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Abstract: Machine learning techniques have accelerated the development of autonomous navigation
algorithms in recent years, especially algorithms for on-road autonomous navigation. However,
off-road navigation in unstructured environments continues to challenge autonomous ground
vehicles. Many off-road navigation systems rely on LIDAR to sense and classify the environment,
but LIDAR sensors often fail to distinguish navigable vegetation from non-navigable solid obstacles.
While other areas of autonomy have benefited from the use of simulation, there has not been a
real-time LIDAR simulator that accounted for LIDAR–vegetation interaction. In this work, we outline
the development of a real-time, physics-based LIDAR simulator for densely vegetated environments
that can be used in the development of LIDAR processing algorithms for off-road autonomous
navigation. We present a multi-step qualitative validation of the simulator, which includes the
development of an improved statistical model for the range distribution of LIDAR returns in grass.
As a demonstration of the simulator’s capability, we show an example of the simulator being used to
evaluate autonomous navigation through vegetation. The results demonstrate the potential for using
the simulation in the development and testing of algorithms for autonomous off-road navigation.

Keywords: perception in challenging conditions; obstacle detection and classification; dynamic
path-planning algorithms

1. Introduction

Laser ranging sensors, commonly referred to as LIDAR, are ubiquitous in off-road autonomous
navigation because they provide a direct measurement of the geometry of the operating environment
of the robot [1]. One of the ongoing issues with LIDAR perception is the inability of the sensor to
distinguish between navigable obstacles like grass and non-navigable solid obstacles. This problem is
stated clearly by [2]:

Among the more pervasive and demanding requirements for operations in vegetation is
the discrimination of terrain from vegetation-of rocks from bushes... Failure to make the
distinction leads to frustrating behaviors including unnecessary detours (of a timid system)
around benign vegetation or collisions (of an aggressive system) with rocks misclassified
as vegetation.

While there has been progress over the last decade in addressing the perception issues associated
with LIDAR [3,4], the mitigating techniques have primarily been developed and refined experimentally.
Recent advances in simulation for robotics have demonstrated that autonomy algorithms can be
developed and tested in simulation [5–7]. However, up until now simulations have either lacked
the fidelity to realistically capture LIDAR-vegetation interaction or been computationally slow and
difficult to integrate with existing autonomy algorithms [8].
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In this work, the development, validation, and demonstration of a realistic LIDAR simulator
that can be used to develop and test LIDAR processing algorithms for autonomous ground
vehicles is presented. It accurately captures the interaction between LIDAR and vegetation while
still maintaining real-time performance. Real-time performance is maintained by making some
simplifying approximations and by using Embree, an open-source ray-tracing engine from Intel [9],
for ray-tracing calculations, making the simulator useful for integration into “in-the-loop” simulations
of autonomous systems.

LIDAR Basics

While there are several different types of LIDAR sensors, this paper focuses on incoherent
micro-pulse LIDAR sensors, commonly referred to as Time-of-Flight (TOF) sensors, as this type of
LIDAR is by far the most common type used in outdoor autonomous navigation. The operating
principle of TOF LIDAR is to measure the time between the initial pulse of the LIDAR and the arrival
of the reflected pulse, and divide this time by the speed of light to derive a distance [10].

Most LIDAR sensors used in autonomous navigation also feature a rotating scanning mechanism
that allows the laser to sample multiple locations. For example, the SICK sensor scans by having a
stationary laser reflect from a rotating mirror, producing a planar “slice” of the environment, while the
Velodyne sensors feature an array of 16, 32, or 64 laser-sensor pairs in a rotating housing, producing a
3D point cloud with each full rotation of the sensor.

There are several different sources of error in LIDAR range measurements. The finite duration
of the laser pulse, discretization of the reflected signal for processing, and atmospheric scattering
properties all contribute to the error. However, this work focuses on the divergence of the laser beam
and how the diverging beam’s interaction with the fine scale detail of vegetation results in error in the
LIDAR range measurement.

In the following sections, the paper briefly outlines the materials and methods of the simulated
experiments (Section 2), describes the results of simulations (Section 3) and presents discussion and
conclusions based on these results (Sections 4 and 5).

2. Materials and Methods

This work describes the development of a high-fidelity, physics-based LIDAR simulator for
off-road autonomous vehicles. The method of validation of the simulator is qualitative comparison to
previously published experiments on LIDAR interaction with vegetation and other extended objects.

The LIDAR simulation has several key objectives that guided development decisions. First, it must
simulate common robotic LIDAR sensors such as the Velodyne HDL-64E operating in highly-vegetated
outdoor environments in real-time. Second, it must realistically capture the salient characteristics
of laser-beam interaction with blades of grass and leaves. Third, the simulation must be generic
enough to simulate a variety of different LIDAR sensors with only the parameters obtained from
specification sheets and other freely available data. With these requirements in mind, it is noted
that the LIDAR simulator presented here was not developed to support the design and development
of LIDAR sensors. Rather, the simulator was developed to be used in robotics applications where
real-time LIDAR simulation is a requirement.

2.1. Software

The simulator is written in C++ with MPI bindings. The compiler used was the Intel C++ compiler.
Third party libraries used in the development of the simulator are given in Table 1.
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Table 1. Third-party software libraries used by the simulator.

Software Available at

Cimg cimg.eu
TinyObjLoader https://github.com/syoyo/tinyobjloader
OpenGL Mathematics (GLM) https://github.com/g-truc/glm
Rapidjson https://github.com/Tencent/rapidjson
HosekWilkie Sky Model http://cgg.mff.cuni.cz/projects/SkylightModelling/
Rinex https://www.ngs.noaa.gov/gps-toolbox/rinex.htm
a-star https://github.com/hjweide/a-star
Embree https://github.com/embree

2.2. Hardware

Two different computers were used for the simulations in this work. The LMS-291 simulations
were run on a Linux workstation using four Intel Xeon E5 2.9 GHz CPUs. The Velodyne simulations
were run with 40 Intel Ivy Bridge processors on Mississippi State University’s High Performance
Computer, Shadow [11].

3. Results

This section describes the results of simulated LIDAR experiments and their comparison to
previously published data. This section also outlines the development of an analytical range model for
LIDAR penetration into grass for comparison to simulated results.

3.1. Simulation Parameters

The parameters used by the LIDAR model are listed in Table 2, all of which are typically found in
sensor specification sheets. As an illustrative example, the parameters used in the simulation for a
common LIDAR sensor, the Velodyne HDL-32E [12], are also listed.

Table 2. LIDAR simulation parameters.

Parameter Units HDL-32E

Min & max horizontal angle degrees [−180, 180]
Horizontal resolution degrees 0.16
Min & max vertical angle degrees [−30.6623, 10.67]
Vertical resolution degrees 1.3333
Min range m 1.0
Max range m 70
Beam spot shape circular, rectangular, or elliptical rectangular
Horizontal divergence rad 0.0033
Vertical divergence rad 0.0007
Signal cutoff m 1.0
Mode first, last, strongest, strongest & last strongest or last

3.2. Physics of Laser-Vegetation Interaction

There are three processes which need to be simulated in order to realistically capture the salient
characteristics of the laser-beam interaction with vegetation. First, the divergence and shape of the
laser beam should be taken into account. Second, the scattering properties of the leaves and vegetation
in the environment must be simulated. Finally, the on-board processing of the LIDAR sensor also
influences the result.

cimg.eu
https://github.com/syoyo/tinyobjloader
https://github.com/g-truc/glm
https://github.com/Tencent/rapidjson
http://cgg.mff.cuni.cz/projects/SkylightModelling/
https://www.ngs.noaa.gov/gps-toolbox/rinex.htm
https://github.com/hjweide/a-star
https://github.com/embree
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3.2.1. Beam Divergence

In order to simulate beam divergence, the simulator uses the Embree ray-tracing kernel [9,13] to
over-sample each laser pulse and estimate a return signal. The signal pulse is then processed according
to the specified mode of the LIDAR, which can be first, strongest, or last return, or both strongest
and last. Ideally, each beam would be randomly sampled to build up a representative reflected pulse.
However, in order to maintain the real-time requirement, the simulator uses a fixed 9-point stencil for
each of the three beam spot shapes. The three stencils are shown in Figure 1a–c.

(a) (b) (c)

Figure 1. Stencils used to sample the beam spots for (a) circular, (b) rectangular, and (c) elliptical beams.

In the simulation, nine rays are traced from the sensor origin through the stencil points for each
beam pulse. The location of the stencil points is defined by the divergence values specified for the
sensor at 1 m of range. For example, for a sensor located at the origin, oriented with the z-axis up,
having a circular beam spot with divergence γ and beam oriented along the x-axis, the stencil points
would lie in a circle in the y− z plane with radius given by

radius =
√
(2) tan(γ/2)/4

and centered around the x-axis at x = 1.

3.2.2. Scattering from Leaves and Vegetation

The environment is modeled as a collection of triangular meshes, with each triangle attributed
with a reflectance value. All materials in the scene are assumed to be diffuse reflectors, so if a ray
intersects a triangle, the intensity of the retro-reflected ray is given by

I = ρI0 cos(θ) (1)

where ρ is the surface reflectance (with possible values ranging from 0 to 1), θ is the angle between the
surface normal and the ray, and I0 is the intensity of the laser. In the simulator, I0 = 1 for all sensors
and perform all calculations in relative intensity. Multiply scattered rays are not considered in the
simulation. Although multiply-scattered rays can introduce anomalies in environments with highly
reflective materials, natural materials tend to reflect diffusely with values of ρ < 0.5, in which case the
intensity of multiply scattered rays typically falls below the detection threshold of the receiver.

3.2.3. Signal Processing

For each pulse, all reflected rays are stored in a reflected signal. The range is then extracted from
the signal according to the mode of the LIDAR. If the mode is “strongest”, the ray with the most intense
reflection is used to calculate the distance. If the mode is “last”, the ray with the furthest distance (and
longest time) is returned. It is also possible to return both the strongest and last signals. Finally, if the
mode is set to “first”, all signals between the closest reflection (in time and distance) and those within
the “signal cutoff” distance of the closest return are averaged. The signal cutoff parameter accounts
for the fact that LIDAR sensors typically do not average over the time window of the entire pulse.
The value of the signal cutoff parameter can be inferred from laboratory measurements [14]. Figure 2
illustrates how the signal cutoff parameter is used to process the signals in the simulation.
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Figure 2. Example of pulse processing. Each laser beam in the simulation is sampled by 9 rays.
An averaging window (depicted by the horizontal bars) is defined by the “Signal cutoff” parameter,
and the location of the window depends on the mode.

3.3. Real-Time Implementation

In the example simulations shown in the following sections, the simulated environment contains
over 193 million triangles. A sensor like the Velodyne HDL-64E returns about 106 points per second,
and the simulator traces 9 rays per pulse. This means that the simulation must perform O(1015)

ray-triangle intersections per second of simulation time. Even with a ray-tracing kernel like Embree that
uses bounding-volume hierarchy acceleration, ray-tracing simulations on this scale require additional
parallelization in order to maintain real-time speed.

The Message Passing Interface (MPI) [15] is used to parallelize each scan by laser pulse so that
each bundle of 9 rays can be simulated independently. This method is embarrassingly parallel and
scales well with the addition of processors. Figure 3 shows the scaling of the code with the number of
processors used.
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Figure 3. Scaling of the LIDAR simulation of a Velodyne HDL-64E in a scene with 191,245,324 triangles.

The Sick LMS-291 and the Velodyne HDL-64E were used for computational performance
bench-marking. The LMS-291 simulation was run on 4 processors at approximately 30% faster than
real time (6.8 s of simulated time in 4.7 s of wall time). The HDL-64E was run on 40 processors at
approximately 30% faster than real time (6.8 s of simulated time in 4.7 s of wall time). Details about the
hardware used to run the simulations are given in Section 2.2. These examples demonstrate that the
implementation is capable of achieving real-time performance, even for very complex LIDAR sensors
and environment geometries.

3.4. Simulation Validation

The requirements for validation of physics-based simulation can vary in rigor depending on
the application. Accuracy requirements must be defined by the user, and this creates well-known
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difficulties when generating synthetic sensor data for autonomous vehicle simulations [16]. In the
sections above, the development of a generalized LIDAR simulation that captures the interaction
between LIDAR and vegetation was presented. The simulation is not optimized for a particular
model of LIDAR sensor or type of environment. Therefore, in order to validate the simulation,
is of primary importance to qualitatively reproducing well-known LIDAR-vegetation interaction
phenomenon. To this end, three validation cases are presented. In the first case, the results of the
simulation are compared to an analytical model. Next, simulation results are compared to previously
published laboratory experiments. Finally, the simulation is compared to previously published
controlled field experiments. All three cases show good qualitative agreement of the simulation with
the expected results.

3.4.1. Comparison to Analytical Model

The statistics of LIDAR range returns in grass have been studied for nearly two decades.
In particular, Macedo, Manduchi, and Matthies [3] presented an analytical model for the range
distribution of LIDAR returns in grass that was based on the exponential distribution function, and this
model has been cited frequently in subsequent works [4,14,17,18]. Accounting for the beam divergence,
Ref. [3] present the following model for the probability distribution of the LIDAR interacting with a
stand of grass, modeled as randomly placed, uniform diameter cylinders.

p(r) = λd(1 + ar)e−λd(r−D)(1+a(r+D)2/2)U(r− D) (2)

where λ is the number density of the grass per square meter, d is the average grass stem diameter
(meters), D is the distance between the laser and the edge of the grass-stand (meters), r is the measured
range (meters), and a is related to the laser beam divergence, γ (radians) by

a = 2 tan(γ/2) (3)

Although the details of the derivation of Equation (2) are not presented in [3], it appears that the
model was developed by assuming that the LIDAR’s returned distance would be the nearest distance
encountered along the beam spot profile. However, the exponential model has the unsatisfactory result
that the most likely returned distance is D, which runs counter to simple geometrical considerations.
Additionally, as noted in [3], TOF LIDAR sensors will measure an average over the spatial resolution
of the beam spot. The exponential model does not properly account for this averaging over the entire
width of the returned pulse. Therefore, an improved analytical model is needed.

Noting that the distribution of the average of multiple samples of an exponentially distributed
random variable is a gamma distribution, an improved analytical model based on the gamma
distribution is proposed. In the case of a laser beam, the integration is continuous over the width of
the beam. Noting that the beam spot factor is proportional to aD2 ≈ γD2 for small values of γ [3],
the continuous variable of integration is

α = 1 + γD2. (4)

The range probability equation is then given by the gamma distribution

p(r) =
(r− D)α−1(αλd)α

Γ(α)
e−αλd(r−D) (5)

where Γ is the gamma function. This choice of α gives the desirable property that when the divergence
is zero, the model reproduces the exponential model while tending towards a normal distribution as α

gets large.
In order to compare the simulation to this model, a single point LIDAR with a divergence of 1 mrad

aimed at a stand of randomly placed grass, modeled as uniform vertical cylinders, was simulated.
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For purposes of comparison, the signal cutoff parameter was set to a value of 100 m, simply because
the analytical model does not account for signal cutoff. The grass stand was 10 m wide and 5 m
deep. Stem densities of λ = 50 and λ = 100 were simulated, corresponding to 2500 and 5000 stems,
respectively, in the 50 m2 area. The simulation setup is shown in Figure 4.

(x, y)
γ

λd

D

Figure 4. Setup of simulated experiment. The red dashed lines represent the diverging laser beam at
from position (x, y). In the simulated experiments, y varied randomly and x = [20, 30].

Simulation results for distances of 20 and 30 m are shown in Figure 5a–d. Several interesting
features of the model and simulation are noted. First, increasing the range, D, shifted the entire
distribution to the right, as predicted by the model. Second, the most likely value in the
simulated distribution matches the model fairly well, although better for the larger grass diameters.
Lastly, gamma distribution and the simulation match well qualitatively, indicating that for a diverging
beam the gamma distribution is indeed a better predictor of the range statistics than the exponential
distribution. The qualitative agreement between the simulation and the analytical model strongly
indicates that the simulation is valid for LIDAR-grass interaction for a range of distances and
grass properties.

(a) (b)

(c) (d)

Figure 5. Comparison of the simulated experiments to the improved analytical model for stem
diameters of 10 mm and 20 mm. (a) D = 20, λ = 50, (b) D = 20, λ = 100, (c) D = 30, λ = 50,
(d) D = 30, λ = 100.
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3.4.2. Comparison to Laboratory Experiment

There have been a number of attempts to experimentally quantify the occurrence of mixed
pixels in LIDAR measurements. One experiment presented laboratory tests for mixed pixel effects
using cylindrical rods arranged in front of a flat background [14]. In the experiment, 8–9 cylindrical
rods of various diameters were placed vertically in front of a flat plywood background. While the
exact locations and diameters of the rods are not given in the reference, it is possible to infer the
approximate arrangement from the figures given in the paper. Figure 6 shows the arrangement used
for the simulations. Nine cylindrical rods were arranged in even 12.7 cm spacings in a row parallel
to the background. All rods had diameter of 25 mm, except for one which had a diameter of 75 mm.
The sensor was placed 80 cm away from the row of rods, and the background was moved to an offset
of either 60 cm or 2 m, to match the results given in Figure 4 of [14].

x

y80 cm

Adjustable

Figure 6. Setup of the mixed pixel experiment from [14].

To compare the results of the laboratory simulations, shown in Figure 7a,b, the LMS-291 with
settings listed in Table 3 was used. The LMS-291, although originally designed for manufacturing
applications, was quite common in field robotics for nearly a decade. However, due to a relatively high
divergence (>10 mrad) the sensor is especially prone to mixed pixels. The primary conclusion of the
original experiment was that mixed pixels were present when the offset between the background and
the cylinders is less than 1.6 m, but at larger offsets the mixed pixels are not present. This is due to the
timing resolution and signal processing of the sensor. Figure 7a,b present the results of our simulation,
and show clearly that results from the original laboratory experiments are qualitatively reproduced by
our simulation. This indicates that our simulated beam divergence and signal processing correctly
reproduces the real sensor.

Table 3. LIDAR simulation parameters for the LMS-291.

Parameter LMS-291S05

Horizontal angles [−50,50]
Horizontal resolution 0.5, 1.0
Vertical angles -
Vertical resolution -
Min range -
Max range 80
Beam spot shape circular
Horizontal & vertical divergence 0.0129
Signal cutoff 1.6
Mode first return
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(a) (b)

Figure 7. Simulation of the experiment from [14]; compare to Figure 4 from [14]. (a) Scan with the
background 60 cm behind targets. Note the presence of mixed-pixels. (b) Scan with background 2 m
behind targets. Note the absence of mixed-pixels.

3.4.3. Comparison to Controlled Field Test

Velodyne LIDAR sensors have become ubiquitous in field robotics in the last decade [1].
In particular, the availability of accurate, spatially dense point clouds provided with the introduction of
the Velodyne HDL-64E enabled tremendous advances in LIDAR-based autonomous navigation [19–22].
The Velodyne sensors have a more focused beam than the SICK scanners and are thus less prone to
mixed pixels. This lead to a higher degree of “penetration” into extended objects such as vegetation.
This feature has been exploited to help distinguish vegetation from solid objects in 3D point clouds
generated by the Velodyne sensor [20].

In this section, it is shown that our simulation accurately reproduces sensor-vegetation interaction
for the Velodyne HDL-64E. Statistical techniques for quantifying the range penetration properties of
LIDAR into vegetation were presented in [23], who showed results for range variability when scanning
vegetation with a Velodyne HDL-64E LIDAR. In their experiment, a small potted shrub was placed
at a distance of 8 m from the sensor and a histogram of the returned distances from approximately
1500 range measurements was presented. While the experiment cannot be exactly reproduced because
the geometric detail about the shrub used in the experiment is not available, the experiment has been
reproduced using a shrub model that appears to be a similar size and shape to the one used in [23].
The shrub model used in the experiment is shown in Figure 8a.

(a) (b)

Figure 8. Simulated comparison to experiment from [23]. (a) Rendering of the shrub that was scanned.
(b) Range histogram for multiple scans of the shrub at a distance of 8 m. Compare to Figure 1 from [23].
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In our simulated experiment, the sensor was placed at a distance of 8 m from the shrub shown
in Figure 8a and extracted points from one rotation of the sensor on the 5 Hz setting. The sensor
was moved along a quarter-circle arc at a distance of 8 m in 1 degree increments, for a total of
91 measurement locations. All distance measurements which returned from the shrub were binned
into a histogram, which is shown in Figure 8b. In the original experiments, two main features of the
range distribution were observed [23]. First, the broadening of the distribution due to the extended
nature of the object, and second the bi-modal nature of the distribution due to some returns from the
trunk and others from the foliage. Comparing our Figure 8b to Figure 4 from [23], it is clear that the
simulation reproduces both of these features of the distance distribution. This qualitative agreement
provides indication that our simulation is valid for Velodyne sensors interacting with vegetation.

3.5. Simulation Demonstration

In this section, the results of an example demonstration in a realistic digital environment are
presented. The goal of the demonstration is to show how the simulator could be used to develop
and test autonomy algorithms and highlight the LIDAR-vegetation interaction. While the navigation
algorithms presented in the demonstration are not novel, the demonstration highlights the efficacy of
the sensor simulation for evaluating the navigation algorithm performance and the capability of the
simulation to reveal the influence of sensor-environment interaction on autonomous navigation.

3.5.1. Digital Scene

A “courtyard” scene was created by placing vegetation in a 300 × 300 m square, surrounded by
a 10 m high wall. One tree model and one grass model were used with random orientations, scales,
and locations throughout the courtyard. The resulting scene is shown in Figure 9a. The scene contained
nearly 2 million blades of grass, 50 trees, and 191,245,324 triangles. Embree’s instancing feature was
used to reduce the memory required to load the scene into the simulation.

(a) (b)

Figure 9. Digital scene used in the example simulation. (a) Rendering of the digital scene. (b) Point
cloud from HDL-64E, top-down view.

3.5.2. Simulating the Velodyne HDL-64E

The Velodyne HDL-64E presents several unique considerations for simulation. First, the sensors
consists of two arrays of aligned laser-receiver pairs, with each array having 32 lasers. The lower block
of lasers has only one-fourth the horizontal angular resolution of the upper block. The blocks are
reported from the sensor in “packets”, and there are three packets from the upper block and then one
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from the lower block. Finally, because the repetition rate of the laser array is constant, the horizontal
resolution of the sensor depends on the rotation rate of the sensor, which can vary from 5–15 Hz.

In order to reproduce these features in the simulation, the upper and lower blocks of the HDL-64E
are simulated as two separate LIDAR sensors and combined in the software into a single result.
In the simulation, the variable rotation rate, ω, and horizontal resolution (δhorizontal) are related by
the equations

δhorizontal
lower =

360
250000

32ω − 1
(6)

δhorizontal
upper =

360
250000

8ω − 1
(7)

In the simulation, the point cloud is assembled from three sets of 32 points from the upper block.
The fourth block is discarded from the upper block and replaced by 32 points from the lower block.
In this way, the readout and resolution of the real sensor is maintained in the simulation. Table 4 shows
how the sensor is parameterized for the simulation. A point cloud from a single simulated scan is
shown in Figure 9b.

Table 4. LIDAR simulation parameters for the Velodyne HDL-64E.

Parameter Lower Block Upper Block

Horizontal angles [−180,180] [−180, 180]
Horizontal resolution Equation (6) Equation (7)
Vertical angles [−24.8, −11.6127] [−11.1873, 2.0]
Vertical resolution 0.41875 0.41875
Min range 1 1
Max range 100 100
Beam spot shape rectangular rectangular
Horizontal divergence 0.0033 0.0033
Vertical divergence 0.0007 0.0007
Signal cutoff 1.0 1.0
Mode strongest strongest

3.5.3. Simulation Results

In order to demonstrate how the LIDAR simulation could be used to evaluate autonomous
performance, an example simulation featuring autonomous navigation with A* [24] is presented.
The A* algorithm is a heuristic approach that has been extensively used in autonomous path planning
for decades. An implementation based on that by [25] is used in this example. A cost map is created
by using scans from the LIDAR sensor. The map had a grid resolution of 0.5 m, and the grid size was
400 × 400. Successive LIDAR scans were registered into world coordinates using a simulated GPS and
compass and placed into the grid. Each reflected LIDAR point was assigned a cost, c, based on the
point height, h using the formula

c = max(100h/hmax, 100) (8)

where hmax is the maximum negotiable vegetation height of the vehicle. For these simulations,
hmax = 1.5. The vehicle was placed in the southwest corner of the scene and given a goal about 130 m
northeast of the starting location. The simulated robot was a generic passenger-sized, skid-steered
wheeled vehicle with a maximum speed of 2 m/s. The simulation was repeated for four different
LIDAR models: the Sick LMS-291 S05, the Velodyne HDL-64E, HDL-32E, and VLP-16. The sensors
were mounted on the vehicle at a height of 2 m above the ground. The resulting cost maps after
10 simulated seconds are shown in Figure 10a–d.
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(a) (b)

(c) (d)

Figure 10. Example cost maps calculated using different sensors. Black corresponds to zero cost,
while brighter regions are higher cost. (a) Sick LMS-291 (b) Velodyne VLP-16 (c) Velodyne HDL-32E
(d) Velodyne HDL-64E.

Visual comparison of the cost maps and the optimal paths calculated by the A* path planner
reveal how the simulator can be used to discover the impact of sensing capability on autonomous
performance. The LMS-291, which produces only a horizontal slice of the environment, does not detect
most of the grass—it only detects the trees. Additionally, the vegetation that is detected has less range
variability within objects—for example compare Figure 10a with Figure 10d. Lack of penetration into
vegetation is a well known problem of high-divergence LIDAR like the LMS-291 [3].

There are also clear differences between the cost maps generated by the three Velodyne models.
One interesting difference is observed between the VLP-16 and the HDL-64E. While the HDL-64E has
a much denser point cloud, the VLP-16 has a much higher maximum opening angle than the HDL-64E
(15◦ above horizontal for the VLP-16 versus 2◦ above horizontal for the HDL-64E). This results in the
VLP-16 detecting tall obstacles at intermediate ranges somewhat better than the HDL-64E. These show
up as the ring-like structure in the VLP-16 cost map (Figure 10b). The HDL-64E, however, is better at
detecting smaller nearby obstacles. Again, the relative desirability of these features depends on the
application, but this demonstration illustrates how the simulation could be used to study autonomous
navigation with realistic LIDAR simulations in densely vegetated environments.
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3.6. Example of Highly Detailed Digital Environment

In order to demonstrate how the simulator could be used in real world scenarios, a highly
detailed digital scene was developed based on a unique off-road terrain feature. The feature, shown in
Figure 11a, is a large vertical step in an off-road trail with a tree root acting as a natural embankment.
The geometry of the root feature was measured by developing a structure mesh from a sequence of
268 digital images. The resulting surface mesh contained over 22 million triangular faces and was
approximately 2 m by 3 m by 0.4 m in height. The scene was augmented with randomly placed models
of grass and trees. The resulting scene contained 24,564 grass and tree meshes for a total of 604,488,350
triangular faces. A digital rendering of the synthetic scene is shown in Figure 11b. Additionally, LIDAR
simulations of the scene with two of the sensors discussed in this work are shown in Figure 11c,d
as a demonstration of the capability of the LIDAR simulation to scan a complex scene in real-time.
The points in Figure 11c,d are color-coded by intensity, and the root feature can be clearly distinguished
near the center of each figure.

(a) (b)

(c) (d)

Figure 11. Example of a highly detailed environment reproduced from digital images (a) Real image of
the root feature (b) Simulated camera image of the root feature. (c) A scan of the root feature by the
HDL-32E scanner. (d) A scan of the root feature by the VLP-16 scanner.

Although this level of geometrical detail is probably unnecessary for LIDAR simulations,
this exercise demonstrates the capability that the simulator has for highly detailed digital terrains for
sensor simulations.

4. Discussion

While the design, development, and testing of autonomous ground vehicles is primarily done
through physical experimentation, there are obvious benefits to using simulation. A recent paper on
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simulation of autonomous urban driving systems stated several disadvantages of physical testing [26],
including infrastructure cost, logistical difficulties, and inability to perform a statistically significant
number of experiment for training and validation of autonomous algorithms.

Additionally, many important safety scenarios, such as pedestrian detection and avoidance, are
dangerous or impractical to study in physical experiments. There is therefore a growing body of
research on the use of simulation for the development, training, and testing of autonomous navigation
algorithms for passenger-sized vehicles [5–7,26,27]. The simulator presented in this work adds to
this growing field in the area of off-road autonomous navigation by providing a methodology for
realistic, real-time simulation of LIDAR-vegetation interaction. This new capability can improve both
the development and testing of off-road autonomous systems.

While simulation can never fully replace field testing, simulation offers several advantages over
field testing. First, the simulation environment is known and controlled, meaning environmental factors
can be controlled and eliminated as a source of variability in testing if desired. Second, simulation
offers the ability to have perfect knowledge of “ground truth”, which can make training and testing
detection and classification algorithms much simpler and faster.

Simulation tools for autonomous ground robotics can be typically divided into three broad
categories, based on the physical-realism, environmental fidelity, and the purpose of the simulator.
The first category of simulations are what one 2011 review called “Robotic Development Environments”
(RDE) [28]. These include Gazebo [29], USARSIM [30], Microsoft Robotics Developer Studio [31],
and other simulators used to interactively design and debug autonomous systems in the early stage of
development. Other more recent examples include customized simulations with simplified physics for
closed-loop autonomy simulations in MATLAB [32,33].

While many of these tools are now defunct or unsupported due to the popularity of Gazebo,
they share several traits in accordance with their intended use. First, RDE focus on ease of use
and integration into the robotic development process—undoubtedly a reason behind Gazebo’s
overwhelming popularity. Second, these simulators tend to avoid detailed simulation of the
environment and the robot-environment interaction because this is outside the scope of their intended
use. Last, RDE typically simulate in real-time or faster, allowing robotic developers to quickly design,
develop, and debug autonomous systems.

The second category of robotic simulator could be called “Robotic Test Environments” (RTE),
in keeping with the above nomenclature. Simulators such as the Virtual Autonomous Navigation
Environment (VANE) [34], MODSIM [35], Robotic Interactive Visualization Experimentation
Technology (RIVET) [36], the Autonomous Navigation Virtual Environment Laboratory (ANVEL) [37],
and the CARLA [26] fall into this category. RTE are typically used to evaluate the performance of
a robotic system in a realistic operational setting—necessitating a higher degree of realism in the
robot-environment interaction physics. Even among RTE there is a wide range of realism in the
sensor-environment interaction physics, depending on the application. For example, the RIVET,
which is primarily used to study human-robot interaction, has lower-fidelity sensor simulations than
then ANVEL, which has been used to evaluate mission effectiveness. The VANE has the most realistic
LIDAR-environment interaction physics [38,39], but runs much slower than real-time.

The third class of simulators are empirical or semi-empirical simulators. These range from
software that simply replays modified data collected in previous experiments to complex models
developed from field data. For example, a realistic simulation of a Velodyne HDL-64E interacting
with vegetation was developed by quantifying the statistics of LIDAR-vegetation interaction for a
sensor in a particular environment and then digitizing the environment based on those statistics [23,40].
More recently, much attention has been given to Waymo’s Carcraft simulator, which uses a mixture of
real and simulated data to virtualize previously measured events [27]. These empirical simulators can
be quite realistic when predicting the performance of a specific autonomous system in a particular
environment and are therefore useful in robotic development projects which already feature extensive



Electronics 2018, 7, 154 15 of 17

field testing. However, these empirical simulators cannot fill the need for predictive, physics-based
modeling [41].

In this context, the LIDAR simulation presented in this paper is unique because it provides a
more realistic model of the LIDAR-vegetation interaction than any of the other real-time simulators,
but still maintains real-time or faster-than real-time computational performance. This work enables
predictive, interactive simulations of robotic performance in realistic outdoor environments to be
integrated into human-in-the-loop or hardware-in-the-loop testing of autonomous systems in complex
outdoor environments.

5. Conclusions

In conclusion, this work has documented the development and validation of a high-fidelity,
physics-based LIDAR simulator for autonomous ground vehicles that can be used to simulate LIDAR
sensors interacting with complex outdoor environments in real-time.

The value of this capability in the development and testing of autonomous systems, as well as the
improvements over past simulators, was presented in Section 4.

Future work will enhance the simulator in several ways. First, the interaction of the LIDAR with
dust, snow, rain, and fog—all of which can adversely affect LIDAR performance—will be incorporated.
Additionally, the environment representation will be enhanced to include retro-reflective surfaces like
road signs.
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