonstrated via computational examples.
The algebraic method for redistribution of grid points was demonstrated for unsteady flows involving
simple geometries. The PMAG system, which utilizes an elliptic redistribution scheme, was demonstrated
for a complex three-dimensional flow field with multiple shocks of varying strengths and complex vortical
structures. The applicability of the PMAG system to topologically unstructured, multiple block grid
systems is being explored. Also shown demonstrated was the potential of utilizing a parabolic marching
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algorithm to generate a high quality adaptive grids for simple configurations. Additionally, the point
movement method, which is valid for generalized grids, was presented.

The application of NURBS to represent computational domain boundaries was described for surface/
volume grid point redistribution, for maintaining fidelity of solid geometrical components, and for treat-
ment of block interfaces.

Application of these methods to more complex multiblock structured grids and to generalized grids as
well as the applicability of different redistribution strategies are the topics of future research.

Based on results included in the paper, here are a few general recommendations:

1. The grid adaption algorithm must be closely coupled with the flow solver, especially for unsteady prob-
lems or problems with moving grids.

2. The weight functions should be constructed using consistent scalings and the various contributions
should be combined using a Boolean summation.

3. For multiblock structured grids, elliptic redistribution schemes prove to be effective methods and are
preferable to other schemes.

4. For structured grids involving simple geometries but with unsteady flow phenomena, algebraic methods
were shown to be an economical alternative to elliptic schemes.

5. The parabolic grid redistribution scheme was shown to have much promise and should be explored further.

6. The point movement scheme, while not attractive for structured grids, appears attractive for generalized
and unstructured grids. It should be noted that the selection of the relaxation factor is extremely impor-
tant in the point movement scheme.

7. The NURBS representation of surfaces is a critical factor in maintaining geometric fidelity on domain
boundaries where point redistribution occurs.
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