Large Scale Parallel Lattice Boltzmann Model of Dendritic Growth

Bohumir Jelinek Mohsen Eshraghi Sergio Felicelli

CAVS, Mississippi State University

March 3-7, 2013 – San Antonio, Texas

MISSISSIPPI STATE

UNIVERSITY

US Army Corps of Engineers BUILDING STRONG

Why LBM-CA?

H. Yin et al. / Acta Materialia 59 (2011) 3124-3136

MISSISS

UNIVERSITY

TATE

When the fluid flow around solidifying dendrites is considered, lattice Boltzmann method is faster than alternatives

Lattice Boltzmann method

MISSISSIP

UNIVERSITY

Lattice-Boltzmann method (LBM) calculates time evolution of a quantity of interest governed by a partial differential equation subject to given initial and boundary conditions at regularly spaced nodes .

Lattice Boltzmann Method

MISS

D2Q9 lattice

Each node has 9 distribution functions f_i representing portion of the mass density moving in the lattice direction e_i

$$\rho = \sum_{i=0}^{8} f_i, \quad \rho \boldsymbol{u} = \sum_{i=0}^{8} f_i \boldsymbol{e}_i$$

Lattice Boltzmann Method

 $f_i(\boldsymbol{r} + \boldsymbol{e}_i \Delta t, t + \Delta t) = f_i(\boldsymbol{r}, t) + \frac{1}{\tau_{\mathrm{u}}} \left(f_i^{\mathrm{eq}}(\boldsymbol{r}, t) - f_i(\boldsymbol{r}, t) \right)$

For each lattice direction e_i , *i*=0..8

$$f_i(\boldsymbol{r} + \boldsymbol{e}_i \Delta t, t + \Delta t) = f_i(\boldsymbol{r}, t) + \frac{1}{\tau_u} \left(f_i^{eq}(\boldsymbol{r}, t) - f_i(\boldsymbol{r}, t) \right)$$

For each lattice direction e_i , *i*=0..8

 $f_i(\boldsymbol{r} + \boldsymbol{e}_i \Delta t, t + \Delta t) = f_i(\boldsymbol{r}, t) + \frac{1}{\tau_u} \left(f_i^{eq}(\boldsymbol{r}, t) - f_i(\boldsymbol{r}, t) \right)$

Collision:

Adjusts the distribution function to approach equilibrium distribution

For each lattice direction e_i , *i*=0..8

Equilibrium distribution function

LBM parallelization

• • • • • • • • • • • • • • • • • • •	• • • • CPU 8	• • • • CPU 9 • • • •
• • • •	• • • •	• • • •
CPU 4	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • •
• • • • •	 CPU 2 • • • • • • • • • 	• • • • • • • • • •

MISSISSIPPI STATE

UNIVERSITY

Spatial domain decomposition

MISSISSIF

UNIVERSITY

TATE

BUILDING STRONG_ ${\mathbb{R}}$

UNIVERSITY

BUILDING STRONG_®

TATE

MISSISSI

UNIVERSITY

LBM-CA solidification model C_I, u, T

Flow of solute between solidifying dendrites in a variable temperature field. Cooled at front and back boundaries, heated from left (inlet) and right (outlet) boundaries.

LBM-CA parallelization – dendrite growth

MISSISS

UNIVERSITY

For dendrite growth, information from neighboring nodes is needed to update local node value

MISSISS

UNIVERSITY

Populate ghost nodes after each local update

Computational resources

Talon, MSU HPC²:

- 3072 cores, 12 cores/node (user limit 192 cores / job)
- Intel Xeon X5660 @2.8GHz (Westmere) processors
- 24 GByte/node memory
- Voltaire quad data-rate InfiniBand (40Gb/s)
- peak performance of over 34.4 TeraFLOPS

Kraken, NICS/ORNL:

- 112,896 cores, 12 cores/node (user limit cores / job)
- AMD Opteron (Istanbul) @2.6GHz (Istanbul) processors
- 16 GByte/node memory
- Cray SeaStar2+ router
- peak performance of 1.17 PetaFLOPS

MISSISSIPPI STA

Generating an initial configuration for parallel scaling tests

Simulation domain:

- rectangular lattice, 8000x6000 grid points
- dimensions: 2.4 mm x 1.8 mm (0.3 µm/lattice distance)
- 3264 random dendrite nucleation sites
- constant cooling rate 100K/s across the whole domain
- forced melt flow through inlet (left) and outlet (right) boundaries
- almost 16 GB of memory = single node of Kraken
- 400k time steps
- took about 10 hours on 192 cores on Talon @ MSU

MISSISSIPPI STAT

Initial configuration

BUILDING STRONG_®

Magnified portion of initial configuration

MISSISSIPPI

UNIVERSITY

STATE

Speed up

- Speed up (strong scaling) represents how much faster a task is solved utilizing multiple cores
- Speed up tests were performed by restarting simulation from the step when the dendrites were fairly grown in the incubation domain
- Incubation domain is "split" equally between varying number of cores, then executed for 587 time steps with a flow forced at the inlet (left) and outlet (right), and with a specified cooling flow rate at all boundaries

BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$

Speed up - constant task, 1 core

Speed up - constant task, 2 cores

BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$

Speed up - constant task, 4 cores

Speed up - constant task, 12 cores

Speed up - constant task, 12 cores

Speed up - constant task, 24 cores

Speed up - results

UNIVERSITY

strong scaling (speed up) near perfect up to 3072 cores

 Algorithm is memory bandwidth limited on multi-core architecture (low FLOP/byte ratio)

Scale up

- Scale up (weak scaling) tests checks if the algorithm can solve larger task when more cores are utilized without a significant performance penalty
- Scale up tests were initialized from the stage when the dendrites were fairly grown in the incubation domain
- Incubated domain was "duplicated" equally onto varying number of nodes, then executed for 587 time steps with a flow forced at the inlet (left) and outlet (right), and with a specified cooling flow rate at all boundaries

BUILDING STRONG_®

Duplication of the incubation domain onto 4 nodes

Duplication of the incubation domain onto 4 nodes

Duplication of the incubation domain onto 16 nodes

Scale up - results

UNIVERSITY

Scale up - results

Demonstrated nearly perfect scale up

Largest domain:

- 41472 cores of Kraken
- over 165 billion grid nodes
- 11 millions of dendrites (only hundreds reported before)
- solute diffusion, melt convection, and heat transport
- dimensions 17.28 cm x 8.64 cm
- 587 time steps
- 40 minutes of simulation time

3D LBM-CA parallelization $-C_{I}$, u

3D Dendrite growth in undercooled AI-3wt%Cu melt

UNIVERSITY

BUILDING STRONG_®

3D columnar dendrites growing in undercooled melt of AI-3wt%Cu

Domain size 180x180x144 (µm)³ By Mohsen Eshraghi

MISSIS

UNIVERSITY

BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$

Conclusions

<u>2D:</u>

- Parallelized 2D lattice Boltzmann / cellular automaton model of dendritic growth
- Tested the strong and weak parallel scaling of LBM/CA model with dendrites at advanced growth stage
- Demonstrated nearly ideal speed up and scale up <u>3D:</u>
- Preliminary results exhibit similar speed up and scale up performance in 3D,
- measured tip growth velocity and solute concentration profiles

Effects of convection, to be presented by Mohsen
 Eshraghi - Frontiers in Solidif. Science, Wed. 5:40 PM

 $\textbf{BUILDING STRONG}_{\texttt{R}}$

Acknowledgement

Funding

- U.S. Army Corps ERDC
- NSF
- Center for Advanced Vehicular Systems @ MSU
 Computational resources
- MSU HPC
- Kraken @ ORNL
- XSEDE collaborative support by Reuben Budiardja
 Personal
- Mohsen Eshraghi for guiding me through the algorithm
- Sergio Felicelli and John Peters for opportunity to contribute to this interesting project

